1
|
Boussard A, Ahlkvist M, Corral-López A, Fong S, Fitzpatrick J, Kolm N. Relative telencephalon size does not affect collective motion in the guppy ( Poecilia reticulata). Behav Ecol 2024; 35:arae033. [PMID: 38779596 PMCID: PMC11110457 DOI: 10.1093/beheco/arae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Collective motion is common across all animal taxa, from swarming insects to schools of fish. The collective motion requires intricate behavioral integration among individuals, yet little is known about how evolutionary changes in brain morphology influence the ability for individuals to coordinate behavior in groups. In this study, we utilized guppies that were selectively bred for relative telencephalon size, an aspect of brain morphology that is normally associated with advanced cognitive functions, to examine its role in collective motion using an open-field assay. We analyzed high-resolution tracking data of same-sex shoals consisting of 8 individuals to assess different aspects of collective motion, such as alignment, attraction to nearby shoal members, and swimming speed. Our findings indicate that variation in collective motion in guppy shoals might not be strongly affected by variation in relative telencephalon size. Our study suggests that group dynamics in collectively moving animals are likely not driven by advanced cognitive functions but rather by fundamental cognitive processes stemming from relatively simple rules among neighboring individuals.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Mikaela Ahlkvist
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Alberto Corral-López
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - John Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Corral-Lopez A, Bloch NI, van der Bijl W, Cortazar-Chinarro M, Szorkovszky A, Kotrschal A, Darolti I, Buechel SD, Romenskyy M, Kolm N, Mank JE. Functional convergence of genomic and transcriptomic architecture underlies schooling behaviour in a live-bearing fish. Nat Ecol Evol 2024; 8:98-110. [PMID: 37985898 PMCID: PMC10781616 DOI: 10.1038/s41559-023-02249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
The organization and coordination of fish schools provide a valuable model to investigate the genetic architecture of affiliative behaviours and dissect the mechanisms underlying social behaviours and personalities. Here we used replicate guppy selection lines that vary in schooling propensity and combine quantitative genetics with genomic and transcriptomic analyses to investigate the genetic basis of sociability phenotypes. We show that consistent with findings in collective motion patterns, experimental evolution of schooling propensity increased the sociability of female, but not male, guppies when swimming with unfamiliar conspecifics. This finding highlights a relevant link between coordinated motion and sociability for species forming fission-fusion societies in which both group size and the type of social interactions are dynamic across space and time. We further show that alignment and attraction, the two major traits forming the sociability personality axis in this species, showed heritability estimates at the upper end of the range previously described for social behaviours, with important variation across sexes. The results from both Pool-seq and RNA-seq data indicated that genes involved in neuron migration and synaptic function were instrumental in the evolution of sociability, highlighting a crucial role of glutamatergic synaptic function and calcium-dependent signalling processes in the evolution of schooling.
Collapse
Affiliation(s)
- Alberto Corral-Lopez
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.
- Division of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Natasha I Bloch
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria Cortazar-Chinarro
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- MEMEG Department of Biology, Lund University, Lund, Sweden
| | - Alexander Szorkovszky
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Alexander Kotrschal
- Behavioural Ecology, Wageningen University and Research, Wageningen, the Netherlands
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Severine D Buechel
- Behavioural Ecology, Wageningen University and Research, Wageningen, the Netherlands
| | - Maksym Romenskyy
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Corral-Lopez A, Kotrschal A, Szorkovszky A, Garate-Olaizola M, Herbert-Read J, van der Bijl W, Romenskyy M, Zeng HL, Buechel SD, Fontrodona-Eslava A, Pelckmans K, Mank JE, Kolm N. Evolution of schooling drives changes in neuroanatomy and motion characteristics across predation contexts in guppies. Nat Commun 2023; 14:6027. [PMID: 37758730 PMCID: PMC10533906 DOI: 10.1038/s41467-023-41635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
One of the most spectacular displays of social behavior is the synchronized movements that many animal groups perform to travel, forage and escape from predators. However, elucidating the neural mechanisms underlying the evolution of collective behaviors, as well as their fitness effects, remains challenging. Here, we study collective motion patterns with and without predation threat and predator inspection behavior in guppies experimentally selected for divergence in polarization, an important ecological driver of coordinated movement in fish. We find that groups from artificially selected lines remain more polarized than control groups in the presence of a threat. Neuroanatomical measurements of polarization-selected individuals indicate changes in brain regions previously suggested to be important regulators of perception, fear and attention, and motor response. Additional visual acuity and temporal resolution tests performed in polarization-selected and control individuals indicate that observed differences in predator inspection and schooling behavior should not be attributable to changes in visual perception, but rather are more likely the result of the more efficient relay of sensory input in the brain of polarization-selected fish. Our findings highlight that brain morphology may play a fundamental role in the evolution of coordinated movement and anti-predator behavior.
