1
|
Algora H, Tolliver JDM, Pakanen V, Kupán K, Belojević J, Rönkä N, Küpper C, Koivula K. Nests, Threats, and Leks: Nonrandom Distributions of Nests in Ruffs ( Calidris pugnax). Ecol Evol 2025; 15:e70997. [PMID: 40027426 PMCID: PMC11868738 DOI: 10.1002/ece3.70997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/17/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Habitat selection determines an animal's spatial distribution at various scales. In ground-breeding birds, selecting the right nesting location can be decisive for the survival of parents and offspring. However, it remains often unclear what cues birds use to settle in their breeding habitat. Ruffs (Calidris pugnax) are waders with highly divergent sex roles: males aggregate for competitive display to attract females (reeves), who then care for the nest and offspring alone. Ruffs frequently breed in coastal wetlands of higher latitudes where they often face the threat of nest loss because of flooding or predation. We investigated which environmental and social cues determine Ruff nest distributions in a coastal meadow habitat. Using nest locations from five breeding seasons and their relative distance to other nests, leks, the shoreline, and meadow edge, we tested whether Ruff nests are randomly distributed across the suitable breeding habitat or show some level of spatial association. We first compared average nearest neighbor (ANN) distances between Ruff nests (observed and simulated) and spatial features in univariate models. Then, we examined the effect of all spatial features on nest location in a multivariate generalized linear mixed model (GLMM) using a Bayesian framework. Our results show that nest distribution is nonrandom; nests of reeves are found closer to leks of male Ruffs and other nests than expected by chance. In some years, we found nests further away from the meadow edges and shore than expected by chance. Overall, our results suggest that nesting females may use social cues and the distance to habitat boundaries when choosing a nest site. We suggest that understanding the social and environmental factors affecting female nest choice can help to improve the management and conservation routines at the breeding sites of these threatened waders. Our results indicate that lekking sites may be used to identify nesting areas of conservation management value.
Collapse
Affiliation(s)
- Hanna Algora
- Department of EcologyUniversity of OuluOuluFinland
- Research Group Behavioural Genetics and Evolutionary EcologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| | - James D. M. Tolliver
- Research Group Behavioural Genetics and Evolutionary EcologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| | | | - Krisztina Kupán
- Research Group Behavioural Genetics and Evolutionary EcologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| | - Jelena Belojević
- Department of EcologyUniversity of OuluOuluFinland
- Research Group Behavioural Genetics and Evolutionary EcologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| | - Nelli Rönkä
- Department of EcologyUniversity of OuluOuluFinland
| | - Clemens Küpper
- Research Group Behavioural Genetics and Evolutionary EcologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| | - Kari Koivula
- Department of EcologyUniversity of OuluOuluFinland
| |
Collapse
|
2
|
Regan CE, Sheldon BC. Phenotypic plasticity increases exposure to extreme climatic events that reduce individual fitness. GLOBAL CHANGE BIOLOGY 2023; 29:2968-2980. [PMID: 36867108 PMCID: PMC10947444 DOI: 10.1111/gcb.16663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
Climate models, and empirical observations, suggest that anthropogenic climate change is leading to changes in the occurrence and severity of extreme climatic events (ECEs). Effects of changes in mean climate on phenology, movement, and demography in animal and plant populations are well documented. In contrast, work exploring the impacts of ECEs on natural populations is less common, at least partially due to the challenges of obtaining sufficient data to study such rare events. Here, we assess the effect of changes in ECE patterns in a long-term study of great tits, near Oxford, over a 56-year period between 1965 and 2020. We document marked changes in the frequency of temperature ECEs, with cold ECEs being twice as frequent in the 1960s than at present, and hot ECEs being ~three times more frequent between 2010 and 2020 than in the 1960s. While the effect of single ECEs was generally quite small, we show that increased exposure to ECEs often reduces reproductive output, and that in some cases the effect of different types of ECE is synergistic. We further show that long-term temporal changes in phenology, resulting from phenotypic plasticity, lead to an elevated risk of exposure to low temperature ECEs early in reproduction, and hence suggest that changes in ECE exposure may act as a cost of plasticity. Overall, our analyses reveal a complex set of risks of exposure and effects as ECE patterns change and highlight the importance of considering responses to changes in both mean climate and extreme events. Patterns in exposure and effects of ECEs on natural populations remain underexplored and continued work will be vital to establish the impacts of ECEs on populations in a changing climate.
