1
|
Bistre Dabbah S, Mendl M, Guest C, Rooney NJ. An exploratory study of associations between judgement bias, demographic and behavioural characteristics, and detection task performance in medical detection dogs. PLoS One 2025; 20:e0320158. [PMID: 40202970 PMCID: PMC11981131 DOI: 10.1371/journal.pone.0320158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/13/2025] [Indexed: 04/11/2025] Open
Abstract
Medical detection dogs search for diseases from remote samples (biodetection) and assist patients with chronic conditions (medical alert assistance). There is scarce information on how dogs' decision-making tendencies relate to task performance. This study explored the relationships between medical detection dog demographics, responses in a behavioural test battery, 'optimistic' or 'pessimistic' decisions in a judgement bias task, and their performance in detection tasks. A sample of 58 trainee and trained medical detection dogs were studied in a Go/NoGo spatial judgement bias test. For trainee dogs (n = 39), training outcome (pass/fail) and trainer ratings of behavioural traits; yielding a composite score of ability in detection tasks, were used as markers of task performance. For trained biodetection dogs (n = 27), scent sensitivity and specificity scores derived during training and testing trials were used. Older dogs (p < 0.001), those showing higher 'Confidence' (p = 0.009), 'Food orientation' (p = 0.014) and 'Playfulness' (p = 0.005) in the test battery, and those who made more 'optimistic' decisions in the judgement bias task (p = 0.002), had higher detection task ability scores. For trained dogs, latency to approach ambiguous stimuli was positively correlated with scent specificity levels (n = 25, p = 0.021), suggesting that more 'pessimistic' dogs tended to be more specific. Our findings suggest relationships between behaviour in judgement bias tests and other learning and discrimination tasks, which may reflect underlying individual or personality differences in affective and/or cognitive processes that influence dogs' style of searching and performance ability in medical detection tasks. Future research is needed to explore these associations further and investigate the value of judgement bias tasks in predicting later search performance in medical and other types of search dogs.
Collapse
Affiliation(s)
| | - Michael Mendl
- University of Bristol, Langford House, Langford, Bristol, United Kingdom
| | - Claire Guest
- Medical Detection Dogs, Great Horwood, Milton Keynes, United Kingdom
| | - Nicola J. Rooney
- University of Bristol, Langford House, Langford, Bristol, United Kingdom
- Medical Detection Dogs, Great Horwood, Milton Keynes, United Kingdom
| |
Collapse
|
2
|
Espigares F, Alvarado MV, Abad-Tortosa D, Varela SAM, Sobral D, Faísca P, Paixão T, Oliveira RF. Optimistic and pessimistic cognitive judgement bias modulates the stress response and cancer progression in zebrafish. Transl Psychiatry 2025; 15:111. [PMID: 40157919 PMCID: PMC11954940 DOI: 10.1038/s41398-025-03311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 01/27/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Cognitive judgement bias in decision-making under ambiguity occurs both in animals and humans, with some individuals interpreting ambiguous stimulus as positive (optimism) and others as negative (pessimism). We hypothesize that judgement bias is a personality trait and that individuals with a pessimistic bias would be more reactive to stressors and therefore more susceptible to stress-related diseases than optimistic ones. Here, we show that zebrafish judgment bias is a consistent behavioral trait over time, and that pessimistic and optimistic fish express phenotype-specific neurogenomic responses to stress. Furthermore, both phenotypes show differential activation of the hypothalamic-pituitary-interrenal axis in response to chronic stress, suggesting that optimists have a lower stress reactivity. Accordingly, optimists seem to be more resilient to disease than pessimists, as shown by a lower tumorigenesis in a zebrafish melanoma line [Tg(mtifa:HRAS-GFP)]. Together these results indicate that judgement bias is paralleled by differences in the stress response with implications for disease resilience.
Collapse
Affiliation(s)
- Felipe Espigares
- GIMM - Gulbenkian Institute for Molecular Medicine, Oeiras, 2780-156, Portugal
| | - M Victoria Alvarado
- GIMM - Gulbenkian Institute for Molecular Medicine, Oeiras, 2780-156, Portugal
| | - Diana Abad-Tortosa
- GIMM - Gulbenkian Institute for Molecular Medicine, Oeiras, 2780-156, Portugal
- Department of Psychobiology, University of Valencia, Valencia, 46010, Spain
| | - Susana A M Varela
- GIMM - Gulbenkian Institute for Molecular Medicine, Oeiras, 2780-156, Portugal
- ISPA - University Institute for Psychological Social and Life Sciences, Lisboa, 1149-041, Portugal
| | - Daniel Sobral
- GIMM - Gulbenkian Institute for Molecular Medicine, Oeiras, 2780-156, Portugal
| | - Pedro Faísca
- GIMM - Gulbenkian Institute for Molecular Medicine, Oeiras, 2780-156, Portugal
| | - Tiago Paixão
- GIMM - Gulbenkian Institute for Molecular Medicine, Oeiras, 2780-156, Portugal
| | - Rui F Oliveira
- GIMM - Gulbenkian Institute for Molecular Medicine, Oeiras, 2780-156, Portugal.