Collapse
Affiliation(s)
- Alberto Corral-Lopez
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.
- Division of Biosciences, University College London, London, UK.
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Behavioural Ecology, Wageningen University & Research, Wageningen, Netherlands
| | - Alexander Szorkovszky
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Maddi Garate-Olaizola
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - James Herbert-Read
- Department of Zoology, University of Cambridge, Cambridge, UK
- Aquatic Ecology, Lund University, Lund, Sweden
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Maksym Romenskyy
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Department of Life Sciences, Imperial College London, London, UK
| | - Hong-Li Zeng
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Severine Denise Buechel
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Behavioural Ecology, Wageningen University & Research, Wageningen, Netherlands
| | - Ada Fontrodona-Eslava
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | | | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Gyllingberg L, Birhane A, Sumpter DJT. The lost art of mathematical modelling. Math Biosci 2023:109033. [PMID: 37257641 DOI: 10.1016/j.mbs.2023.109033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
We provide a critique of mathematical biology in light of rapid developments in modern machine learning. We argue that out of the three modelling activities - (1) formulating models; (2) analysing models; and (3) fitting or comparing models to data - inherent to mathematical biology, researchers currently focus too much on activity (2) at the cost of (1). This trend, we propose, can be reversed by realising that any given biological phenomenon can be modelled in an infinite number of different ways, through the adoption of an pluralistic approach, where we view a system from multiple, different points of view. We explain this pluralistic approach using fish locomotion as a case study and illustrate some of the pitfalls - universalism, creating models of models, etc. - that hinder mathematical biology. We then ask how we might rediscover a lost art: that of creative mathematical modelling.
Collapse
Affiliation(s)
| | - Abeba Birhane
- Mozilla Foundation, 2 Harrison Street, Suite 175, San Francisco, CA 94105, USA
| | - David J T Sumpter
- Department of Information Technology, Uppsala University, Box 337, Uppsala, SE-751 05, Sweden.
| |
Collapse
|
5
|
Johnson-Ulrich L, Demartsev V, Johnson L, Brown E, Strandburg-Peshkin A, Manser MB. Directional speakers as a tool for animal vocal communication studies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230489. [PMID: 37234494 PMCID: PMC10206473 DOI: 10.1098/rsos.230489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Audio playbacks are a common experimental tool in vocal communication research. However, low directionality of sound makes it hard to control the audience exposed to the stimuli. Parametric speakers offer a solution for transmitting directional audible signals by using ultrasonic carrier waves. The targeted transmission of vocal signals offers exciting opportunities for testing the diffusion of information in animal groups and mechanisms for resolving informational ambiguities. We have field tested the quality and directionality of a commercial parametric speaker, Soundlazer SL-01. Additionally, we assessed its usability for performing playback experiments by comparing behavioural responses of free-ranging meerkats (Suricata suricatta) with calls transmitted from conventional and parametric speakers. Our results show that the tested parametric speaker is highly directional. However, the acoustic structure of meerkat calls was strongly affected and low frequencies were not reliably reproduced by the parametric speaker. The playback trials elicited weakened behavioural responses probably due to the partial distortion of the signal but also indicating the potential importance of social facilitation for initiating mobbing events in meerkats. We conclude that parametric speakers can be useful tools for directed transmission of animals calls but after a careful assessment of signal fidelity.
Collapse
Affiliation(s)
- Lily Johnson-Ulrich
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
- Kalahari Research Centre, Van Zylsrus, 8467 Northern Cape, South Africa
| | - Vlad Demartsev
- Kalahari Research Centre, Van Zylsrus, 8467 Northern Cape, South Africa
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz 78467, Germany
| | - Laurie Johnson
- Kalahari Research Centre, Van Zylsrus, 8467 Northern Cape, South Africa
| | - Emma Brown
- Kalahari Research Centre, Van Zylsrus, 8467 Northern Cape, South Africa
| | - Ariana Strandburg-Peshkin
- Kalahari Research Centre, Van Zylsrus, 8467 Northern Cape, South Africa
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz 78467, Germany
| | - Marta B. Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
- Interdisciplinary Center for the Evolution of Language, University of Zurich, Zurich 8057, Switzerland
- Kalahari Research Centre, Van Zylsrus, 8467 Northern Cape, South Africa
| |
Collapse
|
6
|
Messenger DA, Wheeler GE, Liu X, Bortz DM. Learning anisotropic interaction rules from individual trajectories in a heterogeneous cellular population. J R Soc Interface 2022; 19:20220412. [PMCID: PMC9554727 DOI: 10.1098/rsif.2022.0412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interacting particle system (IPS) models have proven to be highly successful for describing the spatial movement of organisms. However, it is challenging to infer the interaction rules directly from data. In the field of equation discovery, the weak-form sparse identification of nonlinear dynamics (WSINDy) methodology has been shown to be computationally efficient for identifying the governing equations of complex systems from noisy data. Motivated by the success of IPS models to describe the spatial movement of organisms, we develop WSINDy for the second-order IPS to learn equations for communities of cells. Our approach learns the directional interaction rules for each individual cell that in aggregate govern the dynamics of a heterogeneous population of migrating cells. To sort a cell according to the active classes present in its model, we also develop a novel ad hoc classification scheme (which accounts for the fact that some cells do not have enough evidence to accurately infer a model). Aggregated models are then constructed hierarchically to simultaneously identify different species of cells present in the population and determine best-fit models for each species. We demonstrate the efficiency and proficiency of the method on several test scenarios, motivated by common cell migration experiments.