Collapse
Affiliation(s)
- Charlotte E. Regan
- Department of BiologyEdward Grey Institute, University of OxfordOxfordUK
| | - Ben C. Sheldon
- Department of BiologyEdward Grey Institute, University of OxfordOxfordUK
| |
Collapse
|
3
|
Gonnerman M, Shea SA, Sullivan K, Kamath P, Overturf K, Blomberg E. Dynamic winter weather moderates movement and resource selection of wild turkeys at high-latitude range limits. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2734. [PMID: 36057107 DOI: 10.1002/eap.2734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
For wide-ranging species in temperate environments, populations at high-latitude range limits are subject to more extreme conditions, colder temperatures, and greater snow accumulation compared with their core range. As climate change progresses, these bounding pressures may become more moderate on average, while extreme weather occurs more frequently. Individuals can mitigate temporarily extreme conditions by changing daily activity budgets and exhibiting plasticity in resource selection, both of which facilitate existence at and expansion of high-latitude range boundaries. However, relatively little work has explored how animals moderate movement and vary resource selection with changing weather, and a general framework for such investigations is lacking. We applied hidden Markov models and step selection functions to GPS data from wintering wild turkeys (Meleagris gallopavo) near their northern range limit to identify how weather influenced transition among discrete movement states, as well as state-specific resource selection. We found that turkeys were more likely to spend time in a stationary state as wind chill temperatures decreased and snow depth increased. Both stationary and roosting turkeys selected conifer forests and avoided land covers associated with foraging, such as agriculture and residential areas, while shifting their strength of selection for these features during poor weather. In contrast, mobile turkeys showed relatively weak resource selection, with less response in selection coefficients during poor weather. Our findings illustrate that behavioral plasticity in response to weather was context dependent, but movement behaviors most associated with poor weather were also those in which resource selection was most plastic. Given our results, the potential for wild turkey range expansion will partly be determined by the availability of habitat that allows them to withstand periodic inclement weather. Combining hidden Markov models with step selection functions is broadly applicable for evaluating plasticity in animal behavior and dynamic resource selection in response to changing weather. We studied turkeys at northern range limits, but this approach is applicable for any system expected to experience significant changes in the coming decade, and may be particularly relevant to populations existing at range peripheries.
Collapse
Affiliation(s)
- Matthew Gonnerman
- Department of Wildlife Fisheries and Conservation Biology, University of Maine, Orono, Maine, USA
| | - Stephanie A Shea
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Kelsey Sullivan
- Maine Department of Inland Fisheries and Wildlife, Bangor, Maine, USA
| | - Pauline Kamath
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Kaj Overturf
- Department of Wildlife Fisheries and Conservation Biology, University of Maine, Orono, Maine, USA
| | - Erik Blomberg
- Department of Wildlife Fisheries and Conservation Biology, University of Maine, Orono, Maine, USA
| |
Collapse
|
4
|
Haverkamp PJ, Bysykatova-Harmey I, Germogenov N, Schaepman-Strub G. Increasing Arctic Tundra Flooding Threatens Wildlife Habitat and Survival: Impacts on the Critically Endangered Siberian Crane (Grus leucogeranus). FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.799998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is causing Arctic temperatures to increase at least twice as fast as the planet on average. Temperature and precipitation are predicted to continue increasing, such that flooding might become more prevalent in the new Arctic. Increased flooding frequency and extreme flooding events may pose new threats to Arctic biodiversity through habitat disturbance and decreased survival. We used the Siberian crane (Grus leucogeranus) as a model organism to investigate how flooding influences nesting habitat availability and juvenile counts. When spring flooding destroys eggs, adults either do not raise any chicks or have reduced time to prepare them for their long migration to China, thus years with extensive flooding could negatively impact future crane generations. We used nest site observation data from 14 surveys between 1995 and 2019, habitat mapping based on Landsat 8 imagery, and species distribution modeling to predict Siberian crane potential nesting habitat. Nesting habitat loss due to extreme flooding was calculated by overlaying this potential nesting habitat with Global Surface Water data. The percent of potential flooded nest sites varied between 6.7–55% across years, with a significant increase between 2001 and 2018. Extreme flood events, as experienced in 2017 and 2018, eliminated almost half of the potential nesting habitat. Importantly, we found that the percentage of flooded nest sites across years was negatively correlated with the number of observed juveniles. The Arctic lowlands are exposed to seasonal water level fluctuations that species have evolved with and adapted to. Siberian cranes and other species depending on Arctic ecosystems are expected to continue adapting to changing flood conditions, but extreme flood events further threaten the long-term survival of critically endangered species. It is imperative to assess how ecosystems and species respond to climatic extremes to support Arctic conservation strategies.
