1
|
Schnürmacher R, Vanden Eynde R, Creemers J, Ulenaers E, Eens M, Evens R, Lathouwers M. Achromatic Markings as Male Quality Indicators in a Crepuscular Bird. BIOLOGY 2025; 14:298. [PMID: 40136553 PMCID: PMC11940135 DOI: 10.3390/biology14030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Secondary sexual traits, such as specific body parts or colouration, play an important role in mating interactions. It has been proposed that they function as quality indicators driven by sexual selection. In birds, much attention has been paid to the study of feather pigmentation, especially in diurnal passerines. However, recent research demonstrates that structural achromatic colours are likely to be of similar importance for communication, especially for species inhabiting poorly lit environments and that are active at night. Using 15 years of capture-recapture data from a long-term study on adult European Nightjars (Caprimulgus europaeus), we investigated the role of males' white tail and wing markings as secondary sexual traits. We show that the inter-individual variation in marking size exceeds that of the other morphometric variables, suggesting that wing and tail markings could be subject to sexual selection. Older males, individuals with a higher body condition index, and long-term territory holders had larger markings, while these effects were particularly pronounced in terminal tail feather markings. The importance of markings for signalling is likely related to their observed use in social displays. Pronounced site differences in tail marking sizes and annual variation suggest environmental factors acting on the ornaments that remain to be further examined.
Collapse
Affiliation(s)
- Richard Schnürmacher
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (J.C.); (M.E.); (R.E.)
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Rhune Vanden Eynde
- Research Group: Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium; (R.V.E.); (M.L.)
| | - Jitse Creemers
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (J.C.); (M.E.); (R.E.)
- Terrestrial Ecology and Biodiversity Conservation Group, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Eddy Ulenaers
- Agentschap Natuur en Bos, Regio Noord-Limburg, Heuvelstraat 1C, 3941 Hechel-Eksel, Belgium;
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (J.C.); (M.E.); (R.E.)
| | - Ruben Evens
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (J.C.); (M.E.); (R.E.)
- Terrestrial Ecology and Biodiversity Conservation Group, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Michiel Lathouwers
- Research Group: Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium; (R.V.E.); (M.L.)
- Department of Geography, Institute of Life, Earth and Environment (ILEE), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| |
Collapse
|
2
|
Graham ZA, de Jesus Florentino J, Smithers SP, Menezes JCT, de Carvalho JE, Palaoro AV. Claw coloration in the fiddler crab Leptuca uruguayensis has no correlation with male quality. Curr Zool 2025; 71:109-123. [PMID: 40051462 PMCID: PMC11884406 DOI: 10.1093/cz/zoae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/20/2024] [Indexed: 03/09/2025] Open
Abstract
Sexual selection is thought to play a major role in the evolution of color due to the correlation between a signaler's physiological state and the displayed color. As such, researchers often investigate how color correlates to the quality of the signaler. However, research on the relationship between color and individual quality is often taxonomically limited and researchers typically investigate how color phenotypes relate to one index of quality, such as a linear measure of body size. Here, we investigated the relationship among body size, claw size, claw muscle mass, lipid content, and the color of the claw in male fiddler crabs (Leptuca uruguayensis) which wield an exaggerated claw that varies in color from brown to red. We hypothesized that if the color was correlated to one or more indices of male quality, the color displayed on the claws of male L. uruguayensis could be under sexual selection. We found L. uruguayensis claw color varies substantially among the individuals we photographed. However, we did not find a correlation between claw color and indices of quality; neither brightness nor hue correlated to the indices of quality we measured. Our findings suggest that claw color in L. uruguayensis is unlikely to have evolved to signal quality, but may instead function as a species identity or as a non-indicator sexual signal.
Collapse
Affiliation(s)
- Zackary A Graham
- Department of Organismal Biology, Ecology, and Zoo Science, West Liberty University, 208 University Drive, West Liberty, WV 26074, USA
| | - Jônatas de Jesus Florentino
- Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, Rua do Matão, n 321, Trav. 14, Butantã District, São Paulo, SP 05508-090, Brazil
| | - Samuel P Smithers
- Department of Psychology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - João C T Menezes
- Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, Rua do Matão, n 321, Trav. 14, Butantã District, São Paulo, SP 05508-090, Brazil
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - José Eduardo de Carvalho
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua São Nicolau, n 210, Centro District, Diadema, SP 09972-270, Brazil
| | - Alexandre V Palaoro
- Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, Rua do Matão, n 321, Trav. 14, Butantã District, São Paulo, SP 05508-090, Brazil
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua São Nicolau, n 210, Centro District, Diadema, SP 09972-270, Brazil
- Department of Materials Science and Engineering, Clemson University, 515 Calhoun Dr, Clemson, SC 29634, USA
- Departamento de Zoologia, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, n 100, Jardim das Américas District, Curitiba, PR 82590-300, Brazil
| |
Collapse
|
3
|
Hood WR. A Mitochondrial Perspective on the Demands of Reproduction. Integr Comp Biol 2024; 64:1611-1622. [PMID: 38772739 DOI: 10.1093/icb/icae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
The cost of supporting traits that increase mating opportunities and maximize the production of quality offspring is paid in energy. This currency of reproduction is enabled by bioenergetic adaptations that underlie the flexible changes in energy utilization that occur with reproduction. This review considers the traits that contribute to variation in the capacity of an organ to produce ATP. Further, it synthesizes findings from studies that have evaluated bioenergetic adaptations to the production of sexually selected traits and performance during reproduction and the role of change in mitochondrial respiratory performance in the tradeoff between reproduction and longevity. Cumulatively, these works provide evidence that in selecting for redder males, female finches will likely mate with a male with high mitochondrial respiratory performance and, potentially, a higher probability of mitonuclear compatibility. Females from diverse taxa allocate more to reproduction when the respiratory performance of mitochondria or density of the inner mitochondrial membrane in the liver or skeletal muscle is higher. Finally, reproduction does not appear to have persistent negative effects on mitochondrial respiratory performance, countering a role for mitochondria in the trade-off between reproduction and longevity. I close by noting that adaptations that improve mitochondrial respiratory performance appear vital for optimizing reproductive fitness.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, 36849, USA
| |
Collapse
|
4
|
Arbore R, Barbosa S, Brejcha J, Ogawa Y, Liu Y, Nicolaï MPJ, Pereira P, Sabatino SJ, Cloutier A, Poon ESK, Marques CI, Andrade P, Debruyn G, Afonso S, Afonso R, Roy SG, Abdu U, Lopes RJ, Mojzeš P, Maršík P, Sin SYW, White MA, Araújo PM, Corbo JC, Carneiro M. A molecular mechanism for bright color variation in parrots. Science 2024; 386:eadp7710. [PMID: 39480920 PMCID: PMC7617403 DOI: 10.1126/science.adp7710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 11/02/2024]
Abstract
Parrots produce stunning plumage colors through unique pigments called psittacofulvins. However, the mechanism underlying their ability to generate a spectrum of vibrant yellows, reds, and greens remains enigmatic. We uncover a unifying chemical basis for a wide range of parrot plumage colors, which result from the selective deposition of red aldehyde- and yellow carboxyl-containing psittacofulvin molecules in developing feathers. Through genetic mapping, biochemical assays, and single-cell genomics, we identified a critical player in this process, the aldehyde dehydrogenase ALDH3A2, which oxidizes aldehyde psittacofulvins into carboxyl forms in late-differentiating keratinocytes during feather development. The simplicity of the underlying molecular mechanism, in which a single enzyme influences the balance of red and yellow pigments, offers an explanation for the exceptional evolutionary lability of parrot coloration.
Collapse
Affiliation(s)
- Roberto Arbore
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Soraia Barbosa
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jindřich Brejcha
- Department of Philosophy and History of Science, Faculty of Science, Charles University in Prague, Praha, Czech Republic
| | - Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michaël P. J. Nicolaï
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Stephen J. Sabatino
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alison Cloutier
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | | | - Cristiana I. Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Gerben Debruyn
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Rita Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Shatadru Ghosh Roy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| | - Ricardo J. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- MHNC-UP, Natural History and Science Museum of the University of Porto, Porto, Portugal
- cE3c – Center for Ecology, Evolution and Environmental Change & CHANGE, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Petr Maršík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Michael A. White
- Edison Family Center for Systems Biology and Genome Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Pedro M. Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- University of Coimbra, MARE – Marine and Environmental Sciences Centre, Department of Life Sciences, Coimbra, Portugal
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
5
|
Xiao X, Tan S, He K, Chen Y, Cui L, Zhu B, Qiu X, Qi Y, Yang W. Pterin-Based Red Coloration Predicts the Outcome of Male-Male Competition in Guinan Toad-Headed Lizard. Animals (Basel) 2024; 14:2923. [PMID: 39457853 PMCID: PMC11503834 DOI: 10.3390/ani14202923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Animal coloration offers a unique opportunity to explore the evolutionary mechanisms underlying phenotypic diversity. Conspicuous coloration caused by pigments plays a crucial role in social signaling across multiple species by conveying information about individual quality, social ranks, or reproductive condition. Nevertheless, most previous studies have focused predominantly on colors produced by the exogenous pigments-carotenoids. Pterins are another prevalent group of conspicuous pigments, which can be produced endogenously and have received comparatively little attention. Whether pterin-based colors represent reliable signals remains elusive. The remarkable red ventrolateral coloration exhibited by males of the Guinan toad-headed lizard (Phrynocephalus guinanensis) in the Mugetan Desert presents an ideal model for investigating pterin-based coloration. Through electron microscopy and metabolomic identification, we discovered three types of pterin pigments within xanthophores. Integrating a series of morphological measurements and behavioral experiments, we found that this red coloration was not correlated with body size, bite force, and testosterone level, nor did females show a preference bias toward it. However, the red intensity predicted male-male competition outcomes, with deeper red males being more likely to emerge as winners. Our results indicated that the pterin-based coloration could convey information about male quality, suggesting its potential role in honest signaling, given the vital importance of pterin metabolism in physiological processes. This study provides a novel case into the understanding of pterin-based colors in animals.