Collapse
Affiliation(s)
- Daniel A. Messenger
- Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA
| | - Graycen E. Wheeler
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0526, USA
| | - Xuedong Liu
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0526, USA
| | - David M. Bortz
- Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA
| |
Collapse
|
7
|
Xie C, Liu Y, Luo H, Jing G. Activity-Induced Enhancement of Superdiffusive Transport in Bacterial Turbulence. MICROMACHINES 2022; 13:746. [PMID: 35630213 PMCID: PMC9145994 DOI: 10.3390/mi13050746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
Superdiffusion processes significantly promote the transport of tiny passive particles within biological fluids. Activity, one of the essential measures for living matter, however, is less examined in terms of how and to what extent it can improve the diffusivity of the moving particles. Here, bacterial suspensions are confined within the microfluidic channel at the state of bacterial turbulence, and are tuned to different activity levels by oxygen consumption in control. Systematic measurements are conducted to determine the superdiffusion exponent, which characterizes the diffusivity strength of tracer particles, depending on the continuously injecting energy converted to motile activity from swimming individuals. Higher activity is quantified to drastically enhance the superdiffusion process of passive tracers in the short-time regime. Moreover, the number density of the swimming bacteria is controlled to contribute to the field activity, and then to strengthen the super-diffusivity of tracers, distinguished by regimes with and without collective motion of interacting bacteria. Finally, the non-slip surfaces of the microfluidic channel lower the superdiffusion of immersed tracers due to the resistance, with the small diffusivity differing from the counterpart in the bulk. The findings here suggest ways of controlled diffusion and transport of substances within the living system with different levels of nutrition and resources and boundary walls, leading to efficient mixing, drug delivery and intracellular communications.
Collapse
Affiliation(s)
| | - Yanan Liu
- School of Physics, Northwest University, Xi’an 710127, China; (C.X.); (H.L.)
| | | | - Guangyin Jing
- School of Physics, Northwest University, Xi’an 710127, China; (C.X.); (H.L.)
| |
Collapse
|
8
|
Burford BP, Williams RR, Demetras NJ, Carey N, Goldbogen J, Gilly WF, Harding J, Denny MW. The limits of convergence in the collective behavior of competing marine taxa. Ecol Evol 2022; 12:e8747. [PMID: 35356556 PMCID: PMC8939367 DOI: 10.1002/ece3.8747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Collective behaviors in biological systems such as coordinated movements have important ecological and evolutionary consequences. While many studies examine within-species variation in collective behavior, explicit comparisons between functionally similar species from different taxonomic groups are rare. Therefore, a fundamental question remains: how do collective behaviors compare between taxa with morphological and physiological convergence, and how might this relate to functional ecology and niche partitioning? We examined the collective motion of two ecologically similar species from unrelated clades that have competed for pelagic predatory niches for over 500 million years-California market squid, Doryteuthis opalescens (Mollusca) and Pacific sardine, Sardinops sagax (Chordata). We (1) found similarities in how groups of individuals from each species collectively aligned, measured by angular deviation, the difference between individual orientation and average group heading. We also (2) show that conspecific attraction, which we approximated using nearest neighbor distance, was greater in sardine than squid. Finally, we (3) found that individuals of each species explicitly matched the orientation of groupmates, but that these matching responses were less rapid in squid than sardine. Based on these results, we hypothesize that information sharing is a comparably important function of social grouping for both taxa. On the other hand, some capabilities, including hydrodynamically conferred energy savings and defense against predators, could stem from taxon-specific biology.