Collapse
|
5
|
Mainwaring MC, Nord A, Sharp SP. Editorial: The Impact of Weather on the Behavior and Ecology of Birds. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.777478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Haaland TR, Wright J, Ratikainen II. Individual reversible plasticity as a genotype-level bet-hedging strategy. J Evol Biol 2021; 34:1022-1033. [PMID: 33844340 DOI: 10.1111/jeb.13788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Reversible plasticity in phenotypic traits allows organisms to cope with environmental variation within lifetimes, but costs of plasticity may limit just how well the phenotype matches the environmental optimum. An additional adaptive advantage of plasticity might be to reduce fitness variance, in other words: bet-hedging to maximize geometric (rather than simply arithmetic) mean fitness. Here, we model the evolution of plasticity in the form of reaction norm slopes, with increasing costs as the slope or degree of plasticity increases. We find that greater investment in plasticity (i.e. a steeper reaction norm slope) is favoured in scenarios promoting bet-hedging as a response to multiplicative fitness accumulation (i.e. coarser environmental grains and fewer time steps prior to reproduction), because plasticity lowers fitness variance across environmental conditions. In contrast, in scenarios with finer environmental grain and many time steps prior to reproduction, bet-hedging plays less of a role and individual-level optimization favours evolution of shallower reaction norm slopes. However, the opposite pattern holds if plasticity costs themselves result in increased fitness variation, as might be the case for production costs of plasticity that depend on how much change is made to the phenotype each time step. We discuss these contrasting predictions from this partitioning of adaptive plasticity into short-term individual benefits versus long-term genotypic (bet-hedging) benefits, and how this approach enhances our understanding of the evolution of optimum levels of plasticity in examples from thermal physiology to advances in avian lay dates.
Collapse
Affiliation(s)
- Thomas R Haaland
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonathan Wright
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Irja I Ratikainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Haaland TR, Wright J, Ratikainen II. Generalists versus specialists in fluctuating environments: a bet‐hedging perspective. OIKOS 2020. [DOI: 10.1111/oik.07109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Thomas Ray Haaland
- Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology Høgskoleringen 5 NO‐7044 Trondheim Norway
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Jonathan Wright
- Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology Høgskoleringen 5 NO‐7044 Trondheim Norway
| | - Irja Ida Ratikainen
- Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology Høgskoleringen 5 NO‐7044 Trondheim Norway
| |
Collapse
|
8
|
Bonamour S, Chevin LM, Charmantier A, Teplitsky C. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180178. [PMID: 30966957 DOI: 10.1098/rstb.2018.0178] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phenotypic plasticity is a major mechanism of response to global change. However, current plastic responses will only remain adaptive under future conditions if informative environmental cues are still available. We briefly summarize current knowledge of the evolutionary origin and mechanistic underpinnings of environmental cues for phenotypic plasticity, before highlighting the potentially complex effects of global change on cue availability and reliability. We then illustrate some of these aspects with a case study, comparing plasticity of blue tit breeding phenology in two contrasted habitats: evergreen and deciduous forests. Using long-term datasets, we investigate the climatic factors linked to the breeding phenology of the birds and their main food source. Blue tits occupying different habitats differ extensively in the cues affecting laying date plasticity, as well as in the reliability of these cues as predictors of the putative driver of selective pressure, the date of caterpillar peak. The temporal trend for earlier laying date, detected only in the evergreen populations, is explained by increased temperature during their cue windows. Our results highlight the importance of integrating ecological mechanisms shaping variation in plasticity if we are to understand how global change will affect plasticity and its consequences for population biology. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Suzanne Bonamour
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Luis-Miguel Chevin
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Anne Charmantier
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Céline Teplitsky
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| |