Collapse
Affiliation(s)
- Xiao Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.X.); (S.T.); (Y.C.); (L.C.); (B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.X.); (S.T.); (Y.C.); (L.C.); (B.Z.)
| | - Kehu He
- Forestry Station of Guinan County, Guinan 813199, China;
| | - Ying Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.X.); (S.T.); (Y.C.); (L.C.); (B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Cui
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.X.); (S.T.); (Y.C.); (L.C.); (B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bicheng Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.X.); (S.T.); (Y.C.); (L.C.); (B.Z.)
| | - Xia Qiu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.X.); (S.T.); (Y.C.); (L.C.); (B.Z.)
| | - Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.X.); (S.T.); (Y.C.); (L.C.); (B.Z.)
| |
Collapse
|
6
|
Cantarero A, Fernandez-Eslava B, Alonso D, Camarero P, Mateo R, Alonso-Alvarez C. Could alternative pathways for carotenoid transformation affect colour production efficiency? A correlative study in wild birds. Comp Biochem Physiol B Biochem Mol Biol 2024:111032. [PMID: 39265722 DOI: 10.1016/j.cbpb.2024.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
In many vertebrates, dietary yellow carotenoids are enzymatically transformed into 4C-ketocarotenoid pigments, leading to conspicuous red colourations. These colourations may evolve as signals of individual quality under sexual selection. To evolve as signals, they must transmit reliable information benefiting both the receiver and the signaler. Some argue that the reliability of 4C-ketocarotenoid-based colourations is ensured by the tight link between individual quality and mitochondrial metabolism, which is supposedly involved in transforming yellow carotenoids. We studied how a range of carotenoids covary in the feathers and blood plasma of a large number (n > 140) of wild male common crossbills (Loxia curvirostra). Plumage redness was mainly due to 3-hydroxy-echinenone (3HOE). Two other, less abundant, red 4C-ketocarotenoids (astaxanthin and canthaxanthin) could have contributed to feather colour as they are redder pigments. This was demonstrated for astaxanthin but not canthaxanthin, whose feather levels were clearly uncorrelated to colouration. Moreover, moulting crossbills carried more 3HOE and astaxanthin in blood than non-moulting ones, whereas canthaxanthin did not differ. Canthaxanthin and 3HOE can be formed from echinenone, a probable product of dietary β-carotene ketolation. Echinenone could thus be ketolated or hydroxylated to produce canthaxanthin or 3HOE, respectively. In moulting birds, 3HOE blood levels positively correlated to astaxanthin, its product, but negatively to canthaxanthin levels. Redder crossbills also had lower plasma canthaxanthin values. A decrease in hydroxylation relative to ketolation could explain canthaxanthin production. We hypothesize that red colouration could indicate birds' ability to avoid inefficient deviations within the complex enzymatic pathways.
Collapse
Affiliation(s)
- Alejandro Cantarero
- Department of Physiology, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Blanca Fernandez-Eslava
- Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11, E-20014 Donostia-San Sebastián, Spain
| | - Daniel Alonso
- Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11, E-20014 Donostia-San Sebastián, Spain
| | - Pablo Camarero
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC - UCLM - JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC - UCLM - JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Carlos Alonso-Alvarez
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain; IPE, Pyrenean Institute of Ecology (CSIC), Avda. Nuestra Señora de la Victoria 16, 22700 Jaca, Spain.
| |
Collapse
|
7
|
Hoffman AJ, Finger JW, Kavazis AN, Wada H. Developmental Thermal Conditioning Regulates Oxidative State and Beak Coloration in Response to Thermal Stressors in Adulthood. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:302-314. [PMID: 39680901 DOI: 10.1086/733518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractAt certain intensities and durations, environmental stressors during development can result in changes in physiology that prepare organisms for future stressful conditions. Such plasticity can allow organisms to maintain good condition when confronted with a poor environment, potentially conferring an advantage in fitness. However, the physiological changes underlying these adaptive phenotypic adjustments are understudied. Using captive male zebra finches (Taeniopygia castanotis), we tested whether exposure to a prolonged mild stressor during development would adaptively modify their antioxidant enzyme expression, reducing oxidative damage when exposed to a high-intensity stressor in adulthood and allowing the maintenance of a secondary sexual trait. To do this, we exposed juvenile finches to either a prolonged mild heat stressor treatment (38°C) or a control temperature treatment (22°C). As adults, these finches were then exposed to either an acute high-intensity heat stressor treatment (42°C) or control temperature treatment (22°C). The beak color of males-a sexually selected trait-was quantified, as were oxidative stress parameters in the testes and liver tissues. We saw that the mild-heat-conditioned males had beaks with higher saturation and lower brightness at baseline in adulthood but that the changes in beak color in response to the high heat stressor varied. After exposure to the high heat stressor as adults, finches had higher levels of superoxide dismutase 1 and 2 in the testes and lower levels of lipid damage in the liver if they were also exposed to the mild heat conditioning as juveniles, indicating an adaptive phenotypic change.
Collapse
|
8
|
Hudon J, McKenna K, Donkor K, Mahoney SM, Tonra CM, Marra PP, Ratcliffe LM, Reudink MW. Feather carotenoids of the American Redstart (Setophaga ruticilla) across age and sex classes and the reliability of standard color metrics to capture pigment variation. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111027. [PMID: 39216512 DOI: 10.1016/j.cbpb.2024.111027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Plumage ornaments act as important sexual signals, though the extent to which these ornaments act as honest signals-and the physiological mechanisms that maintain honesty-remain poorly understood. We studied the pigmentary basis of tail color in the American Redstart (Setophaga ruticilla), a species of songbird with sexual dichromatism and delayed plumage maturation; younger males resemble females, only replacing their yellow feathers for bright orange ones after the first breeding season. The yellow rectrices of females and young males and the orange feathers of older males largely contain the same pigments, but in vastly different proportions. Whereas the feathers of females and young males contain primarily lutein, 3'-dehydro-lutein and canary-xanthophylls, those of older males contain primarily 4-keto-carotenoids. The presence of lutein and the predominance of α-doradexanthin as 4-keto-carotenoid, a pigment with a shortened chain of conjugated double bonds compared to keto-carotenoids commonly found in red feathers, in the feathers of older males contribute to their uncommon orange hue. Since the orange coloration of the tail in the American redstart results from the combination of yellow, orange, and red pigments, this is a system where slight adjustments in the types of carotenoids deposited could significantly alter hue. Factors either work against achieving the most oxidized state in this species or the hue is maintained through stabilizing selection for a favored color. The color metrics of Carotenoid Chroma, Visible Hue, λR50 and tetrahedral θ best captured differences in pigment concentration and make-up, and are recommended in future spectrophotometric studies of carotenoid-based traits.
Collapse
Affiliation(s)
- Jocelyn Hudon
- Royal Alberta Museum, 9810 103A Ave NW, Edmonton, AB T5J 0G2, Canada.
| | - Kile McKenna
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| | - Kingsley Donkor
- Department of Chemistry, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| | - Sean M Mahoney
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada; School of Natural Resources and the Environment, The University of Arizona, 1064 East Lowell Street, Tucson, AZ, USA 85721.
| | - Christopher M Tonra
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Rd., Columbus, OH 43210, USA.
| | - Peter P Marra
- The Earth Commons Institute; Department of Biology; McCourt School of Public Policy; Georgetown University, 3700 O St NW, Washington, DC 20057, USA.
| | - Laurene M Ratcliffe
- Department of Biology, Queen's University, Biosciences Complex, 116 Barrie St., Kingston, Ontario K7L 3N6, Canada.
| | - Matthew W Reudink
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| |
Collapse
|
9
|
Dijkstra PD, Funnell TR, Fialkowski RJ, Piefke TJ, Border SE, Aufdemberge PM, Hartman HA. Sexual selection may support phenotypic plasticity in male coloration of an African cichlid fish. Proc Biol Sci 2024; 291:20241127. [PMID: 39043242 PMCID: PMC11265874 DOI: 10.1098/rspb.2024.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
The expression of sexually selected traits, such as ornaments or body coloration, is often influenced by environmental conditions. While such phenotypic plasticity is often thought to precede evolutionary change, plasticity itself can also be a target of selection. However, the selective forces supporting the evolution and persistence of plasticity in sexual traits are often unclear. Using the cichlid fish Astatotilapia burtoni, we show that variation in the level of mate competition may promote plasticity in body coloration. In this species, males can change between yellow and blue colour. We found that experimentally increased competition over mating territories led to a higher proportion of males expressing the yellow phenotype. The expression of yellow coloration was found to be beneficial because yellow males won more staged dyadic contests and exhibited a lower level of oxidative stress than blue males. However, females were more likely to spawn with blue males in mate choice experiments, suggesting that expression of blue coloration is sexually more attractive. The ability to adjust colour phenotype according to the local competitive environment could therefore promote the persistence of plasticity in coloration.