Collapse
Affiliation(s)
- Benjamin P. Burford
- Hopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
- Institute of Marine Sciences, affiliated with the National Oceanic and Atmospheric AdministrationNational Marine Fisheries ServiceSouthwest Fisheries Science CenterUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | | | - Nicholas J. Demetras
- Institute of Marine Sciences, affiliated with the National Oceanic and Atmospheric AdministrationNational Marine Fisheries ServiceSouthwest Fisheries Science CenterUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Nicholas Carey
- Hopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
- Marine Scotland ScienceAberdeenUK
| | - Jeremy Goldbogen
- Hopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - William F. Gilly
- Hopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Jeffrey Harding
- National Oceanic and Atmospheric AdministrationNational Marine Fisheries ServiceSouthwest Fisheries Science CenterSanta CruzCaliforniaUSA
| | - Mark W. Denny
- Hopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| |
Collapse
|
9
|
Absence of "selfish herd" dynamics in bird flocks under threat. Curr Biol 2021; 31:3192-3198.e7. [PMID: 34089647 DOI: 10.1016/j.cub.2021.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/30/2020] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The "selfish herd" hypothesis1 provides a potential mechanism to explain a ubiquitous phenomenon in nature: that of non-kin aggregations. Individuals in selfish herds are thought to benefit by reducing their own risk at the expense of conspecifics by attracting toward their neighbors' positions1,2 or central locations in the aggregation.3-5 Alternatively, increased alignment with their neighbors' orientation could reduce the chance of predation through information sharing6-8 or collective escape.6 Using both small and large flocks of homing pigeons (Columba livia; n = 8-10 or n = 27-34 individuals) tagged with 5-Hz GPS loggers and a GPS-tagged, remote-controlled model peregrine falcon (Falco peregrinus), we tested whether individuals increase their use of attraction over alignment when under perceived threat. We conducted n = 27 flights in treatment conditions, chased by the robotic "predator," and n = 16 flights in control conditions (not chased). Despite responding strongly to the RobotFalcon-by turning away from its flight direction-individuals in treatment flocks demonstrated no increased attraction compared with control flocks, and this result held across both flock sizes. We suggest that mutualistic alignment is more advantageous than selfish attraction in groups with a high coincidence of individual and collective interests (adaptive hypothesis). However, we also explore alternative explanations, such as high cognitive demand under threat and collision avoidance (mechanistic hypotheses). We conclude that selfish herd may not be an appropriate paradigm for understanding the function of highly synchronous collective motion, as observed in bird flocks and perhaps also fish shoals and highly aligned mammal aggregations, such as moving herds.
Collapse
|
10
|
Vega-Trejo R, Boussard A, Wallander L, Estival E, Buechel SD, Kotrschal A, Kolm N. Artificial selection for schooling behaviour and its effects on associative learning abilities. J Exp Biol 2020; 223:jeb235093. [PMID: 33139392 DOI: 10.1242/jeb.235093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022]
Abstract
The evolution of collective behaviour has been proposed to have important effects on individual cognitive abilities. Yet, in what way they are related remains enigmatic. In this context, the 'distributed cognition' hypothesis suggests that reliance on other group members relaxes selection for individual cognitive abilities. Here, we tested how cognitive processes respond to evolutionary changes in collective motion using replicate lines of guppies (Poecilia reticulata) artificially selected for the degree of schooling behaviour (group polarization) with >15% difference in schooling propensity. We assessed associative learning in females of these selection lines in a series of cognitive assays: colour associative learning, reversal learning, social associative learning, and individual and collective spatial associative learning. We found that control females were faster than polarization-selected females at fulfilling a learning criterion only in the colour associative learning assay, but they were also less likely to reach a learning criterion in the individual spatial associative learning assay. Hence, although testing several cognitive domains, we found weak support for the distributed cognition hypothesis. We propose that any cognitive implications of selection for collective behaviour lie outside of the cognitive abilities included in food-motivated associative learning for visual and spatial cues.