Collapse
|
9
|
Abernathy HN, Crawford DA, Garrison EP, Chandler RB, Conner ML, Miller KV, Cherry MJ. Deer movement and resource selection during Hurricane Irma: implications for extreme climatic events and wildlife. Proc Biol Sci 2019; 286:20192230. [PMID: 31771480 DOI: 10.1098/rspb.2019.2230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Extreme climatic events (ECEs) are increasing in frequency and intensity and this necessitates understanding their influence on organisms. Animal behaviour may mitigate the effects of ECEs, but field studies are rare because ECEs are infrequent and unpredictable. Hurricane Irma made landfall in southwestern Florida where we were monitoring white-tailed deer (Odocoileus virginianus seminolus) with GPS collars. We report on an opportunistic case study of behavioural responses exhibited by a large mammal during an ECE, mitigation strategies for reducing the severity of the ECE effects, and the demographic effect of the ECE based on known-fate of individual animals. Deer altered resource selection by selecting higher elevation pine and hardwood forests and avoiding marshes. Most deer left their home ranges during Hurricane Irma, and the probability of leaving was inversely related to home range area. Movement rates increased the day of the storm, and no mortality was attributed to Hurricane Irma. We suggest deer mobility and refuge habitat allowed deer to behaviourally mitigate the negative effects of the storm, and ultimately, aid in survival. Our work contributes to the small but growing body of literature linking behavioural responses exhibited during ECEs to survival, which cumulatively will provide insight for predictions of a species resilience to ECEs and improve our understanding of how behavioural traits offset the negative impacts of global climate change.
Collapse
Affiliation(s)
- H N Abernathy
- Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, 310 West Campus Drive, Blacksburg, VA 24061, USA
| | - D A Crawford
- Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, 310 West Campus Drive, Blacksburg, VA 24061, USA.,Jones Center at Ichauway, 3988 Jones Center Drive, Newton, GA 39870, USA
| | - E P Garrison
- Florida Fish and Wildlife Conservation Commission, 1105 SW Williston Road, Gainesville, FL 32601, USA
| | - R B Chandler
- Warnell School of Forestry and Natural Resources, The University of Georgia, 180 E Green Street, Athens, GA 30602, USA
| | - M L Conner
- Jones Center at Ichauway, 3988 Jones Center Drive, Newton, GA 39870, USA
| | - K V Miller
- Warnell School of Forestry and Natural Resources, The University of Georgia, 180 E Green Street, Athens, GA 30602, USA
| | - M J Cherry
- Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, 310 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Haaland TR, Botero CA. Alternative responses to rare selection events are differentially vulnerable to changes in the frequency, scope, and intensity of environmental extremes. Ecol Evol 2019; 9:11752-11761. [PMID: 31695885 PMCID: PMC6822052 DOI: 10.1002/ece3.5675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Extreme weather events are becoming more frequent, severe, and/or widespread as a consequence of anthropogenic climate change. While the economic and ecological implications of these changes have received considerable attention, the role of evolutionary processes in determining organismal responses to these critical challenges is currently unknown. Here we develop a novel theoretical framework that explores how alternative pathways for adaptation to rare selection events can influence population-level vulnerabilities to future changes in the frequency, scope, and intensity of environmental extremes. We begin by showing that different life histories and trait expression profiles can shift the balance between additive and multiplicative properties of fitness accumulation, favoring different evolutionary responses to identical environmental phenomena. We then demonstrate that these different adaptive outcomes lead to predictable differences in population-level vulnerabilities to rapid increases in the frequency, intensity, or scope of extreme weather events. Specifically, we show that when the primary mode of fitness accumulation is additive, evolution favors ignoring environmental extremes and lineages become highly vulnerable to extinction if the frequency or scope of extreme weather events suddenly increases. Conversely, when fitness accumulates primarily multiplicatively, evolution favors bet-hedging phenotypes that cope well with historical extremes and are instead vulnerable to sudden increases in extreme event intensity. Our findings address a critical gap in our understanding of the potential consequences of rare selection events and provide a relatively simple rubric for assessing the vulnerabilities of any population of interest to changes in a wide variety of extreme environmental phenomena.