Collapse
Affiliation(s)
- Peter D. Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
- Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Tyler R. Funnell
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Taylor J. Piefke
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Shana E. Border
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | | | - Hailey A. Hartman
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
10
|
Wedell N, Kemp DJ. Ultraviolet signaling in a butterfly is preferred by females and conveys male genetic quality. Evolution 2024; 78:1372-1381. [PMID: 38776186 DOI: 10.1093/evolut/qpae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/24/2024]
Abstract
Indicator models of sexual selection posit that females choose males on the basis of traits that reveal male genetic quality and thereby enjoy increased offspring production. Here, we report that females of the butterfly Eurema hecabe receive indirect benefits from choosing males based on their ultraviolet (UV) wing coloration, a heritable and condition-dependent trait in this species. We first used a large laboratory-bred pedigree to demonstrate a per-family association between inbreeding and male UV trait value. Females exerted choice for UV-bright males within this protocol, and the average male UV trait value increased over six consecutive generations, presumably due to such selection and despite an increasing rate of pedigree-wide inbreeding. We then experimentally imposed a standard strength of inbreeding upon lines of divergent male UV trait values. Inbreeding depressed the siring performance of low UV treatment males more severely and resulted in a marginal reduction of their UV brightness, which rebounded sharply following subsequent outcrossing. These findings are consistent with the ornament-based signaling of genetic quality as a function of underlying individual-level mutational load.
Collapse
Affiliation(s)
- Nina Wedell
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Darrell J Kemp
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
11
|
Ziegelbecker A, Sefc KM. Family resemblance in color-patch size is not affected by stress experience in a cichlid fish. Ecol Evol 2024; 14:e70009. [PMID: 39035042 PMCID: PMC11260441 DOI: 10.1002/ece3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Animal body coloration is often linked to social dominance and mating success. This is because it can carry information on an animal's body condition and competitive ability by reflecting the genetic quality of individuals or by responding to their current or past living conditions. The present study investigates genetic and environmental effects on a conspicuous color pattern of the cichlid fish Tropheus sp. black "Ikola," in which the size of a carotenoid-based yellow area on the body co-varies with social dominance. To examine environmental plasticity of the color pattern, we tested for effects of early-life stress, induced by reduced feeding of juveniles prior to color pattern formation, as well as effects of a stress treatment administered to fully colored adult fish. None of the stress treatments affected the color pattern as quantified by the width of the yellow bar. However, offspring bar width was correlated to parental values in mid-parent-mid-offspring regression analyses, and animal models estimated significant additive genetic effects on bar width, indicating heritability of the trait. Depending on the random effects structure of the animal models (i.e., whether including or excluding maternal and brood effects), narrow-sense heritability estimates for bar width ranged between 0.2 and 0.8, with the strongest statistical support for the highest estimate. In each of the alternative models, a large proportion of the total variance in bar width was explained by the included random effects, suggesting that bar width is strongly determined by genetic factors or shared maternal and brood environments, with limited scope for environmental influences later in life.
Collapse
|
12
|
Graham ZA, Padilla Perez DJ. Correlated evolution of conspicuous colouration and burrowing in crayfish. Proc Biol Sci 2024; 291:20240632. [PMID: 38981529 PMCID: PMC11335007 DOI: 10.1098/rspb.2024.0632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Conspicuous colours have fascinated biologists for centuries, leading to research on the evolution and functional significance of colour traits. In many cases, research suggests that conspicuous colours are adaptive and serve a function in sexual or aposematic signalling. In other cases, a lack of evidence for the adaptive value of conspicuous colours garners interest from biologists, such as when organisms that live underground and are rarely exposed to the surface are nevertheless colourful. Here, we use phylogenetic comparative methods to investigate colour evolution throughout freshwater crayfishes that vary in burrowing ability. Within the taxa we analysed, conspicuous colours have evolved independently over 50 times, and these colours are more common in semi-terrestrial crayfishes that construct extensive burrows. The intuitive but not evolutionarily justified assumption when presented with these results is to assume that these colours are adaptive. But contrary to this intuition, we discuss the hypothesis that colouration in crayfish is neutral. Supporting these ideas, the small population sizes and reduced gene flow within semi-terrestrial burrowing crayfishes may lead to the fixation of colour-phenotype mutations. Overall, our work brings into question the traditional view of animal colouration as a perfectly adapted phenotype.
Collapse
Affiliation(s)
- Zackary A. Graham
- Department of Organismal Biology, Ecology, and Zoo Science, West Liberty University, 208 University Drive, West Liberty, WV26074, USA
| | | |
Collapse
|
13
|
Koch RE, Okegbe C, Ramanathan C, Zhu X, Hare E, Toomey MB, Hill GE, Zhang Y. Captivity affects mitochondrial aerobic respiration and carotenoid metabolism in the house finch (Haemorhous mexicanus). J Exp Biol 2024; 227:jeb246980. [PMID: 38634224 DOI: 10.1242/jeb.246980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
In many species of animals, red carotenoid-based coloration is produced by metabolizing yellow dietary pigments, and this red ornamentation can be an honest signal of individual quality. However, the physiological basis for associations between organism function and the metabolism of red ornamental carotenoids from yellow dietary carotenoids remains uncertain. A recent hypothesis posits that carotenoid metabolism depends on mitochondrial performance, with diminished red coloration resulting from altered mitochondrial aerobic respiration. To test for an association between mitochondrial respiration and red carotenoids, we held wild-caught, molting male house finches in either small bird cages or large flight cages to create environmental challenges during the period when red ornamental coloration is produced. We predicted that small cages would present a less favorable environment than large flight cages and that captivity itself would decrease both mitochondrial performance and the abundance of red carotenoids compared with free-living birds. We found that captive-held birds circulated fewer red carotenoids, showed increased mitochondrial respiratory rates, and had lower complex II respiratory control ratios - a metric associated with mitochondrial efficiency - compared with free-living birds, though we did not detect a difference in the effects of small cages versus large cages. Among captive individuals, the birds that circulated the highest concentrations of red carotenoids had the highest mitochondrial respiratory control ratio for complex II substrate. These data support the hypothesis that the metabolism of red carotenoid pigments is linked to mitochondrial aerobic respiration in the house finch, but the mechanisms for this association remain to be established.
Collapse
Affiliation(s)
- Rebecca E Koch
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - Chidimma Okegbe
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA
| | | | - Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Ethan Hare
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Matthew B Toomey
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Yufeng Zhang
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
14
|
Balbuena MS, Buchmann SL, Papaj DR, Raguso RA. Organ-specific volatiles from Sonoran desert Krameria flowers as potential signals for oil-collecting bees. PHYTOCHEMISTRY 2024; 218:113937. [PMID: 38035972 DOI: 10.1016/j.phytochem.2023.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The evolution of flowers that offer oils as rewards and are pollinated by specialized bees represents a distinctive theme in plant-pollinator co-diversification. Some plants that offer acetylated glycerols as floral oils emit diacetin, a volatile by-product of oil metabolism, which is utilized by oil-collecting bees as an index signal for the presence of floral oil. However, floral oils in the genus Krameria (Krameriaceae) contain β-acetoxy-substituted fatty acids instead of acetylated glycerols, making them unlikely to emit diacetin as an oil-bee attractant. We analyzed floral headspace composition from K. bicolor and K. erecta, native to the Sonoran Desert of southwestern North America, in search of alternative candidates for volatile index signals. Using solid-phase microextraction, combined with gas chromatography-mass spectrometry, we identified 26 and 45 floral volatiles, respectively, from whole flowers and dissected flower parts of these two Krameria species. As expected, diacetin was not detected. Instead, β-ionone emerged as a strong candidate for an index signal, as it was uniquely present in dissected oil-producing floral tissues (elaiophores) of K. bicolor, as well as the larval cells and provisions from its oil-bee pollinator, Centris cockerelli. This finding suggests that the floral oil of K. bicolor is perfused with β-ionone in its tissue of origin and retains the distinctive raspberry-like scent of this volatile after being harvested by C. cockerelli bees. In contrast, the elaiophores of K. erecta, which are not thought to be pollinated by C. cockerelli, produced a blend of anise-related oxygenated aromatics not found in the elaiophores of K. bicolor. Our findings suggest that β-ionone has the potential to impact oil-foraging by C. cockerelli bees through several potential mechanisms, including larval imprinting on scented provisions or innate or learned preferences by foraging adults.