Collapse
Affiliation(s)
- Regina Vega-Trejo
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Lotta Wallander
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Elisa Estival
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Séverine D Buechel
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Alexander Kotrschal
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
- Department of Animal Sciences: Behavioural Ecology, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| |
Collapse
|
11
|
Eikelboom JAJ, de Knegt HJ, Klaver M, van Langevelde F, van der Wal T, Prins HHT. Inferring an animal's environment through biologging: quantifying the environmental influence on animal movement. MOVEMENT ECOLOGY 2020; 8:40. [PMID: 33088572 PMCID: PMC7574229 DOI: 10.1186/s40462-020-00228-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Animals respond to environmental variation by changing their movement in a multifaceted way. Recent advancements in biologging increasingly allow for detailed measurements of the multifaceted nature of movement, from descriptors of animal movement trajectories (e.g., using GPS) to descriptors of body part movements (e.g., using tri-axial accelerometers). Because this multivariate richness of movement data complicates inference on the environmental influence on animal movement, studies generally use simplified movement descriptors in statistical analyses. However, doing so limits the inference on the environmental influence on movement, as this requires that the multivariate richness of movement data can be fully considered in an analysis. METHODS We propose a data-driven analytic framework, based on existing methods, to quantify the environmental influence on animal movement that can accommodate the multifaceted nature of animal movement. Instead of fitting a simplified movement descriptor to a suite of environmental variables, our proposed framework centres on predicting an environmental variable from the full set of multivariate movement data. The measure of fit of this prediction is taken to be the metric that quantifies how much of the environmental variation relates to the multivariate variation in animal movement. We demonstrate the usefulness of this framework through a case study about the influence of grass availability and time since milking on cow movements using machine learning algorithms. RESULTS We show that on a one-hour timescale 37% of the variation in grass availability and 33% of time since milking influenced cow movements. Grass availability mostly influenced the cows' neck movement during grazing, while time since milking mostly influenced the movement through the landscape and the shared variation of accelerometer and GPS data (e.g., activity patterns). Furthermore, this framework proved to be insensitive to spurious correlations between environmental variables in quantifying the influence on animal movement. CONCLUSIONS Not only is our proposed framework well-suited to study the environmental influence on animal movement; we argue that it can also be applied in any field that uses multivariate biologging data, e.g., animal physiology, to study the relationships between animals and their environment. SUPPLEMENTARY INFORMATION Supplementary information accompanies this paper at 10.1186/s40462-020-00228-4.
Collapse
Affiliation(s)
- J. A. J. Eikelboom
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, Netherlands
| | - H. J. de Knegt
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, Netherlands
| | - M. Klaver
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, Netherlands
| | - F. van Langevelde
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, Netherlands
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, 4000 South Africa
| | - T. van der Wal
- Spatial Knowledge Systems, Wageningen Environmental Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, Netherlands
| | - H. H. T. Prins
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, Netherlands
- Department of Animal Sciences, Wageningen University and Research, De Elst 1, 6708 WD Wageningen, Netherlands
| |
Collapse
|
12
|
Jolles JW, Weimar N, Landgraf T, Romanczuk P, Krause J, Bierbach D. Group-level patterns emerge from individual speed as revealed by an extremely social robotic fish. Biol Lett 2020; 16:20200436. [PMID: 32933404 PMCID: PMC7532714 DOI: 10.1098/rsbl.2020.0436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
Understanding the emergence of collective behaviour has long been a key research focus in the natural sciences. Besides the fundamental role of social interaction rules, a combination of theoretical and empirical work indicates individual speed may be a key process that drives the collective behaviour of animal groups. Socially induced changes in speed by interacting animals make it difficult to isolate the effects of individual speed on group-level behaviours. Here, we tackled this issue by pairing guppies with a biomimetic robot. We used a closed-loop tracking and feedback system to let a robotic fish naturally interact with a live partner in real time, and programmed it to strongly copy and follow its partner's movements while lacking any preferred movement speed or directionality of its own. We show that individual differences in guppies' movement speed were highly repeatable and in turn shaped key collective patterns: a higher individual speed resulted in stronger leadership, lower cohesion, higher alignment and better temporal coordination of the pairs. By combining the strengths of individual-based models and observational work with state-of-the-art robotics, we provide novel evidence that individual speed is a key, fundamental process in the emergence of collective behaviour.
Collapse
Affiliation(s)
- Jolle W. Jolles
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Nils Weimar
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Tim Landgraf
- Department of Mathematics and Computer Science, Institute for Computer Science, Freie Universität Berlin, Berlin, Germany
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
| | - Pawel Romanczuk
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Faculty of Life Sciences, Thaer-Institute, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Faculty of Life Sciences, Thaer-Institute, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Faculty of Life Sciences, Thaer-Institute, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Tang JY, Fu SJ. The relationship between personality and the collective motion of schooling fish. J ETHOL 2020. [DOI: 10.1007/s10164-020-00655-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Fu SJ. The effect of personality measurement conditions on spontaneous swimming behavior in the pale chub Zacco platypus (Cyprinidae). PeerJ 2020; 8:e8736. [PMID: 32219026 PMCID: PMC7085894 DOI: 10.7717/peerj.8736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/12/2020] [Indexed: 11/29/2022] Open
Abstract
Studies on personality have revealed that some personality traits are strongly correlated; thus, researchers may be able to acquire data for variables related to different personality traits from one measurement. Therefore, the aim of the present study was to test whether spontaneous movement traits used in fish personality measurements are correlated or vary among different contexts in a common Chinese cyprinid fish, the pale chub (Zacco platypus, Cyprinidae). The median swimming speed, percent time spent moving and median turning rate were measured in a boldness context (with a shelter available), then in an exploration context (with a novel object nearby) and finally in a control context (i.e., with no shelter or novel object). The median swimming speed, percent time spent moving, and median turning rate all showed positive correlations between the control and the other two contexts, which suggests that future studies might use spontaneous swimming variables measured in exploration or boldness contexts to avoid the need to carry out a separate activity test. Further analysis comparing the distance to and latency to explore the novel object between the exploration context (with the novel object present) and control context (with an imaginary object at the same position) showed that the amount of time it took for the fish to first reach the object for exploration was significantly shorter in an exploration context than in a control context. This suggests that latency to explore might be useful as a variable indicating exploration in the pale chub in the future.