Collapse
Affiliation(s)
- Thomas R. Haaland
- Department of BiologyCentre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichZürichSwitzerland
| | - Carlos A. Botero
- Department of BiologyWashington University in Saint LouisSt. LouisMOUSA
| |
Collapse
|
11
|
Bailey LD, Ens BJ, Both C, Heg D, Oosterbeek K, van de Pol M. Habitat selection can reduce effects of extreme climatic events in a long-lived shorebird. J Anim Ecol 2019; 88:1474-1485. [PMID: 31175665 DOI: 10.1111/1365-2656.13041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/25/2019] [Indexed: 11/28/2022]
Abstract
Changes in the frequency of extreme climatic events (ECEs) can have profound impacts on individual fitness by degrading habitat quality. Organisms may respond to such changes through habitat selection, favouring those areas less affected by ECEs; however, documenting habitat selection in response to ECEs is difficult in the wild due to the rarity of such events and the long-term biological data required. Sea level rise and changing weather patterns over the past decades have led to an increase in the frequency of coastal flooding events, with serious consequences for ground nesting shorebirds. Shorebirds therefore present a useful natural study system to understand habitat selection as a response to ECEs. We used a 32-year study of the Eurasian oystercatcher (Haematopus ostralegus) to investigate whether habitat selection can lead to an increase in nest elevation and minimize the impacts of coastal flooding. The mean nest elevation of H. ostralegus has increased during the last three decades. We hypothesized that this change has been driven by changes in H. ostralegus territory settlement patterns over time. We compared various possible habitat selection cues to understand what information H. ostralegus might use to inform territory settlement. There was a clear relationship between elevation and territory settlement in H. ostralegus. In early years, settlements were more likely at low elevations but in more recent years the likelihood of settlement was similar between high and low elevation areas. Territory settlement was associated with conspecific fledgling output and conspecific density. Settlement was more likely in areas of high density and areas with high fledgling output. This study shows that habitat selection can minimize the effects of increasingly frequent ECEs. However, it seems unlikely that the changes we observe will fully alleviate the consequences of anthropogenic climate change. Rates of nest elevation increase were insufficient to track current increases in maximum high tide (0.5 vs. 0.8 cm/year). Furthermore, habitat selection cues that rely on information from previous breeding seasons (e.g. conspecific fledgling output) may become ineffective as ECEs become more frequent and environmental predictability is diminished.
Collapse
Affiliation(s)
- Liam D Bailey
- Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Bruno J Ens
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
| | - Christiaan Both
- Conservation Ecology Group, University of Groningen, Groningen, The Netherlands
| | - Dik Heg
- Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Kees Oosterbeek
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
| | - Martijn van de Pol
- Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
12
|
Plaschke S, Bulla M, Cruz-López M, Gómez del Ángel S, Küpper C. Nest initiation and flooding in response to season and semi-lunar spring tides in a ground-nesting shorebird. Front Zool 2019; 16:15. [PMID: 31139233 PMCID: PMC6533712 DOI: 10.1186/s12983-019-0313-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/11/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Marine and intertidal organisms face the rhythmic environmental changes induced by tides. The large amplitude of spring tides that occur around full and new moon may threaten nests of ground-nesting birds. These birds face a trade-off between ensuring nest safety from tidal flooding and nesting near the waterline to provide their newly hatched offspring with suitable foraging opportunities. The semi-lunar periodicity of spring tides may enable birds to schedule nest initiation adaptively, for example, by initiating nests around tidal peaks when the water line reaches the farthest into the intertidal habitat. We examined the impact of semi-lunar tidal changes on the phenology of nest flooding and nest initiation in Snowy Plovers (Charadrius nivosus) breeding at Bahía de Ceuta, a coastal wetland in Northwest Mexico. RESULTS Using nest initiations and fates of 752 nests monitored over ten years we found that the laying season coincides with the lowest spring tides of the year and only 6% of all nests were flooded by tides. Tidal nest flooding varied substantially over time. First, flooding was the primary cause of nest failures in two of the ten seasons indicating high between-season stochasticity. Second, nests were flooded almost exclusively during the second half of the laying season. Third, nest flooding was associated with the semi-lunar spring tide cycle as nests initiated around spring tide had a lower risk of being flooded than nests initiated at other times. Following the spring tide rhythm, plovers appeared to adapt to this risk of flooding with nest initiation rates highest around spring tides and lowest around neap tides. CONCLUSIONS Snowy Plovers appear generally well adapted to the risk of nest flooding by spring tides. Our results are in line with other studies showing that intertidal organisms have evolved adaptive responses to predictable rhythmic tidal changes but these adaptations do not prevent occasional catastrophic losses caused by stochastic events.