Collapse
Affiliation(s)
- Maria Sol Balbuena
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Daniel R Papaj
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
15
|
Culbert BM, Barnett JB, Ligocki IY, Salena MG, Wong MYL, Hamilton IM, Balshine S. Colorful facial markings are associated with foraging rates and affiliative relationships in a wild group-living cichlid fish. Curr Zool 2024; 70:70-78. [PMID: 38476131 PMCID: PMC10926260 DOI: 10.1093/cz/zoac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/11/2022] [Indexed: 03/14/2024] Open
Abstract
Many animals use color to signal their quality and/or behavioral motivations. Colorful signals have been well studied in the contexts of competition and mate choice; however, the role of these signals in nonsexual, affiliative relationships is not as well understood. Here, we used wild social groups of the cichlid fish Neolamprologus pulcher to investigate whether the size of a brightly colored facial patch was related to 1) individual quality, 2) social dominance, and/or 3) affiliative relationships. Individuals with larger patches spent more time foraging and tended to perform more aggressive acts against conspecific territory intruders. We did not find any evidence that the size of these yellow patches was related to social rank or body size, but dominant males tended to have larger patches than dominant females. Additionally, patch size had a rank-specific relationship with the number of affiliative interactions that individuals engaged in. Dominant males with large patches received fewer affiliative acts from their groupmates compared to dominant males with small patches. However, subordinates with large patches tended to receive more affiliative acts from their groupmates while performing fewer affiliative acts themselves. Taken together, our results suggest that patch size reflects interindividual variation in foraging effort in this cichlid fish and offer some of the first evidence that colorful signals may shape affiliative relationships within wild social groups.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - James B Barnett
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Pal A, Joshi M, Thaker M. Too much information? Males convey parasite levels using more signal modalities than females utilise. J Exp Biol 2024; 227:jeb246217. [PMID: 38054353 PMCID: PMC10906484 DOI: 10.1242/jeb.246217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Elaborate sexual signals are thought to have evolved and be maintained to serve as honest indicators of signaller quality. One measure of quality is health, which can be affected by parasite infection. Cnemaspis mysoriensis is a diurnal gecko that is often infested with ectoparasites in the wild, and males of this species express visual (coloured gular patches) and chemical (femoral gland secretions) traits that receivers could assess during social interactions. In this paper, we tested whether ectoparasites affect individual health, and whether signal quality is an indicator of ectoparasite levels. In wild lizards, we found that ectoparasite level was negatively correlated with body condition in both sexes. Moreover, some characteristics of both visual and chemical traits in males were strongly associated with ectoparasite levels. Specifically, males with higher ectoparasite levels had yellow gular patches with lower brightness and chroma, and chemical secretions with a lower proportion of aromatic compounds. We then determined whether ectoparasite levels in males influence female behaviour. Using sequential choice trials, wherein females were provided with either the visual or the chemical signals of wild-caught males that varied in ectoparasite level, we found that only chemical secretions evoked an elevated female response towards less parasitised males. Simultaneous choice trials in which females were exposed to the chemical secretions from males that varied in parasite level further confirmed a preference for males with lower parasites loads. Overall, we find that although health (body condition) or ectoparasite load can be honestly advertised through multiple modalities, the parasite-mediated female response is exclusively driven by chemical signals.
Collapse
Affiliation(s)
- Arka Pal
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Mihir Joshi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
17
|
Hill GE, Weaver RJ, Powers MJ. Carotenoid ornaments and the spandrels of physiology: a critique of theory to explain condition dependency. Biol Rev Camb Philos Soc 2023; 98:2320-2332. [PMID: 37563787 DOI: 10.1111/brv.13008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Even as numerous studies have documented that the red and yellow coloration resulting from the deposition of carotenoids serves as an honest signal of condition, the evolution of condition dependency is contentious. The resource trade-off hypothesis proposes that condition-dependent honest signalling relies on a trade-off of resources between ornamental display and body maintenance. By this model, condition dependency can evolve through selection for a re-allocation of resources to promote ornament expression. By contrast, the index hypothesis proposes that selection focuses mate choice on carotenoid coloration that is inherently condition dependent because production of such coloration is inexorably tied to vital cellular processes. These hypotheses for the origins of condition dependency make strongly contrasting and testable predictions about ornamental traits. To assess these two models, we review the mechanisms of production of carotenoids, patterns of condition dependency involving different classes of carotenoids, and patterns of behavioural responses to carotenoid coloration. We review evidence that traits can be condition dependent without the influence of sexual selection and that novel traits can show condition-dependent expression as soon as they appear in a population, without the possibility of sexual selection. We conclude by highlighting new opportunities for studying condition-dependent signalling made possible by genetic manipulation and expression of ornamental traits in synthetic biological systems.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Sciences, 120 W. Samford Avenue, Auburn University, Auburn, AL, 36849, USA
| | - Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, 2200 Osborne Drive, Iowa State University, Ames, IA, USA
| | - Matthew J Powers
- Department of Integrative Biology, 4575 SW Research Way, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
18
|
de Almeida Borghezan E, da Silva Pires TH, Zuanon J, Kohshima S. Effect of light bias on male mating signal and female mate choice in a sexually dimorphic Amazon fish. Behav Processes 2023; 213:104958. [PMID: 37863276 DOI: 10.1016/j.beproc.2023.104958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Colourful signals are usually honest indicators of mate quality since they are energetically costly. However, how colours are perceived by choosers is highly affected by the environmental light condition. Amazon black waters are strongly red-biased while clear waters show no apparent colour bias. The sailfin tetra Crenuchus spilurus is a sexually dimorphic Amazon fish species; males have hyperallometric dorsal and anal fins conspicuously ornamented with red and yellow markings. The species has two main lineages, which inhabit black and clear waters. A comparison of the red colouration of the ornaments of males from different lineages indicates that red bias increases the perceived intensity of red colouration but decreases the perceived among-individual variation in red colour. In mate choice experiments, females from all lineages preferred males with larger ornaments. Clear water lineage females were more likely to accept males under red-biased lighting, which increases the apparent red colouration, suggesting the importance of the red colouration in their mate choice. On the other hand, male acceptance by females from black waters did not change under different light conditions, suggesting that signals other than the red colouration (e.g. size of ornaments) were more important in their mate choice.
Collapse
Affiliation(s)
- Elio de Almeida Borghezan
- Wildlife Research Center, Kyoto University, Kyoto, Japan; Laboratório de Ecologia Comportamental e Evolução, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil.
| | | | - Jansen Zuanon
- Laboratório de Ecologia Comportamental e Evolução, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Shiro Kohshima
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
McCoy DE, Shultz AJ, Dall JE, Dionne JA, Johnsen S. The carotenoid redshift: Physical basis and implications for visual signaling. Ecol Evol 2023; 13:e10408. [PMID: 37693937 PMCID: PMC10485323 DOI: 10.1002/ece3.10408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
Carotenoid pigments are the basis for much red, orange, and yellow coloration in nature and central to visual signaling. However, as pigment concentration increases, carotenoid signals not only darken and become more saturated but they also redshift; for example, orange pigments can look red at higher concentration. This occurs because light experiences exponential attenuation, and carotenoid-based signals have spectrally asymmetric reflectance in the visible range. Adding pigment disproportionately affects the high-absorbance regions of the reflectance spectra, which redshifts the perceived hue. This carotenoid redshift is substantial and perceivable by animal observers. In addition, beyond pigment concentration, anything that increases the path length of light through pigment causes this redshift (including optical nano- and microstructures). For example, male Ramphocelus tanagers appear redder than females, despite the same population and concentration of carotenoids, due to microstructures that enhance light-pigment interaction. This mechanism of carotenoid redshift has sensory and evolutionary consequences for honest signaling in that structures that redshift carotenoid ornaments may decrease signal honesty. More generally, nearly all colorful signals vary in hue, saturation, and brightness as light-pigment interactions change, due to spectrally asymmetrical reflectance within the visible range of the relevant species. Therefore, the three attributes of color need to be considered together in studies of honest visual signaling.
Collapse
Affiliation(s)
- Dakota E. McCoy
- Department of Materials Science and EngineeringStanford UniversityStanfordCaliforniaUSA
- Hopkins Marine StationStanford UniversityPacific GroveCaliforniaUSA
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Allison J. Shultz
- Ornithology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCaliforniaUSA
| | - Jacqueline E. Dall
- Ornithology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCaliforniaUSA
| | - Jennifer A. Dionne
- Department of Materials Science and EngineeringStanford UniversityStanfordCaliforniaUSA
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Sönke Johnsen
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
20
|
Lee IPA, Eldakar OT, Gogarten JP, Andam CP. Recombination as an enforcement mechanism of prosocial behavior in cooperating bacteria. iScience 2023; 26:107344. [PMID: 37554437 PMCID: PMC10405257 DOI: 10.1016/j.isci.2023.107344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Prosocial behavior is ubiquitous in nature despite the relative fitness costs carried by cooperative individuals. However, the stability of cooperation in populations is fragile and often maintained through enforcement. We propose that homologous recombination provides such a mechanism in bacteria. Using an agent-based model of recombination in bacteria playing a public goods game, we demonstrate how changes in recombination rates affect the proportion of cooperating cells. In our model, recombination converts cells to a different strategy, either freeloading (cheaters) or cooperation, based on the strategies of neighboring cells and recombination rate. Increasing the recombination rate expands the parameter space in which cooperators outcompete freeloaders. However, increasing the recombination rate alone is neither sufficient nor necessary. Intermediate benefits of cooperation, lower population viscosity, and greater population size can promote the evolution of cooperation from within populations of cheaters. Our findings demonstrate how recombination influences the persistence of cooperative behavior in bacteria.