- ISPA - University Institute for Psychological Social and Life Sciences, Lisboa, 1149-041, Portugal.
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisboa, 1400-038, Portugal.
| |
Collapse
|
3
|
Feng X, Ye Z, Xie K, Zhu S, Wu X, Sun Z, Feng X, Mo Y, Liang J, Shu G, Wang S, Zhu C, Jiang Q, Wang L. Effects of heat stress on the feeding preference of yellow-feathered broilers and its possible mechanism. J Therm Biol 2024; 124:103959. [PMID: 39180919 DOI: 10.1016/j.jtherbio.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Heat stress is the most critical factor affecting animal feeding in summer. This experiment was conducted to investigate the effects of heat stress on the feeding preference of yellow-feathered broilers and its possible mechanism. As a result, the preference of yellow-feathered broilers for Tenebrio molitor was significantly decreased, and the fear response and serum corticosterone of broilers were significantly increased when the ambient temperatures are 35 °C (P < 0.05). In the central nervous system, consistent with the change in feeding preference, decreased dopamine in the nucleus accumbens (NAc) and increased mRNA levels of MAO-B in the ventral tegmental area (VTA) and NAc were found in yellow-feathered broilers (P < 0.05). In addition, we found significantly increased mRNA levels of corticotropin-releasing hormone receptor 1, corticotropin-releasing hormone receptor 2 and glucocorticoid receptor in the VTA and NAc of female broilers (P < 0.05). However, no similar change was found in male broilers. On the other hand, the serum levels of insulin and glucagon-like peptide-1 were increased only in male broilers (P < 0.05). Accordingly, the mRNA levels of insulin receptor and glucagon-like peptide-1 receptor in the VTA and the phosphorylation of mTOR and PI3K were increased only in male broilers (P < 0.05). In summary, the preference of yellow-feathered broilers for Tenebrio molitor feed decreased under heat stress conditions, and hedonic feeding behavior was significantly inhibited. However, the mechanism by which heat stress affects hedonic feeding behavior may contain gender differences. The insulin signaling pathway may participate in the regulation of heat stress on the male broiler reward system, while stress hormone-related receptors in the midbrain may play an important role in the effect of heat stress on the reward system of female broilers.
Collapse
Affiliation(s)
- Xiajie Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ziyuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Kailai Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuqing Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhonghua Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaohua Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yingfen Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jingwen Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
4
|
Speechley EM, Ashton BJ, Thornton A, Simmons LW, Ridley AR. Heritability of cognitive performance in wild Western Australian magpies. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231399. [PMID: 38481983 PMCID: PMC10933533 DOI: 10.1098/rsos.231399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 04/26/2024]
Abstract
Individual differences in cognitive performance can have genetic, social and environmental components. Most research on the heritability of cognitive traits comes from humans or captive non-human animals, while less attention has been given to wild populations. Western Australian magpies (Gymnorhina tibicen dorsalis, hereafter magpies) show phenotypic variation in cognitive performance, which affects reproductive success. Despite high levels of individual repeatability, we do not know whether cognitive performance is heritable in this species. Here, we quantify the broad-sense heritability of associative learning ability in a wild population of Western Australian magpies. Specifically, we explore whether offspring associative learning performance is predicted by maternal associative learning performance or by the social environment (group size) when tested at three time points during the first year of life. We found little evidence that offspring associative learning performance is heritable, with an estimated broad-sense heritability of just -0.046 ± 0.084 (confidence interval: -0.234/0.140). However, complementing previous findings, we find that at 300 days post-fledging, individuals raised in larger groups passed the test in fewer trials compared with individuals from small groups. Our results highlight the pivotal influence of the social environment on cognitive development.