Collapse
Affiliation(s)
- Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
15
|
Martin JM, Bertram MG, Saaristo M, Fursdon JB, Hannington SL, Brooks BW, Burket SR, Mole RA, Deal NDS, Wong BBM. Antidepressants in Surface Waters: Fluoxetine Influences Mosquitofish Anxiety-Related Behavior at Environmentally Relevant Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6035-6043. [PMID: 31034220 DOI: 10.1021/acs.est.9b00944] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pharmaceutical contamination is an increasing problem globally. In this regard, the selective serotonin reuptake inhibitors (SSRIs)-a group of antidepressants-are particularly concerning. By disrupting the serotonergic system, SSRIs have the potential to affect ecologically important behaviors in exposed wildlife. Despite this, the nature and magnitude of behavioral perturbations resulting from environmentally relevant SSRI exposure among species is poorly understood. Accordingly, we investigated the effects of two field-realistic levels of the SSRI fluoxetine (61 and 352 ng/L) on sociability and anxiety-related behaviors in eastern mosquitofish ( Gambusia holbrooki) for 28 days. Additionally, we measured whole-body tissue concentrations of fluoxetine and norfluoxetine. We found that fluoxetine altered anxiety-related behavior but not sociability. Specifically, female fish showed reduced anxiety-related behavior at the lower treatment level, while males showed an increase at the higher treatment level. In addition, we report a biomass-dependent and sex-specific accumulation of fluoxetine and norfluoxetine, with smaller fish showing higher relative tissue concentrations, with this relationship being more pronounced in males. Our study provides evidence for nonmonotonic and sex-specific effects of fluoxetine exposure at field-realistic concentrations. More broadly, our study demonstrated that neuroactive pharmaceuticals, such as fluoxetine, can affect aquatic life by causing subtle but important shifts in ecologically relevant behaviors.
Collapse
Affiliation(s)
- Jake M Martin
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Michael G Bertram
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Minna Saaristo
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Jack B Fursdon
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Stephanie L Hannington
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Bryan W Brooks
- Department of Environmental Science , Baylor University , Waco , Texas 76706 , United States
- School of Environment , Jinan University , Guangzhou , 510290 China
| | - S Rebekah Burket
- Department of Environmental Science , Baylor University , Waco , Texas 76706 , United States
| | - Rachel A Mole
- Department of Environmental Science , Baylor University , Waco , Texas 76706 , United States
| | - Nicholas D S Deal
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Bob B M Wong
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| |
Collapse
|
16
|
Collective Motion as an Ultimate Effect in Crowded Selfish Herds. Sci Rep 2019; 9:6618. [PMID: 31036873 PMCID: PMC6488663 DOI: 10.1038/s41598-019-43179-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
The selfish herd hypothesis explains how social prey can assemble cohesive groups for maximising individual fitness. However, previous models often abstracted away the physical manifestation of the focal animals such that the influence of getting stuck in a crowded herd on individual adaptation was less intensively investigated. Here, we propose an evolutionary model to simulate the adaptation of egoistic social prey to predation given that individual mobility is strictly restrained by the presence of other conspecifics. In our simulated evolutionary races, agents were set to either be confined by neighbours or move to empty cells on the lattice, and the behavioural traits of those less exposed were selected and inherited. Our analyses show that under this crowded environment, cohesive and steady herds were consistently replaced by morphing and moving aggregates via the attempt of border agents to share predation risk with the inner members. This kind of collective motion emerges purely from the competition among selfish individuals regardless of any group benefit. Our findings reveal that including the crowding effect with the selfish herd scenario permits additional diversity in the predicted outcomes and imply that a wider set of collective animal behaviours are explainable purely by individual-level selection.