Collapse
Affiliation(s)
- Isaiah Paolo A. Lee
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
- National Institute of Molecular Biology and Biotechnology, University of the Philippines–Diliman, Quezon City 1101, Philippines
| | - Omar Tonsi Eldakar
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - J. Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
21
|
DeLacey PM, Sen S, Schneider-Crease IA, Chiou KL, Lemma A, Ayele F, Haile AA, Lu A, Bergman TJ, Beehner JC, Snyder-Mackler N. Vascularization underlies differences in sexually selected skin coloration in a wild primate. Mol Ecol 2023; 32:4401-4411. [PMID: 37226287 DOI: 10.1111/mec.17026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Male reproductive competition can select for condition-dependent, conspicuous traits that signal some aspect of fighting ability and facilitate assessment of potential rivals. However, the underlying mechanisms that link the signal to a male's current condition are difficult to investigate in wild populations, often requiring invasive experimental manipulation. Here, we use digital photographs and chest skin samples to investigate the mechanisms of a visual signal used in male competition in a wild primate, the red chest patch in geladas (Theropithecus gelada). We analysed photographs collected during natural (n = 144) and anaesthetized conditions (n = 38) to understand variability in male and female chest redness, and we used chest skin biopsies (n = 38) to explore sex differences in gene expression. Male and female geladas showed similar average redness, but males exhibited a wider within-individual range in redness under natural conditions. These sex differences were also reflected at the molecular level, with 10.5% of genes exhibiting significant sex differences in expression. Subadult males exhibited intermediate gene expression patterns between adult males and females, pointing to mechanisms underlying the development of the red chest patch. We found that genes more highly expressed in males were associated with blood vessel development and maintenance but not with androgen or oestrogen activity. Together, our results suggest male gelada redness variability is driven by increased blood vessel branching in the chest skin, providing a potential link between male chest redness and current condition as increased blood circulation to exposed skin could lead to heat loss in the cold, high-altitude environment of geladas.
Collapse
Affiliation(s)
- Patricia M DeLacey
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharmi Sen
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - India A Schneider-Crease
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Alemayehu Lemma
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Ethiopia
| | - Ferehiwot Ayele
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Ethiopia
| | | | - Amy Lu
- Department of Anthropology, Stony Brook University, New York, USA
| | - Thore J Bergman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
22
|
Matthews G, Farquhar JE, White CR, Chapple DG. Does thermal biology differ between two colour pattern morphs of a widespread Australian lizard? J Therm Biol 2023; 114:103579. [PMID: 37344018 DOI: 10.1016/j.jtherbio.2023.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/23/2023]
Abstract
Alternative phenotypes allow individuals to pursue different adaptive pathways in response to the same selective challenge. Colour polymorphic species with geographically varying morph frequencies may reflect multiple adaptations to spatial variables such as temperature and climate. We examined whether thermal biology differed between colour morphs of an Australian lizard, the delicate skink, Lampropholis delicata. The delicate skink has two colour pattern morphs, with frequencies varying across latitude and sex: plain (darker, more common at temperate latitudes, more common in males) or striped (lighter, more common at lower latitudes, more common in females). We tested heating and cooling rate, sprint speed, thermal preference, field body temperature and metabolic rate in both morphs and sexes to determine any link between colour and morph frequency distribution. Plain individuals heated more quickly, but other thermal traits showed little variation among morphs. Lampropholis delicata colour influences rates of heat exchange, but the relationship does not appear to be adaptive, suggesting that behavioural thermoregulation homogenises body temperature in the field. While we find no substantial evidence of thermal differences between the two colour morphs, morph-specific behaviour may buffer against differences in heat exchange. Latitudinal variation in species colour may be driven by selection pressures other than temperature.
Collapse
Affiliation(s)
- Genevieve Matthews
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jules E Farquhar
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia; Centre for Geometric Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
23
|
Nolazco S, Delhey K, Fan M, Hall ML, Kingma SA, Roast MJ, Teunissen N, Peters A. Which plumage patches provide information about condition and success in a female fairy-wren? Behav Ecol 2022. [DOI: 10.1093/beheco/arac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract
Recent evidence suggests that female ornaments can commonly act as signals. However, how signaling functions might be affected by the tendency for reduced ornament elaboration in relation to males is less well-understood. We address this in mutually ornamented purple-crowned fairy-wrens. We investigated putatively ornamental (tail, ear coverts, crown) and non-ornamental (throat, back) plumage patches in females and compared our findings to previous studies in males. Both sexes have brown backs, buff-white throats, and turquoise-blue tails (bluer in males), while ear coverts are rufous in females and black in males. Both sexes also have a seasonal crown (slate-gray in females, black-and-purple in males). Dominant (breeder) females expressed more complete and grayer (more ornamented) crowns, although variation in coloration should not be discriminable by individuals. Unexpectedly, subordinates showed more colorful (saturated) rufous ear coverts, which should be discriminable. Condition-dependence was only evident for crown completeness (% slate-gray cover). Females with more reddish-brown backs were more reproductively successful. Variation in plumage characteristics did not explain differential allocation by mates or chances of gaining dominance. Our outcomes were not entirely consistent with findings in males. The most notable disparity was for the crown, a signal used in male-male competition that in females seems to be expressed as an incomplete version of the male crown that is not associated with fitness benefits. Our study shows that in a species, multiple traits can vary in their information content and that female ornaments can sometimes be less informative than in males, even those that are produced seasonally.
Collapse
Affiliation(s)
- Sergio Nolazco
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Kaspar Delhey
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
- Max Planck Institute for Ornithology , Seewiesen , Germany
| | - Marie Fan
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Michelle L Hall
- Max Planck Institute for Ornithology , Seewiesen , Germany
- School of Biological Sciences, University of Western Australia , 35 Stirling Highway, Perth, Western Australia 6009 , Australia
| | - Sjouke A Kingma
- Max Planck Institute for Ornithology , Seewiesen , Germany
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research , De Elst 1, 6708 WD Wageningen , The Netherlands
| | - Michael J Roast
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Niki Teunissen
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
| | - Anne Peters
- School of Biological Sciences, Monash University , 25 Rainforest Walk, Clayton, Victoria 3800 , Australia
- Max Planck Institute for Ornithology , Seewiesen , Germany
| |
Collapse
|
24
|
Gudowska A, Janas K, Wieczorek J, Woznicka O, Płonka PM, Drobniak SM. Canalised and plastic components of melanin-based colouration: a diet-manipulation experiment in house sparrows. Sci Rep 2022; 12:18484. [PMID: 36323747 PMCID: PMC9630266 DOI: 10.1038/s41598-022-21811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Whether melanin-based plumage colouration accurately reflects a bird's quality is still controversial. To better understand potential mechanisms behind the observed variation in plumage colouration, we shifted our attention from a high-level expression of colour to low-level physiological phenomena by targeting the microstructure and pigment content of the feather. In a well-studied model system, the house sparrow (Passer domesticus), we combined an experimental manipulation of birds' physiological condition and availability of resources that are key to the production of the studied colouration (phenylalanine and tyrosine (PT). We found that feathers from sparrows fed with the control diet had noticeably lower values of brightness, suggesting a higher quality of the ornamental "blackness" in comparison to those sampled from birds fed with a PT-reduced diet. Electron paramagnetic resonance (EPR) spectroscopy detected higher melanin concentrations in samples from the control than the PT-reduced group. Our multi-level analysis excluded mechanisms such as barbule density and melanosomes' distribution, clearly pointing to the finest-level proxy of colour: the concentration of melanin in melanosomes themselves. Despite melanins being manufactured by birds endogenously, the efficiency of melanogenesis can be noticeably limited by diet. As a result, the birds' plumage colouration is affected, which may entail consequences in social signalling.
Collapse
Affiliation(s)
- Agnieszka Gudowska
- grid.5522.00000 0001 2162 9631Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland ,grid.413454.30000 0001 1958 0162Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Janas
- grid.413454.30000 0001 1958 0162Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Wieczorek
- grid.5522.00000 0001 2162 9631Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga Woznicka
- grid.5522.00000 0001 2162 9631Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Przemysław M. Płonka
- grid.5522.00000 0001 2162 9631Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Szymon M. Drobniak
- grid.5522.00000 0001 2162 9631Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland ,grid.1005.40000 0004 4902 0432Ecology & Evolution Research Centre; School of Biological, Environmental & Earth Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
25
|
Romero-Diaz C, Silva PA, Soares MC, Cardoso GC, Trigo S. Oestradiol reduces female bill colour in a mutually ornamented bird. Proc Biol Sci 2022; 289:20221677. [PMID: 36476006 PMCID: PMC9554724 DOI: 10.1098/rspb.2022.1677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022] Open
Abstract
Carotenoid-based colour signals can be costly to produce and maintain, and trade-offs between signalling and other fitness traits are expected. In mutually ornamented species, trade-offs with reproduction may be stronger for females than males, because females often dedicate more resources to offspring production, which may lead to plastic investment in colour signals and plastic sexual dichromatism. Oestradiol is a candidate mediator of this trade-off because it regulates reproductive physiology and may also influence the expression of coloration. We tested this hypothesis by giving female common waxbills (Estrilda astrild) either oestradiol (17β-oestradiol) or empty implants during the early breeding season and measured spectral reflectance of carotenoid-based bill coloration weekly for two months. Using a model of avian vision, we found that bill colour in oestradiol-implanted females became less saturated, less red in hue and brighter, compared with control females and with unimplanted males. This resulted in a change in bill sexual dichromatism from imperceptible to perceptible. Results support the hypothesis that female reproductive physiology influences investment in coloration through changes in oestradiol and show a form of female-driven plastic sexual dichromatism. Greater sensitivity of female colour to physiological and/or environmental conditions helps explain why differences in sexual dichromatism among species differing in ecology often evolve owing to changes in female rather than male phenotype.