Collapse
Affiliation(s)
- Elizabeth M. Speechley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
5
|
Alvarado MV, Felip A, Espigares F, Oliveira RF. Unexpected appetitive events promote positive affective state in juvenile European sea bass. Sci Rep 2023; 13:22064. [PMID: 38086896 PMCID: PMC10716175 DOI: 10.1038/s41598-023-49236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Some animal species exhibit considerable physiological and behavioural alterations in response to captivity. It has been hypothesized, but rarely tested, that such changes reflect a negative affective state that is associated to this specific context. In the last years, judgement bias measures have emerged as reliable indicators of animal affective state, under the assumption that individuals in a negative affective state are more likely to evaluate ambiguous stimuli as negative and display therefore pessimistic behaviours. Here, we have developed a judgement bias task for juvenile European sea bass (Dicentrarchus labrax) aiming to measure optimism/pessimism in this marine species, which have previously been reported to show important dysregulations in captive settings. Our results show that juvenile sea bass exhibit a considerable bias towards pessimistic behaviours in laboratory settings. Furthermore, juveniles that received an unexpected positive event during the judgement bias test displayed more optimistic responses toward ambiguous stimuli as compared to control fish, indicating a positive change in their affective state induced by the appetitive experience. These results reveal a direct interaction of the internal affective state with decision-making processing under ambiguity in juvenile European sea bass, highlighting therefore the potential of judgement bias tests as a tool for the advancement and improvement of our understanding of welfare in finfish aquaculture.
Collapse
Affiliation(s)
- M V Alvarado
- Integrative Behavioural Biology Group, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - A Felip
- Fish Reproductive Physiology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Ribera de Cabanes, 12595, Cabanes, Castellón, Spain
| | - F Espigares
- Integrative Behavioural Biology Group, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
| | - R F Oliveira
- Integrative Behavioural Biology Group, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
- ISPA-Instituto Universitário, 1149-041, Lisbon, Portugal.
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal.
| |
Collapse
|
6
|
Prentice PM, Thornton A, Kolm N, Wilson AJ. Genetic and context-specific effects on individual inhibitory control performance in the guppy (Poecilia reticulata). J Evol Biol 2023; 36:1796-1810. [PMID: 37916730 PMCID: PMC10947024 DOI: 10.1111/jeb.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Among-individual variation in cognitive traits, widely assumed to have evolved under adaptive processes, is increasingly being demonstrated across animal taxa. As variation among individuals is required for natural selection, characterizing individual differences and their heritability is important to understand how cognitive traits evolve. Here, we use a quantitative genetic study of wild-type guppies repeatedly exposed to a 'detour task' to test for genetic variance in the cognitive trait of inhibitory control. We also test for genotype-by-environment interactions (GxE) by testing related fish under alternative experimental treatments (transparent vs. semi-transparent barrier in the detour-task). We find among-individual variation in detour task performance, consistent with differences in inhibitory control. However, analysis of GxE reveals that heritable factors only contribute to performance variation in one treatment. This suggests that the adaptive evolutionary potential of inhibitory control (and/or other latent variables contributing to task performance) may be highly sensitive to environmental conditions. The presence of GxE also implies that the plastic response of detour task performance to treatment environment is genetically variable. Our results are consistent with a scenario where variation in individual inhibitory control stems from complex interactions between heritable and plastic components.
Collapse
Affiliation(s)
- Pamela M. Prentice
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- SRUC, Easter Bush, Roslin Institute BuildingMidlothianUK
| | - Alex Thornton
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Niclas Kolm
- Department of ZoologyStockholm UniversityStockholmSweden
| | | |
Collapse
|
7
|
McCallum E, Shaw RC. Repeatability and heritability of inhibitory control performance in wild toutouwai ( Petroica longipes). ROYAL SOCIETY OPEN SCIENCE 2023; 10:231476. [PMID: 38026029 PMCID: PMC10646466 DOI: 10.1098/rsos.231476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Despite increasing interest in the evolution of inhibitory control, few studies have examined the validity of widespread testing paradigms, the long-term repeatability and the heritability of this cognitive ability in the wild. We investigated these aspects in the inhibitory control performance of wild toutouwai (North Island robin; Petroica longipes), using detour and reversal learning tasks. We assessed convergent validity by testing whether individual performance correlated across detour and reversal learning tasks. We then further evaluated task validity by examining whether individual performance was confounded by non-cognitive factors. We tested a subset of subjects twice in each task to estimate the repeatability of performance across a 1-year period. Finally, we used a population pedigree to estimate the heritability of task performance. Individual performance was unrelated across detour and reversal learning tasks, indicating that these measured different cognitive abilities. Task performance was not influenced by body condition, boldness or prior experience, and showed moderate between-year repeatability. Yet despite this individual consistency, we found no evidence that task performance was heritable. Our findings suggest that detour and reversal learning tasks measure consistent individual differences in distinct forms of inhibitory control in toutouwai, but this variation may be environmentally determined rather than genetic.
