1
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
2
|
Schreier HK, Wiehe RS, Ricchetti M, Wiesmüller L. Polymerase ζ is Involved in Mitochondrial DNA Maintenance Processes in Concert with APE1 Activity. Genes (Basel) 2022; 13:genes13050879. [PMID: 35627264 PMCID: PMC9141751 DOI: 10.3390/genes13050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial DNA (mtDNA) damaged by reactive oxygen species (ROS) triggers so far poorly understood processes of mtDNA maintenance that are coordinated by a complex interplay among DNA repair, DNA degradation, and DNA replication. This study was designed to identify the proteins involved in mtDNA maintenance by applying a special long-range PCR, reflecting mtDNA integrity in the minor arc. A siRNA screening of literature-based candidates was performed under conditions of enforced oxidative phosphorylation revealing the functional group of polymerases and therein polymerase ζ (POLZ) as top hits. Thus, POLZ knockdown caused mtDNA accumulation, which required the activity of the base excision repair (BER) nuclease APE1, and was followed by compensatory mtDNA replication determined by the single-cell mitochondrial in situ hybridization protocol (mTRIP). Quenching reactive oxygen species (ROS) in mitochondria unveiled an additional, ROS-independent involvement of POLZ in the formation of a typical deletion in the minor arc region. Together with data demonstrating the localization of POLZ in mitochondria, we suggest that POLZ plays a significant role in mtDNA turnover, particularly under conditions of oxidative stress.
Collapse
Affiliation(s)
- Heike Katrin Schreier
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany; (H.K.S.); (R.S.W.)
| | - Rahel Stefanie Wiehe
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany; (H.K.S.); (R.S.W.)
| | - Miria Ricchetti
- Department of Developmental and Stem Cell Biology, Institute Pasteur, CEDEX 15, 75724 Paris, France;
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany; (H.K.S.); (R.S.W.)
- Correspondence:
| |
Collapse
|
3
|
Holt AG, Davies AM. The Effect of Mitochondrial DNA Half-Life on Deletion Mutation Proliferation in Long Lived Cells. Acta Biotheor 2021; 69:671-695. [PMID: 34131800 DOI: 10.1007/s10441-021-09417-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
Abstract
The proliferation of mitochondrial DNA (mtDNA) with deletion mutations has been linked to aging and age related neurodegenerative conditions. In this study we model the effect of mtDNA half-life on mtDNA competition and selection. It has been proposed that mutation deletions ([Formula: see text]) have a replicative advantage over wild-type ([Formula: see text]) and that this is detrimental to the host cell, especially in post-mitotic cells. An individual cell can be viewed as forming a closed ecosystem containing a large population of independently replicating mtDNA. Within this enclosed environment a selfishly replicating [Formula: see text] would compete with the [Formula: see text] for space and resources to the detriment of the host cell. In this paper, we use a computer simulation to model cell survival in an environment where [Formula: see text] compete with [Formula: see text] such that the cell expires upon [Formula: see text] extinction. We focus on the survival time for long lived post-mitotic cells, such as neurons. We confirm previous observations that [Formula: see text] do have a replicative advantage over [Formula: see text]. As expected, cell survival times diminished with increased mutation probabilities, however, the relationship between survival time and mutation rate was non-linear, that is, a ten-fold increase in mutation probability only halved the survival time. The results of our model also showed that a modest increase in half-life had a profound affect on extending cell survival time, thereby, mitigating the replicative advantage of [Formula: see text]. Given the relevance of mitochondrial dysfunction to various neurodegenerative conditions, we propose that therapies to increase mtDNA half-life could significantly delay their onset.