Collapse
Affiliation(s)
- Cristina Romero-Diaz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Paulo A. Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Marta C. Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Gonçalo C. Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Sandra Trigo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| |
Collapse
|
26
|
Toomey MB, Marques CI, Araújo PM, Huang D, Zhong S, Liu Y, Schreiner GD, Myers CA, Pereira P, Afonso S, Andrade P, Gazda MA, Lopes RJ, Viegas I, Koch RE, Haynes ME, Smith DJ, Ogawa Y, Murphy D, Kopec RE, Parichy DM, Carneiro M, Corbo JC. A mechanism for red coloration in vertebrates. Curr Biol 2022; 32:4201-4214.e12. [PMID: 36049480 PMCID: PMC9588406 DOI: 10.1016/j.cub.2022.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Red coloration is a salient feature of the natural world. Many vertebrates produce red color by converting dietary yellow carotenoids into red ketocarotenoids via an unknown mechanism. Here, we show that two enzymes, cytochrome P450 2J19 (CYP2J19) and 3-hydroxybutyrate dehydrogenase 1-like (BDH1L), are sufficient to catalyze this conversion. In birds, both enzymes are expressed at the sites of ketocarotenoid biosynthesis (feather follicles and red cone photoreceptors), and genetic evidence implicates these enzymes in yellow/red color variation in feathers. In fish, the homologs of CYP2J19 and BDH1L are required for ketocarotenoid production, and we show that these enzymes are sufficient to produce ketocarotenoids in cell culture and when ectopically expressed in fish skin. Finally, we demonstrate that the red-cone-enriched tetratricopeptide repeat protein 39B (TTC39B) enhances ketocarotenoid production when co-expressed with CYP2J19 and BDH1L. The discovery of this mechanism of ketocarotenoid biosynthesis has major implications for understanding the evolution of color diversity in vertebrates.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA.
| | - Cristiana I Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro M Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Coimbra, Portugal
| | - Delai Huang
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Siqiong Zhong
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Yu Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gretchen D Schreiner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Małgorzata A Gazda
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal
| | - Ricardo J Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; MHNC-UP, Natural History and Science Museum of the University of Porto, Porto, Portugal
| | - Ivan Viegas
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Rebecca E Koch
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Maureen E Haynes
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Dustin J Smith
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel E Kopec
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - David M Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
27
|
Alonso-Alvarez C, Andrade P, Cantarero A, Morales J, Carneiro M. Relocation to avoid costs: A hypothesis on red carotenoid-based signals based on recent CYP2J19 gene expression data. Bioessays 2022; 44:e2200037. [PMID: 36209392 DOI: 10.1002/bies.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
In many vertebrates, the enzymatic oxidation of dietary yellow carotenoids generates red keto-carotenoids giving color to ornaments. The oxidase CYP2J19 is here a key effector. Its purported intracellular location suggests a shared biochemical pathway between trait expression and cell functioning. This might guarantee the reliability of red colorations as individual quality signals independent of production costs. We hypothesize that the ornament type (feathers vs. bare parts) and production costs (probably CYP2J19 activity compromising vital functions) could have promoted tissue-specific gene relocation. We review current avian tissue-specific CYP2J19 expression data. Among the ten red-billed species showing CYP2J19 bill expression, only one showed strong hepatic expression. Moreover, a phylogenetically-controlled analysis of 25 red-colored species shows that those producing red bare parts are less likely to have strong hepatic CYP2J19 expression than species with only red plumages. Thus, both production costs and shared pathways might have contributed to the evolution of red signals.
Collapse
Affiliation(s)
- Carlos Alonso-Alvarez
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alejandro Cantarero
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain.,Department of Physiology, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Judith Morales
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
28
|
Testosterone, estradiol, and immune response in women. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2022. [DOI: 10.1007/s40750-022-00201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Marton A, Vágási CI, Vincze O, Bókony V, Pap PL, Pătraș L, Pénzes J, Bărbos L, Fülöp A, Osváth G, Ducatez S, Giraudeau M. Oxidative physiology is weakly associated with pigmentation in birds. Ecol Evol 2022; 12:e9177. [PMID: 35979521 PMCID: PMC9366753 DOI: 10.1002/ece3.9177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanistic link between avian oxidative physiology and plumage coloration has attracted considerable attention in past decades. Hence, multiple proximal hypotheses were proposed to explain how oxidative state might covary with the production of melanin and carotenoid pigments. Some hypotheses underscore that these pigments (or their precursors, e.g., glutathione) have antioxidant capacities or function as molecules storing the toxic excess of intracellular compounds, while others highlight that these pigments can act as pro-oxidants under specific conditions. Most studies addressing these associations are at the intraspecific level, while phylogenetic comparative studies are still scarce, though needed to assess the generality of these associations. Here, we tested whether plumage and bare part coloration were related to oxidative physiology at an interspecific level by measuring five oxidative physiology markers (three nonenzymatic antioxidants and two markers of lipid peroxidative damage) in 1387 individuals of 104 European bird species sampled during the breeding season, and by scoring plumage eumelanin, pheomelanin, and carotenoid content for each sex and species. Only the plasma level of reactive oxygen metabolites was related to melanin coloration, being positively associated with eumelanin score and negatively with pheomelanin score. Thus, our results do not support the role of antioxidant glutathione in driving variation in melanin synthesis across species. Furthermore, the carotenoid scores of feathers and bare parts were unrelated to the measured oxidative physiology parameters, further suggesting that the marked differences in pigmentation across birds does not influence their oxidative state.
Collapse
Affiliation(s)
- Attila Marton
- Evolutionary Ecology Group, Hungarian Department of Biology and EcologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
- Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Csongor I. Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and EcologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | - Orsolya Vincze
- Evolutionary Ecology Group, Hungarian Department of Biology and EcologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
- Institute of Aquatic EcologyCentre for Ecological ResearchDebrecenHungary
| | - Veronika Bókony
- Lendület Evolutionary Ecology Research GroupPlant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research NetworkBudapestHungary
| | - Péter L. Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and EcologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | - Laura Pătraș
- Department of Molecular Biology and BiotechnologyBabeş‐Bolyai UniversityCluj‐NapocaRomania
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and EcologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | - Lőrinc Bărbos
- Milvus Group Bird and Nature Protection AssociationTârgu MureșRomania
| | - Attila Fülöp
- Evolutionary Ecology Group, Hungarian Department of Biology and EcologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
- MTA‐DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Gergely Osváth
- Evolutionary Ecology Group, Hungarian Department of Biology and EcologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
- Museum of ZoologyBabeş‐Bolyai UniversityCluj‐NapocaRomania
| | - Simon Ducatez
- Institut de Recherche pour le Développement (IRD) – UMR 241 EIO (UPF, IRD, Ifremer, ILM)TahitiFrench Polynesia
| | - Mathieu Giraudeau
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS – La Rochelle UniversitéLa RochelleFrance
| |
Collapse
|
30
|
Powers MJ, Baty JA, Dinga AM, Mao JH, Hill GE. Chemical manipulation of mitochondrial function affects metabolism of red carotenoids in a marine copepod (Tigriopus californicus). J Exp Biol 2022; 225:275691. [PMID: 35695335 DOI: 10.1242/jeb.244230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 01/25/2023]
Abstract
The shared-pathway hypothesis offers a cellular explanation for the connection between ketocarotenoid pigmentation and individual quality. Under this hypothesis, ketocarotenoid metabolism shares cellular pathways with mitochondrial oxidative phosphorylation such that red carotenoid-based coloration is inextricably linked mitochondrial function. To test this hypothesis, we exposed Tigriopus californicus copepods to a mitochondrially targeted protonophore, 2,4-dinitrophenol (DNP), to induce proton leak in the inner mitochondrial membranes. We then measured whole-animal metabolic rate and ketocarotenoid accumulation. As observed in prior studies of vertebrates, we observed that DNP treatment of copepods significantly increased respiration and that DNP-treated copepods accumulated more ketocarotenoid than control animals. Moreover, we observed a relationship between ketocarotenoid concentration and metabolic rate, and this association was strongest in DNP-treated copepods. These data support the hypothesis that ketocarotenoid and mitochondrial metabolism are biochemically intertwined. Moreover, these results corroborate observations in vertebrates, perhaps suggesting a fundamental connection between ketocarotenoid pigmentation and mitochondrial function that should be explored further.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - James A Baty
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Alexis M Dinga
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - James H Mao
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
31
|
Khan MK, Herberstein ME. Parasite‐mediated sexual selection in a damselfly. Ethology 2022. [DOI: 10.1111/eth.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Md Kawsar Khan
- School of Natural Sciences Macquarie University Macquarie Park New South Wales Australia
- Department of Biochemistry and Molecular Biology Shahjalal University of Science and Technology Sylhet Bangladesh
| | - Marie E. Herberstein
- School of Natural Sciences Macquarie University Macquarie Park New South Wales Australia
| |
Collapse
|
32
|
Alonso-Alvarez C, Fernández-Eslava B, Alonso D, Galicia D, Arizaga J. Bigger or long-winged male common crossbills exhibit redder carotenoid-based plumage coloration. Curr Zool 2022; 69:165-172. [PMID: 37091992 PMCID: PMC10120982 DOI: 10.1093/cz/zoac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/05/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Carotenoid-based ornaments are often considered reliable (honest) individual condition signals because their expression implies physiological costs unaffordable for low-quality animals (handicap signals). Recently, it has been suggested that efficient cell respiration is mandatory for producing red ketocarotenoids from dietary yellow carotenoids. This implies that red colorations should be entirely unfalsifiable and independent of expression costs (index signals). In a precedent study, male common crossbills Loxia curvirostra showing a red plumage reported higher apparent survival than those showing yellowish-orange colors. The plumage redness in this species is due to ketocarotenoid accumulation in feathers. Here, we correlated the male plumage redness (a four-level visual score: yellow, patchy, orange and red) and the body morphology in more than 1000 adult crossbills captured in three Iberian localities to infer the mechanisms responsible for color evolution. A principal component analysis summarized morphometry of ten variables (beak, wing, tarsus length, etc.). The overall body size (PC1) and the length of flight feathers regarding body size (PC3) showed significant positive relationships with plumage redness. Plumage redness was barely correlated to bill shape measures suggesting no constraint in acquiring carotenoids from pine cones. However, large body sizes or proportionally long flying feathers could help carotenoid acquisition via social competition or increased foraging ranges. Proportionally longer flight feathers might also be associated with a specific cell respiration profile that would simultaneously favor flying capacities and enzymatic transformations needed for ketocarotenoid synthesis. Such a phenotypic profile would agree with the hypothesis of ketocarotenoid-based colors acting as individual quality index signals.