Collapse
Affiliation(s)
- Silvia Plaschke
- Institute for Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Martin Bulla
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic
| | - Medardo Cruz-López
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Cd. México, Mexico
| | - Salvador Gómez del Ángel
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Cd. México, Mexico
| | - Clemens Küpper
- Institute for Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany
| |
Collapse
|
13
|
|
14
|
March-Salas M, Fitze PS. A multi-year experiment shows that lower precipitation predictability encourages plants' early life stages and enhances population viability. PeerJ 2019; 7:e6443. [PMID: 30867983 PMCID: PMC6410692 DOI: 10.7717/peerj.6443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 11/20/2022] Open
Abstract
Climate change is a key factor that may cause the extinction of species. The associated reduced weather predictability may alter the survival of plants, especially during their early life stages, when individuals are most fragile. While it is expected that extreme weather events will be highly detrimental for species, the effects of more subtle environmental changes have been little considered. In a four-year experiment on two herbaceous plants, Papaver rhoeas and Onobrychis viciifolia, we manipulated the predictability of precipitation by changing the temporal correlation of precipitation events while maintaining average precipitation constant, leading to more and less predictable treatments. We assessed the effect of predictability on plant viability in terms of seedling emergence, survival, seed production, and population growth rate. We found greater seedling emergence, survival, and population growth for plants experiencing lower intra-seasonal predictability, but more so during early compared to late life stages. Since predictability levels were maintained across four generations, we have also tested whether descendants exhibited transgenerational responses to previous predictability conditions. In P. rhoeas, descendants had increased the seedling emergence compared to ancestors under both treatments, but more so under lower precipitation predictability. However, higher predictability in the late treatment induced higher survival in descendants, showing that these conditions may benefit long-term survival. This experiment highlights the ability of some plants to rapidly exploit environmental resources and increase their survival under less predictable conditions, especially during early life stages. Therefore, this study provides relevant evidence of the survival capacity of some species under current and future short-term environmental alterations.