Collapse
|
17
|
Hardesty-Moore M, Deinet S, Freeman R, Titcomb GC, Dillon EM, Stears K, Klope M, Bui A, Orr D, Young HS, Miller-Ter Kuile A, Hughey LF, McCauley DJ. Migration in the Anthropocene: how collective navigation, environmental system and taxonomy shape the vulnerability of migratory species. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0017. [PMID: 29581401 DOI: 10.1098/rstb.2017.0017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 11/12/2022] Open
Abstract
Recent increases in human disturbance pose significant threats to migratory species using collective movement strategies. Key threats to migrants may differ depending on behavioural traits (e.g. collective navigation), taxonomy and the environmental system (i.e. freshwater, marine or terrestrial) associated with migration. We quantitatively assess how collective navigation, taxonomic membership and environmental system impact species' vulnerability by (i) evaluating population change in migratory and non-migratory bird, mammal and fish species using the Living Planet Database (LPD), (ii) analysing the role of collective navigation and environmental system on migrant extinction risk using International Union for Conservation of Nature (IUCN) classifications and (iii) compiling literature on geographical range change of migratory species. Likelihood of population decrease differed by taxonomic group: migratory birds were more likely to experience annual declines than non-migrants, while mammals displayed the opposite pattern. Within migratory species in IUCN, we observed that collective navigation and environmental system were important predictors of extinction risk for fishes and birds, but not for mammals, which had overall higher extinction risk than other taxa. We found high phylogenetic relatedness among collectively navigating species, which could have obscured its importance in determining extinction risk. Overall, outputs from these analyses can help guide strategic interventions to conserve the most vulnerable migrations.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Molly Hardesty-Moore
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Stefanie Deinet
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Robin Freeman
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Georgia C Titcomb
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Erin M Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Keenan Stears
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Maggie Klope
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - An Bui
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Devyn Orr
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hillary S Young
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Ana Miller-Ter Kuile
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Lacey F Hughey
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Douglas J McCauley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA.,Indicators and Assessments Research Unit, Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| |
Collapse
|
18
|
Storms RF, Carere C, Zoratto F, Hemelrijk CK. Complex patterns of collective escape in starling flocks under predation. Behav Ecol Sociobiol 2019; 73:10. [PMID: 30930523 PMCID: PMC6404399 DOI: 10.1007/s00265-018-2609-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/13/2018] [Accepted: 11/12/2018] [Indexed: 11/04/2022]
Abstract
ABSTRACT Collective behaviour of animals has been a main focus of recent research, yet few empirical studies deal with this issue in the context of predation, a major driver of social complexity in many animal species. When starling (Sturnus vulgaris) flocks are under attack by a raptor, such as a peregrine falcon (Falco peregrinus), they show a great diversity of patterns of collective escape. The corresponding structural complexity concerns rapid variation in density and shape of the flock over time. Here, we present a first step towards unravelling this complexity. We apply a time series analysis to video footage of 182 sequences of hunting by falcons on flocks of thousands of starlings close to two urban roosts during winter. We distinguish several types of collective escape by determining the position and movement of individuals relative to each other (which determines darkness and shape of the flock over time) as well as relative to the predator, namely 'flash expansion', 'blackening', 'wave event', 'vacuole', 'cordon' and 'split'. We show that the specific type of collective escape depends on the collective pattern that precedes it and on the level of threat posed by the raptor. A wave event was most likely to occur when the predator attacked at medium speed. Flash expansion occurred more frequently when the predator approached the flock at faster rather than slower speed and attacked from above rather than from the side or below. Flash expansion was often followed by split, but in many cases, the flock showed resilience by remaining intact. During a hunting sequence, the frequencies of different patterns of collective escape increased when the frequency of attack by the raptor was higher. Despite their complexity, we show that patterns of collective escape depend on the predatory threat, which resembles findings in fish. SIGNIFICANCE STATEMENT Patterns of collective escape in flocks of starlings have always intrigued laymen and scientists. A detailed analysis of their complex dynamics has been lacking so far, and is the focus of our present study: we analysed video footage of hunting by falcons on flocks of thousands of starlings and show how patterns of collective escape (namely flash expansion, blackening, wave event, vacuole, cordon and split) depend on the preceding pattern and on details of attack. A higher frequency of attack during a hunting sequence resulted in a higher frequency of collective escape events. Flash expansion happened most often when the predator attacks at greater speed. A wave event was most likely when the raptor attacks at medium (rather than high or low) speed. These results provide a first quantitative approach to social complexity in collective avoidance of a predator.