Collapse
Affiliation(s)
- Carlos Alonso-Alvarez
- Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Edificio Pinar, Spain
| | - Blanca Fernández-Eslava
- Ecología Evolutiva,Universidad de Navarra. Facultad de Ciencias, C/ Irunlarrea, Pamplona, Navarra, Spain
| | - Daniel Alonso
- Ornitología,Sociedad de Ciencias de Aranzadi, Zorroagagaina, Donostia, San Sebastián, Spain
| | - David Galicia
- Biología Ambiental, Universidad de Navarra, Facultad de Ciencias, C/ Irunlarrea, Pamplona, Navarra, Spain
| | - Juan Arizaga
- Ornitología, Sociedad de Ciencias de Aranzadi, Zorroagagaina, Donostia, San Sebastián, Spain
| |
Collapse
|
33
|
Abstract
Natural habitats are increasingly affected by anthropogenically driven environmental changes resulting from habitat destruction, chemical and light pollution, and climate change. Organisms inhabiting such habitats are faced with novel disturbances that can alter their modes of signaling. Coloration is one such sensory modality whose production, perception and function is being affected by human-induced disturbances. Animals that acquire pigment derivatives through diet are adversely impacted by the introduction of chemical pollutants into their environments as well as by general loss of natural habitat due to urbanization or logging leading to declines in pigment sources. Those species that do manage to produce color-based signals and displays may face disruptions to their signaling medium in the form of light pollution and turbidity. Furthermore, forest fragmentation and the resulting breaks in canopy cover can expose animals to predation due to the influx of light into previously dark environments. Global climate warming has been decreasing snow cover in arctic regions, causing birds and mammals that undergo seasonal molts to appear conspicuous against a snowless background. Ectotherms that rely on color for thermoregulation are under pressure to change their appearances. Rapid changes in habitat type through severe fire events or coral bleaching also challenge animals to match their backgrounds. Through this review, we aim to describe the wide-ranging impacts of anthropogenic environmental changes on visual ecology and suggest directions for the use of coloration both as an indicator of ecological change and as a tool for conservation.
Collapse
|
34
|
|
35
|
Morales-Mata JI, Potti J, Camacho C, Martínez-Padilla J, Canal D. Phenotypic selection on an ornamental trait is not modulated by breeding density in a pied flycatcher population. J Evol Biol 2022; 35:610-620. [PMID: 35293060 PMCID: PMC9311403 DOI: 10.1111/jeb.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Most studies of phenotypic selection in the wild have focussed on morphological and life‐history traits and looked at abiotic (climatic) variation as the main driver of selection. Consequently, our knowledge of the effects of biotic environmental variation on phenotypic selection on sexual traits is scarce. Population density can be considered a proxy for the intensity of intrasexual and intersexual competition and could therefore be a key factor influencing the covariation between individual fitness and the expression of sexual traits. Here, we used an individual‐based data set from a population of pied flycatchers (Ficedula hypoleuca) monitored over 24 years to analyze the effect of breeding density on phenotypic selection on dorsal plumage colouration, a heritable and sexually selected ornament in males of this species. Using the number of recruits as a fitness proxy, our results showed overall stabilizing selection on male dorsal colouration, with intermediate phenotypes being favoured over extremely dark and dull individuals. However, our results did not support the hypothesis that breeding density mediates phenotypic selection on this sexual trait. We discuss the possible role of other biotic factors influencing selection on ornamental plumage.
Collapse
Affiliation(s)
| | - Jaime Potti
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Carlos Camacho
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - Jesús Martínez-Padilla
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - David Canal
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| |
Collapse
|
36
|
Masó G, Vicente‐Sastre D, Fitze P. Intrinsic climatic predictability affects ornamental coloration of adult males: evidence for compensation among carotenoid‐ and melanin‐based coloration. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- G. Masó
- Department of Biodiversity and Ecologic Restoration Instituto Pirenaico de Ecología (IPE‐CSIC) Avda. Nuestra Señora de la Victoria 16 22700 Jaca Spain
- GRECO Institute of Aquatic Ecology University of Girona 17003 Girona Spain
- Faculty of Sciences and Technology (FCT) University of Vic – Central University of Catalonia (UVic‐UCC) C. de la Laura, 13 08500 Vic Spain
| | - D. Vicente‐Sastre
- Departament de Biologia Evolutiva Ecologia i Ciències Ambientals Universitat de Barcelona Av. Diagonal 643 08028 Barcelona Spain
| | - P.S. Fitze
- Department of Biodiversity and Ecologic Restoration Instituto Pirenaico de Ecología (IPE‐CSIC) Avda. Nuestra Señora de la Victoria 16 22700 Jaca Spain
- Department of Biodiversity and Evolutionary Biology Museo Nacional de Ciencias Naturales (MNCN‐CSIC) C/José Gutiérrez Abascal 2 28006 Madrid Spain
| |
Collapse
|
37
|
Do male panther chameleons use different aspects of color change to settle disputes? Naturwissenschaften 2022; 109:13. [DOI: 10.1007/s00114-022-01784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
38
|
Toomey MB, Smith DJ, Gonzales DM, McGraw KJ. Methods for extracting and analyzing carotenoids from bird feathers. Methods Enzymol 2022; 670:459-497. [DOI: 10.1016/bs.mie.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
|
40
|
|
41
|
Beltrão P, Marques CI, Cardoso GC, Gomes ACR. Plumage colour saturation predicts long-term, cross-seasonal social dominance in a mutually ornamented bird. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Genetic basis of orange spot formation in the guppy (Poecilia reticulata). BMC Ecol Evol 2021; 21:211. [PMID: 34823475 PMCID: PMC8613973 DOI: 10.1186/s12862-021-01942-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background To understand the evolutionary significance of female mate choice for colorful male ornamentation, the underlying regulatory mechanisms of such ornamentation must be understood for examining how the ornaments are associated with “male qualities” that increase the fitness or sexual attractiveness of offspring. In the guppy (Poecilia reticulata), an established model system for research on sexual selection, females prefer males possessing larger and more highly saturated orange spots as potential mates. Although previous studies have identified some chromosome regions and genes associated with orange spot formation, the regulation and involvement of these genetic elements in orange spot formation have not been elucidated. In this study, the expression patterns of genes specific to orange spots and certain color developmental stages were investigated using RNA-seq to reveal the genetic basis of orange spot formation. Results Comparing the gene expression levels of male guppy skin with orange spots (orange skin) with those without any color spots (dull skin) from the same individuals identified 1102 differentially expressed genes (DEGs), including 630 upregulated genes and 472 downregulated genes in the orange skin. Additionally, the gene expression levels of the whole trunk skin were compared among the three developmental stages and 2247 genes were identified as DEGs according to color development. These analyses indicated that secondary differentiation of xanthophores may affect orange spot formation. Conclusions The results suggested that orange spots might be formed by secondary differentiation, rather than de novo generation, of xanthophores, which is induced by Csf1 and thyroid hormone signaling pathways. Furthermore, we suggested candidate genes associated with the areas and saturation levels of orange spots, which are both believed to be important for female mate choice and independently regulated. This study provides insights into the genetic and cellular regulatory mechanisms underlying orange spot formation, which would help to elucidate how these processes are evolutionarily maintained as ornamental traits relevant to sexual selection. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01942-2.