Collapse
Affiliation(s)
- Martí March-Salas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.,Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Spain.,Escuela Internacional de Doctorado, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Patrick S Fitze
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.,Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Spain
| |
Collapse
|
15
|
Maxwell SL, Butt N, Maron M, McAlpine CA, Chapman S, Ullmann A, Segan DB, Watson JEM. Conservation implications of ecological responses to extreme weather and climate events. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12878] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Sean L. Maxwell
- School of Earth and Environmental Sciences The University of Queensland Brisbane Queensland Australia
| | - Nathalie Butt
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Martine Maron
- School of Earth and Environmental Sciences The University of Queensland Brisbane Queensland Australia
| | - Clive A. McAlpine
- School of Earth and Environmental Sciences The University of Queensland Brisbane Queensland Australia
| | - Sarah Chapman
- School of Earth and Environmental Sciences The University of Queensland Brisbane Queensland Australia
| | - Ailish Ullmann
- Dana and David Dornsife College of Letters, Arts, and Sciences University of Southern California Los Angeles California
| | | | - James E. M. Watson
- School of Earth and Environmental Sciences The University of Queensland Brisbane Queensland Australia
- Wildlife Conservation Society Global Conservation Program Bronx New York
| |
Collapse
|
16
|
Benvenuti B, Walsh J, O'Brien KM, Kovach AI. Plasticity in nesting adaptations of a tidal marsh endemic bird. Ecol Evol 2018; 8:10780-10793. [PMID: 30519406 PMCID: PMC6262926 DOI: 10.1002/ece3.4528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 11/15/2022] Open
Abstract
If individuals can perceive and manage risks, they may alter their behaviors based on prior experience. This expectation may apply to nest site selection of breeding birds, for which adaptive behavioral responses may enhance fitness. Birds that nest in tidal marshes have adapted to the challenges posed primarily by periodic, monthly tidal flooding and secondarily by predation. We investigated adaptive responses in nesting behavior of the saltmarsh sparrow (Ammospiza caudacutus), an obligate tidal-marsh-breeding bird, using 536 nests monitored across 5 years. Using linear mixed effects models, we tested whether nest characteristics differed among nests that were successful, depredated, or flooded, and we investigated whether females made changes in nest structure and placement according to outcome of their previous nesting attempt. Nest characteristics differed among females with different nest fates. Fledged and depredated nests were built higher in the vegetation and in higher elevation areas of the marsh than those that flooded. Successful nests had more canopy cover and were comprised of a lower proportion of high marsh vegetation (Spartina patens) than those that were flooded or depredated. Females with nests that failed due to flooding constructed subsequent nests higher in the vegetation and at higher elevation than those that were successful in their prior attempt, consistent with a response to previous experience. Eighty-five percent of females renested within the average home range core area distance (77 m), indicating a high degree of nest placement fidelity. Females for which nests were depredated in their prior nesting attempt renested at a greater distance than females for which the previous nesting attempts were successful. Our findings suggest saltmarsh sparrows exhibit plasticity in nesting behavior, which may be important for balancing selective pressures in a dynamic environment. This plasticity, however, is insufficient to enable them to adapt to the increased flooding predicted with sea-level rise.
Collapse
Affiliation(s)
- Bri Benvenuti
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew Hampshire
| | - Jennifer Walsh
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew Hampshire
- Present address:
Fuller Evolutionary Biology ProgramCornell Laboratory of OrnithologyIthacaNew York
| | - Kathleen M. O'Brien
- Rachel Carson National Wildlife RefugeUnited States Fish and Wildlife ServiceWellsMaine
| | - Adrienne I. Kovach
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew Hampshire
| |
Collapse
|
17
|
Bailey LD, Ens BJ, Both C, Heg D, Oosterbeek K, van de Pol M. No phenotypic plasticity in nest-site selection in response to extreme flooding events. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0139. [PMID: 28483869 DOI: 10.1098/rstb.2016.0139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 01/04/2023] Open
Abstract
Phenotypic plasticity is a crucial mechanism for responding to changes in climatic means, yet we know little about its role in responding to extreme climatic events (ECEs). ECEs may lack the reliable cues necessary for phenotypic plasticity to evolve; however, this has not been empirically tested. We investigated whether behavioural plasticity in nest-site selection allows a long-lived shorebird (Haematopus ostralegus) to respond to flooding. We collected longitudinal nest elevation data on individuals over two decades, during which time flooding events have become increasingly frequent. We found no evidence that individuals learn from flooding experiences, showing nest elevation change consistent with random nest-site selection. There was also no evidence of phenotypic plasticity in response to potential environmental cues (lunar nodal cycle and water height). A small number of individuals, those nesting near an artificial sea wall, did show an increase in nest elevation over time; however, there is no conclusive evidence this occurred in response to ECEs. Our study population showed no behavioural plasticity in response to changing ECE patterns. More research is needed to determine whether this pattern is consistent across species and types of ECEs. If so, ECEs may pose a major challenge to the resilience of wild populations.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Liam D Bailey
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra 0200, Australian Capital Territory, Australia
| | - Bruno J Ens
- Sovon Dutch Centre for Field Ornithology, PO Box 6521, 6503 GA Nijmegen, The Netherlands
| | - Christiaan Both
- Conservation Ecology Group, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Dik Heg
- Clinical Trials Unit, Department of Clinical Research, Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Kees Oosterbeek
- Sovon Dutch Centre for Field Ornithology, PO Box 6521, 6503 GA Nijmegen, The Netherlands
| | - Martijn van de Pol
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra 0200, Australian Capital Territory, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
18
|
Palmer G, Platts PJ, Brereton T, Chapman JW, Dytham C, Fox R, Pearce-Higgins JW, Roy DB, Hill JK, Thomas CD. Climate change, climatic variation and extreme biological responses. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0144. [PMID: 28483874 PMCID: PMC5434095 DOI: 10.1098/rstb.2016.0144] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 12/17/2022] Open
Abstract
Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population ‘crashes’ (outliers in terms of species' year-to-year population changes) were 46% more frequent than population ‘explosions’. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These ‘consensus years’ were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’.