Collapse
Affiliation(s)
- R. F. Storms
- Theoretical Research in Evolutionary Life Sciences (TRÊS), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - C. Carere
- Department of Ecological and Biological Sciences, University of Tuscia, viale dell‘Università s.n.c., 01100 Viterbo, Italy
| | - F. Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, viale Regina Elena 299, I-00161 Rome, Italy
| | - C. K. Hemelrijk
- Theoretical Research in Evolutionary Life Sciences (TRÊS), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
19
|
Ruberto T, Clément RJG, Spinello C, Neri D, Macrì S, Porfiri M. The Tagging Procedure of Visible Implant Elastomers Influences Zebrafish Individual and Social Behavior. Zebrafish 2018; 15:433-444. [PMID: 30070967 DOI: 10.1089/zeb.2018.1616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One commonly used method to preserve individual identity in the study of social behavior of zebrafish is through silicone-based visible implant elastomers (VIEs), which represent a safe and durable tagging procedure. While the effects of VIE tagging on welfare and general health have been addressed in detail, whether this procedure influences social behavior remains unclear. In this study, we compared individual and group behaviors exhibited by shoals composed of three individuals: two nontagged and one (focal subject) that was either nontagged (control condition) or sham-, purple-, blue-, or yellow tagged. Traditional behavioral parameters of activity, shoaling, and schooling (speed, polarization, and interindividual distances), along with an information-theoretic measure of social interaction (transfer entropy), were used to study the effect of tagging. Our findings indicate that tagging procedure per se significantly increased individual speed of the tagged subjects and of the group. The tagging procedure also altered the level of interaction between individuals, measured by transfer entropy. Conversely, tagging procedure did not influence shoaling and schooling tendencies. These findings suggest that VIE tagging may elicit some level of stress, which may affect some behavioral responses more than others. We recommend use of alternative methods such as multitracking systems when possible.
Collapse
Affiliation(s)
- Tommaso Ruberto
- 1 Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering , Brooklyn, New York
| | - Romain J G Clément
- 1 Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering , Brooklyn, New York
| | - Chiara Spinello
- 1 Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering , Brooklyn, New York
| | - Daniele Neri
- 1 Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering , Brooklyn, New York
| | - Simone Macrì
- 2 Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità , Roma, Italy
| | - Maurizio Porfiri
- 1 Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering , Brooklyn, New York
| |
Collapse
|
20
|
Hughey LF, Hein AM, Strandburg-Peshkin A, Jensen FH. Challenges and solutions for studying collective animal behaviour in the wild. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170005. [PMID: 29581390 PMCID: PMC5882975 DOI: 10.1098/rstb.2017.0005] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2017] [Indexed: 01/24/2023] Open
Abstract
Mobile animal groups provide some of the most compelling examples of self-organization in the natural world. While field observations of songbird flocks wheeling in the sky or anchovy schools fleeing from predators have inspired considerable interest in the mechanics of collective motion, the challenge of simultaneously monitoring multiple animals in the field has historically limited our capacity to study collective behaviour of wild animal groups with precision. However, recent technological advancements now present exciting opportunities to overcome many of these limitations. Here we review existing methods used to collect data on the movements and interactions of multiple animals in a natural setting. We then survey emerging technologies that are poised to revolutionize the study of collective animal behaviour by extending the spatial and temporal scales of inquiry, increasing data volume and quality, and expediting the post-processing of raw data.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Lacey F Hughey
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Andrew M Hein
- Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Santa Cruz, CA 95060, USA
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Ariana Strandburg-Peshkin
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurstrasse 190, 8057 Zurich, Switzerland
| | - Frants H Jensen
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
21
|
Westley PAH, Berdahl AM, Torney CJ, Biro D. Collective movement in ecology: from emerging technologies to conservation and management. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170004. [PMID: 29581389 PMCID: PMC5882974 DOI: 10.1098/rstb.2017.0004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/19/2023] Open
Abstract
Recent advances in technology and quantitative methods have led to the emergence of a new field of study that stands to link insights of researchers from two closely related, but often disconnected disciplines: movement ecology and collective animal behaviour. To date, the field of movement ecology has focused on elucidating the internal and external drivers of animal movement and the influence of movement on broader ecological processes. Typically, tracking and/or remote sensing technology is employed to study individual animals in natural conditions. By contrast, the field of collective behaviour has quantified the significant role social interactions play in the decision-making of animals within groups and, to date, has predominantly relied on controlled laboratory-based studies and theoretical models owing to the constraints of studying interacting animals in the field. This themed issue is intended to formalize the burgeoning field of collective movement ecology which integrates research from both movement ecology and collective behaviour. In this introductory paper, we set the stage for the issue by briefly examining the approaches and current status of research in these areas. Next, we outline the structure of the theme issue and describe the obstacles collective movement researchers face, from data acquisition in the field to analysis and problems of scale, and highlight the key contributions of the assembled papers. We finish by presenting research that links individual and broad-scale ecological and evolutionary processes to collective movement, and finally relate these concepts to emerging challenges for the management and conservation of animals on the move in a world that is increasingly impacted by human activity.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Peter A H Westley
- Department of Fisheries, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Andrew M Berdahl
- Santa Fe Institute, Santa Fe, NM 87501, USA
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Colin J Torney
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8SQ, UK
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|