Collapse
|
43
|
Powers MJ, Martz LD, Burton RS, Hill GE, Weaver RJ. Evidence for hybrid breakdown in production of red carotenoids in the marine invertebrate Tigriopus californicus. PLoS One 2021; 16:e0259371. [PMID: 34748608 PMCID: PMC8575244 DOI: 10.1371/journal.pone.0259371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
The marine copepod, Tigriopus californicus, produces the red carotenoid pigment astaxanthin from yellow dietary precursors. This ‘bioconversion’ of yellow carotenoids to red is hypothesized to be linked to individual condition, possibly through shared metabolic pathways with mitochondrial oxidative phosphorylation. Experimental inter-population crosses of lab-reared T. californicus typically produces low-fitness hybrids is due in large part to the disruption of coadapted sets nuclear and mitochondrial genes within the parental populations. These hybrid incompatibilities can increase variability in life history traits and energy production among hybrid lines. Here, we tested if production of astaxanthin was compromised in hybrid copepods and if it was linked to mitochondrial metabolism and offspring development. We observed no clear mitonuclear dysfunction in hybrids fed a limited, carotenoid-deficient diet of nutritional yeast. However, when yellow carotenoids were restored to their diet, hybrid lines produced less astaxanthin than parental lines. We observed that lines fed a yeast diet produced less ATP and had slower offspring development compared to lines fed a more complete diet of algae, suggesting the yeast-only diet may have obscured effects of mitonuclear dysfunction. Astaxanthin production was not significantly associated with development among lines fed a yeast diet but was negatively related to development in early generation hybrids fed an algal diet. In lines fed yeast, astaxanthin was negatively related to ATP synthesis, but in lines fed algae, the relationship was reversed. Although the effects of the yeast diet may have obscured evidence of hybrid dysfunction, these results suggest that astaxanthin bioconversion may still be related to mitochondrial performance and reproductive success.
Collapse
Affiliation(s)
- Matthew J. Powers
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
- * E-mail: (MJP); (LDM)
| | - Lucas D. Martz
- University of California, Scripps Institution of Oceanography, San Diego, CA, United States of America
- * E-mail: (MJP); (LDM)
| | - Ronald S. Burton
- University of California, Scripps Institution of Oceanography, San Diego, CA, United States of America
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
| | - Ryan J. Weaver
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
44
|
Locke A, Arnocky S. Breast symmetry, but not size or volume, predicts salivary immunoglobulin-A (sIgA) in women. EVOL HUM BEHAV 2021. [DOI: 10.1016/j.evolhumbehav.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Zhang YH, Zhao L, Fu SH, Wang ZS, Zhang JX. Male pheromones and their reception by females are co-adapted to affect mating success in two subspecies of brown rats. Curr Zool 2021; 67:371-382. [PMID: 34671704 PMCID: PMC8521721 DOI: 10.1093/cz/zoaa066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/12/2020] [Indexed: 12/03/2022] Open
Abstract
Pheromonal communication plays a key role in the sociosexual behavior of rodents. The coadaptation between pheromones and chemosensory systems has been well illustrated in insects but poorly investigated in rodents and other mammals. We aimed to investigate whether coadaptation between male pheromones and female reception might have occurred in brown rats Rattus norvegicus. We recently reported that major urinary protein (MUP) pheromones are associated with male mating success in a brown rat subspecies, R. n. humiliatus (Rnh). Here, we discovered that MUPs were less polymorphic and occurred at much lower concentrations in males of a parapatric subspecies, R. n. caraco (Rnc), than in Rnh males, and found no association between pheromones and paternity success. Moreover, the observation of Rnc males that experienced chronic dyadic encounters and established dominance–submission relationships revealed that the dominant males achieved greater mating success than the subordinate males, but their MUP levels did not differ by social status. These findings suggest that male mating success in Rnc rats is related to social rank rather than to pheromone levels and that low concentration of MUPs might not be a reliable signal for mate choice in Rnc rats, which is different from the findings obtained in Rnh rats. In addition, compared with Rnh females, Rnc females exhibited reduced expression of pheromone receptor genes, and a lower number of vomeronasal receptor neurons were activated by MUP pheromones, which imply that the female chemosensory reception of pheromones might be structurally and functionally coadapted with male pheromone signals in brown rats.
Collapse
Affiliation(s)
- Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Hui Fu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, Hebei University, Hebei Province, Baoding 071002, China
| | - Zhen-Shan Wang
- College of Life Science, Hebei University, Hebei Province, Baoding 071002, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
White TE, Locke A, Latty T. Heightened condition dependent expression of structural coloration in the faces, but not wings, of male and female flies. Curr Zool 2021; 68:600-607. [PMID: 36324536 PMCID: PMC9616059 DOI: 10.1093/cz/zoab087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Structurally colored sexual signals are a conspicuous and widespread class of ornament used in mate choice, though the extent to which they encode information on the quality of their bearers is not fully resolved. Theory predicts that signaling traits under strong sexual selection as honest indicators should evolve to be more developmentally integrated and exaggerated than nonsexual traits, thereby leading to heightened condition dependence. Here, we test this prediction through examination of the sexually dimorphic faces and wings of the cursorial fly Lispe cana. Males and females possess structural UV-white and golden faces, respectively, and males present their faces and wings to females during close-range, ground-based courtship displays, thereby creating the opportunity for mutual inspection. Across a field-collected sample of individuals, we found that the appearance of the faces of both sexes scaled positively with individual condition, though along separate axes. Males in better condition expressed brighter faces as modeled according to conspecific flies, whereas condition scaled with facial saturation in females. We found no such relationships for their wing interference pattern nor abdomens, with the latter included as a nonsexual control. Our results suggest that the structurally colored faces, but not the iridescent wings, of male and female L. cana are reliable guides to individual quality and support the broader potential for structural colors as honest signals. They also highlight the potential for mutual mate choice in this system, while arguing for 1 of several alternate signaling roles for wing interferences patterns among the myriad taxa which bear them.
Collapse
Affiliation(s)
- Thomas E White
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2106, Australia
| | - Amy Locke
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2106, Australia
| | - Tanya Latty
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2106, Australia
| |
Collapse
|
47
|
Fernández-Eslava B, Alonso D, Alonso-Alvarez C. An age-related decline in the expression of a red carotenoid-based ornament in wild birds. Evolution 2021; 75:3142-3153. [PMID: 34643274 DOI: 10.1111/evo.14378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 01/02/2023]
Abstract
The past decades have provided valuable information on how animals age in the wild. However, examples of male reproductive senescence are scarce. In particular, few studies have described an age-related decline in the expression of conspicuous traits influencing mating success. Red ornaments could be good candidates to detect this decline because their expression may depend on the availability of pigments (carotenoids) related to oxidative stress, the latter frequently linked to senescence. Furthermore, it has been argued that efficient mitochondrial metabolism is key to express red carotenoid-based ornaments, and mitochondrial dysfunction is usually associated with senescence. We studied the age-linked expression of a red carotenoid-based trait: the yellow-to-red plumage coloration of male common crossbills (Loxia curvirostra). This coloration has recently been experimentally related to mitochondrial function. Here, we analyzed longitudinal plumage coloration data obtained throughout 28 years in free-living birds. We detected an initial increase in redness during the first 2 years of life and a subsequent decline. The relationship between color and age was unrelated to within-individual body mass variability. As far as we know, this is the first demonstration of an age-related ketocarotenoid-based color decrease detected by simultaneously testing within- and between-individual variability in wild animals.
Collapse
Affiliation(s)
- B Fernández-Eslava
- Department of Environmental Biology, Universidad de Navarra, Pamplona, Spain
| | - D Alonso
- Department of Ornithology, Aranzadi Sciences Society, Donostia-S. Sebastián, Spain
| | - C Alonso-Alvarez
- Department of Evolutionary Ecology, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
48
|
Oxidative stress and the differential expression of traits associated with mating effort in humans. EVOL HUM BEHAV 2021. [DOI: 10.1016/j.evolhumbehav.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Huang D, Lewis VM, Foster TN, Toomey MB, Corbo JC, Parichy DM. Development and genetics of red coloration in the zebrafish relative Danio albolineatus. eLife 2021; 10:70253. [PMID: 34435950 PMCID: PMC8416024 DOI: 10.7554/elife.70253] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step toward defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.
Collapse
Affiliation(s)
- Delai Huang
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Victor M Lewis
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Tarah N Foster
- Department of Biological Science, University of Tulsa, Tulsa, United States
| | - Matthew B Toomey
- Department of Biological Science, University of Tulsa, Tulsa, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, United States.,Department of Cell Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
50
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|