Collapse
|
4
|
Gitschlag BL, Tate AT, Patel MR. Nutrient status shapes selfish mitochondrial genome dynamics across different levels of selection. eLife 2020; 9:56686. [PMID: 32959778 PMCID: PMC7508553 DOI: 10.7554/elife.56686] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Cooperation and cheating are widespread evolutionary strategies. While cheating confers an advantage to individual entities within a group, competition between groups favors cooperation. Selfish or cheater mitochondrial DNA (mtDNA) proliferates within hosts while being selected against at the level of host fitness. How does environment shape cheater dynamics across different selection levels? Focusing on food availability, we address this question using heteroplasmic Caenorhabditis elegans. We find that the proliferation of selfish mtDNA within hosts depends on nutrient status stimulating mtDNA biogenesis in the developing germline. Interestingly, mtDNA biogenesis is not sufficient for this proliferation, which also requires the stress-response transcription factor FoxO/DAF-16. At the level of host fitness, FoxO/DAF-16 also prevents food scarcity from accelerating the selection against selfish mtDNA. This suggests that the ability to cope with nutrient stress can promote host tolerance of cheaters. Our study delineates environmental effects on selfish mtDNA dynamics at different levels of selection.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States.,Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, United States
| |
Collapse
|
5
|
Resolving the Enigma of the Clonal Expansion of mtDNA Deletions. Genes (Basel) 2018; 9:genes9030126. [PMID: 29495484 PMCID: PMC5867847 DOI: 10.3390/genes9030126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are cell organelles that are special since they contain their own genetic material in the form of mitochondrial DNA (mtDNA). Damage and mutations of mtDNA are not only involved in several inherited human diseases but are also widely thought to play an important role during aging. In both cases, point mutations or large deletions accumulate inside cells, leading to functional impairment once a certain threshold has been surpassed. In most cases, it is a single type of mutant that clonally expands and out-competes the wild type mtDNA, with different mutant molecules being amplified in different cells. The challenge is to explain where the selection advantage for the accumulation comes from, why such a large range of different deletions seem to possess this advantage, and how this process can scale to species with different lifespans such as those of rats and man. From this perspective, we provide an overview of current ideas, present an update of our own proposal, and discuss the wider relevance of the phenomenon for aging.
Collapse
|
6
|
Haig D. Intracellular evolution of mitochondrial DNA (mtDNA) and the tragedy of the cytoplasmic commons. Bioessays 2016; 38:549-55. [DOI: 10.1002/bies.201600003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA USA
| |
Collapse
|
7
|
Li M, Rothwell R, Vermaat M, Wachsmuth M, Schröder R, Laros JFJ, van Oven M, de Bakker PIW, Bovenberg JA, van Duijn CM, van Ommen GJB, Slagboom PE, Swertz MA, Wijmenga C, Kayser M, Boomsma DI, Zöllner S, de Knijff P, Stoneking M. Transmission of human mtDNA heteroplasmy in the Genome of the Netherlands families: support for a variable-size bottleneck. Genome Res 2016; 26:417-26. [PMID: 26916109 PMCID: PMC4817766 DOI: 10.1101/gr.203216.115] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022]
Abstract
Although previous studies have documented a bottleneck in the transmission of mtDNA genomes from mothers to offspring, several aspects remain unclear, including the size and nature of the bottleneck. Here, we analyze the dynamics of mtDNA heteroplasmy transmission in the Genomes of the Netherlands (GoNL) data, which consists of complete mtDNA genome sequences from 228 trios, eight dizygotic (DZ) twin quartets, and 10 monozygotic (MZ) twin quartets. Using a minor allele frequency (MAF) threshold of 2%, we identified 189 heteroplasmies in the trio mothers, of which 59% were transmitted to offspring, and 159 heteroplasmies in the trio offspring, of which 70% were inherited from the mothers. MZ twin pairs exhibited greater similarity in MAF at heteroplasmic sites than DZ twin pairs, suggesting that the heteroplasmy MAF in the oocyte is the major determinant of the heteroplasmy MAF in the offspring. We used a likelihood method to estimate the effective number of mtDNA genomes transmitted to offspring under different bottleneck models; a variable bottleneck size model provided the best fit to the data, with an estimated mean of nine individual mtDNA genomes transmitted. We also found evidence for negative selection during transmission against novel heteroplasmies (in which the minor allele has never been observed in polymorphism data). These novel heteroplasmies are enhanced for tRNA and rRNA genes, and mutations associated with mtDNA diseases frequently occur in these genes. Our results thus suggest that the female germ line is able to recognize and select against deleterious heteroplasmies.