Collapse
Affiliation(s)
- Georgina Palmer
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Philip J Platts
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Tom Brereton
- Butterfly Conservation, Manor Yard, East Lulworth, Wareham BH20 5QP, UK
| | - Jason W Chapman
- AgroEcology Department, Rothamsted Research, Harpenden AL5 2JQ, UK.,Centre for Ecology and Conservation, and Environment and Sustainability Institute, University of Exeter, Penryn TR10 9EZ, UK
| | - Calvin Dytham
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Richard Fox
- Butterfly Conservation, Manor Yard, East Lulworth, Wareham BH20 5QP, UK
| | - James W Pearce-Higgins
- British Trust for Ornithology, The Nunnery, Thetford IP24 2PU, UK.,Conservation Science Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - David B Roy
- Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
| | - Jane K Hill
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Chris D Thomas
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
19
|
Grant PR, Grant BR, Huey RB, Johnson MTJ, Knoll AH, Schmitt J. Evolution caused by extreme events. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160146. [PMID: 28483875 PMCID: PMC5434096 DOI: 10.1098/rstb.2016.0146] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2016] [Indexed: 12/15/2022] Open
Abstract
Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Raymond B Huey
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Marc T J Johnson
- Department of Biology, University of Toronto-Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Andrew H Knoll
- Department of Organismal Biology, Harvard University, Cambridge, MA 02138, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
20
|
van de Pol M, Jenouvrier S, Cornelissen JHC, Visser ME. Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160134. [PMID: 28483865 PMCID: PMC5434086 DOI: 10.1098/rstb.2016.0134] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2017] [Indexed: 01/29/2023] Open
Abstract
More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Martijn van de Pol
- Department of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2610, Australia
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708PB Wageningen, The Netherlands
| | - Stéphanie Jenouvrier
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS/Univ La Rochelle, 79360 Villiers en Bois, France
| | - Johannes H C Cornelissen
- Systems Ecology, Department of Ecological Sciences, Vrije Universiteit, 1081HV Amsterdam, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708PB Wageningen, The Netherlands
| |
Collapse
|
21
|
Chevin LM, Hoffmann AA. Evolution of phenotypic plasticity in extreme environments. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160138. [PMID: 28483868 PMCID: PMC5434089 DOI: 10.1098/rstb.2016.0138] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/12/2022] Open
Abstract
Phenotypic plasticity, if adaptive, may allow species to counter the detrimental effects of extreme conditions, but the infrequent occurrence of extreme environments and/or their restriction to low-quality habitats within a species range means that they exert little direct selection on reaction norms. Plasticity could, therefore, be maladaptive under extreme environments, unless genetic correlations are strong between extreme and non-extreme environmental states, and the optimum phenotype changes smoothly with the environment. Empirical evidence suggests that populations and species from more variable environments show higher levels of plasticity that might preadapt them to extremes, but genetic variance for plastic responses can also be low, and genetic variation may not be expressed for some classes of traits under extreme conditions. Much of the empirical literature on plastic responses to extremes has not yet been linked to ecologically relevant conditions, such as asymmetrical fluctuations in the case of temperature extremes. Nevertheless, evolved plastic responses are likely to be important for natural and agricultural species increasingly exposed to climate extremes, and there is an urgent need to collect empirical information and link this to model predictions.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Luis-Miguel Chevin
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, CEDEX 5, France
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|