Collapse
Affiliation(s)
- Mingkun Li
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Fondation Mérieux, 69002 Lyon, France
| | - Rebecca Rothwell
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Martijn Vermaat
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Manja Wachsmuth
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Roland Schröder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Jeroen F J Laros
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Paul I W de Bakker
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CG, The Netherlands; Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht 3584 CG, The Netherlands
| | - Jasper A Bovenberg
- Department of Biological Psychology, VU University Amsterdam, Amsterdam 1081 BT, The Netherlands
| | - Cornelia M van Duijn
- Legal Pathways Institute for Health and Bio Law, Aerdenhout 2111, The Netherlands
| | - Gert-Jan B van Ommen
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - P Eline Slagboom
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Morris A Swertz
- Section of Molecular Epidemiology, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Cisca Wijmenga
- Section of Molecular Epidemiology, Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands
| | | | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Dorret I Boomsma
- Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Sebastian Zöllner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Yeast model analysis of novel polymerase gamma variants found in patients with autosomal recessive mitochondrial disease. Hum Genet 2015; 134:951-66. [PMID: 26077851 PMCID: PMC4529462 DOI: 10.1007/s00439-015-1578-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022]
Abstract
Replication of the mitochondrial genome depends on the single DNA polymerase (pol gamma). Mutations in the POLG gene, encoding the catalytic subunit of the human polymerase gamma, have been linked to a wide variety of mitochondrial disorders that show remarkable heterogeneity, with more than 200 sequence variants, often very rare, found in patients. The pathogenicity and dominance status of many such mutations remain, however, unclear. Remarkable structural and functional conservation of human POLG and its S. cerevisiae ortholog (Mip1p) led to the development of many successful yeast models, enabling to study the phenotype of putative pathogenic mutations. In a group of patients with suspicion of mitochondrial pathology, we identified five novel POLG sequence variants, four of which (p.Arg869Ter, p.Gln968Glu, p.Thr1053Argfs*6, and p.Val1106Ala), together with one previously known but uncharacterised variant (p.Arg309Cys), were amenable to modelling in yeast. Familial analysis indicated causal relationship of these variants with disease, consistent with autosomal recessive inheritance. To investigate the effect of these sequence changes on mtDNA replication, we obtained the corresponding yeast mip1 alleles (Arg265Cys, Arg672Ter, Arg770Glu, Thr809Ter, and Val863Ala, respectively) and tested their effect on mitochondrial genome stability and replication fidelity. For three of them (Arg265Cys, Arg672Ter, and Thr809Ter), we observed a strong, partially dominant phenotype of a complete loss of functional mtDNA, whereas the remaining two led to partial mtDNA depletion and significant increase in point mutation frequencies. These results show good correlation with the severity of symptoms observed in patients and allow to establish these variants as pathogenic mutations.
Collapse
|
9
|
Szczepanowska K, Trifunovic A. Different faces of mitochondrial DNA mutators. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1362-72. [PMID: 26014346 DOI: 10.1016/j.bbabio.2015.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
Abstract
A number of studies have shown that ageing is associated with increased amounts of mtDNA deletions and/or point mutations in a variety of species as diverse as Caenorhabditis elegans, Drosophila melanogaster, mice, rats, dogs, primates and humans. This detected vulnerability of mtDNA has led to the suggestion that the accumulation of somatic mtDNA mutations might arise from increased oxidative damage and could play an important role in the ageing process by producing cells with a decreased oxidative capacity. However, the vast majority of DNA polymorphisms and disease-causing base-substitution mutations and age-associated mutations that have been detected in human mtDNA are transition mutations. They are likely arising from the slight infidelity of the mitochondrial DNA polymerase. Indeed, transition mutations are also the predominant type of mutation found in mtDNA mutator mice, a model for premature ageing caused by increased mutation load due to the error prone mitochondrial DNA synthesis. These particular misincorporation events could also be exacerbated by dNTP pool imbalances. The role of different repair, replication and maintenance mechanisms that contribute to mtDNA integrity and mutagenesis will be discussed in details in this article. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931 Cologne, Germany.
| |
Collapse
|
10
|
Busch KB, Kowald A, Spelbrink JN. Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc Lond B Biol Sci 2015; 369:20130442. [PMID: 24864312 DOI: 10.1098/rstb.2013.0442] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mammalian mtDNA encodes for 13 core proteins of oxidative phosphorylation. Mitochondrial DNA mutations and deletions cause severe myopathies and neuromuscular diseases. Thus, the integrity of mtDNA is pivotal for cell survival and health of the organism. We here discuss the possible impact of mitochondrial fusion and fission on mtDNA maintenance as well as positive and negative selection processes. Our focus is centred on the important question of how the quality of mtDNA nucleoids can be assured when selection and mitochondrial quality control works on functional and physiological phenotypes constituted by oxidative phosphorylation proteins. The organelle control theory suggests a link between phenotype and nucleoid genotype. This is discussed in the light of new results presented here showing that mitochondrial transcription factor A/nucleoids are restricted in their intramitochondrial mobility and probably have a limited sphere of influence. Together with recent published work on mitochondrial and mtDNA heteroplasmy dynamics, these data suggest first, that single mitochondria might well be internally heterogeneous and second, that nucleoid genotypes might be linked to local phenotypes (although the link might often be leaky). We discuss how random or site-specific mitochondrial fission can isolate dysfunctional parts and enable their elimination by mitophagy, stressing the importance of fission in the process of mtDNA quality control. The role of fusion is more multifaceted and less understood in this context, but the mixing and equilibration of matrix content might be one of its important functions.
Collapse
Affiliation(s)
- Karin B Busch
- Division of Mitochondrial Dynamics, School of Biology and Chemistry, University of Osnabrück, 49069 Osnabrück, Germany
| | - Axel Kowald
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Johannes N Spelbrink
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Geert Grooteplein 10, PO Box 9101, 6500 HB Nijmegen, The Netherlands FinMIT Centre of Excellence, Institute of Biomedical Technology and Tampere University Hospital, Pirkanmaa Hospital District, 33014 Tampere, Finland
| |
Collapse
|
11
|
Aanen DK, Spelbrink JN, Beekman M. What cost mitochondria? The maintenance of functional mitochondrial DNA within and across generations. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130438. [PMID: 24864309 PMCID: PMC4032515 DOI: 10.1098/rstb.2013.0438] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The peculiar biology of mitochondrial DNA (mtDNA) potentially has detrimental consequences for organismal health and lifespan. Typically, eukaryotic cells contain multiple mitochondria, each with multiple mtDNA genomes. The high copy number of mtDNA implies that selection on mtDNA functionality is relaxed. Furthermore, because mtDNA replication is not strictly regulated, within-cell selection may favour mtDNA variants with a replication advantage, but a deleterious effect on cell fitness. The opportunities for selfish mtDNA mutations to spread are restricted by various organism-level adaptations, such as uniparental transmission, germline mtDNA bottlenecks, germline selection and, during somatic growth, regular alternation between fusion and fission of mitochondria. These mechanisms are all hypothesized to maintain functional mtDNA. However, the strength of selection for maintenance of functional mtDNA progressively declines with age, resulting in age-related diseases. Furthermore, organismal adaptations that most probably evolved to restrict the opportunities for selfish mtDNA create secondary problems. Owing to predominantly maternal mtDNA transmission, recombination among mtDNA from different individuals is highly restricted or absent, reducing the scope for repair. Moreover, maternal inheritance precludes selection against mtDNA variants with male-specific effects. We finish by discussing the consequences of life-history differences among taxa with respect to mtDNA evolution and make a case for the use of microorganisms to experimentally manipulate levels of selection.
Collapse
Affiliation(s)
- Duur K Aanen
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, PO Box 309, 6700 AH Wageningen, The Netherlands
| | - Johannes N Spelbrink
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Geert Grooteplein 10, PO Box 9101, 6500 HB Nijmegen, The Netherlands FinMIT Centre of Excellence, BioMediTech and Tampere University Hospital, Pirkanmaa Hospital District, 33014 Tampere, Finland
| | - Madeleine Beekman
- Behaviour and Genetics of Social Insects Lab, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|