Collapse
Affiliation(s)
- Ella McCallum
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| | - Rachael C. Shaw
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
Lundgren KA, Løvlie H. Increased dietary 5-hydroxytryptophan reduces fearfulness in red junglefowl hens ( Gallus gallus). Front Physiol 2023; 14:1213986. [PMID: 37766752 PMCID: PMC10520959 DOI: 10.3389/fphys.2023.1213986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Our production animals typically suffer poor welfare, which can be revealed by measuring the affective state these animals are in. Negative affective state is linked to poorer welfare, and can be measured as fearfulness. While continuing to research how to improve animal welfare, a compliment to reduce negative affective state could therefore be to reduce individuals' fearfulness, similar to how negative affective states are medicated in humans. A proposed mechanism for this is via the monoaminergic systems. This is based on previous studies across species that have linked the serotonergic system and fear-related behaviour. We here aimed to experimentally manipulate the serotonergic system in red junglefowl hens (Gallus gallus), the main ancestor of all domesticated chickens. We measured fearfulness as latency remaining immobile in a tonic immobility test, and did so both before and after our experimental manipulation. We set out to experimentally manipulate the serotonergic system via sub-chronic dietary treatment of 5-hydroxytryptophan (the precursor to serotonin). Our dietary manipulation of 5-hydroxytryptophan significantly reduced measured fearfulness in the manipulated hens, while latency in tonic immobility did not significantly change in our unmanipulated, control hens. This finding is promising since it indicates that increased tryptophan levels can be used to reduce fearfulness. Additionally, our result suggests that this can be done non-invasively via food (instead of injections), thus presenting a potentially feasible manipulation also for larger settings. Nevertheless, the serotonergic system is complex and its role in modulating behaviour in the fowl should be explored further to evaluate our findings, and more directly explored also in a production setting.
Collapse
Affiliation(s)
| | - Hanne Løvlie
- IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Watrobska CM, Pasquier G, Leadbeater E, Portugal SJ. Metabolic rate does not explain performance on a short-term memory task or personality traits in juvenile chickens ( Gallus gallus domesticus). ROYAL SOCIETY OPEN SCIENCE 2023; 10:221650. [PMID: 37711148 PMCID: PMC10498036 DOI: 10.1098/rsos.221650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Metabolic rate determines life processes and the physiological requirements of an individual, and has recently been implicated as a driver of inter-individual variation in behaviour, with positive correlations associated with boldness, exploration and aggressive behaviours being recorded. While the link between metabolism and personality has been explored, little is known about the influence of metabolism on cognitive abilities. Here we used juvenile female chickens (Gallus gallus domesticus) to investigate the relationships between metabolic rate at rest, short-term memory, personality, and dominance. Resting metabolic rates of the chicks were measured over a three-week period, concurrently with measures of short-term memory using an analogue of the radial arm maze. We also measured latency to leave the shelter (boldness), neophobia (fear of novel objects) and dominance within a group, both before and after short-term memory trials. We found that metabolic rate did not explain inter-individual differences in short-term memory, personality traits or dominance, suggesting that energy allocated to these traits is independent of individual metabolic rate, and providing evidence for the independent energy-management hypothesis. Differences in short-term memory were also not explained by boldness or neophobia. Variation in behaviour in chicks, therefore, appears to be driven by separate, currently unknown variables.
Collapse
Affiliation(s)
- Cecylia M. Watrobska
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Grégoire Pasquier
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
10
|
van den Heuvel K, Quinn JL, Kotrschal A, van Oers K. Artificial selection for reversal learning reveals limited repeatability and no heritability of cognitive flexibility in great tits ( Parus major). Proc Biol Sci 2023; 290:20231067. [PMID: 37464752 PMCID: PMC10354490 DOI: 10.1098/rspb.2023.1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Cognitive flexibility controls how animals respond to changing environmental conditions. Individuals within species vary considerably in cognitive flexibility but the micro-evolutionary potential in animal populations remains enigmatic. One prerequisite for cognitive flexibility to be able to evolve is consistent and heritable among-individual variation. Here we determine the repeatability and heritability of cognitive flexibility among great tits (Parus major) by performing an artificial selection experiment on reversal learning performance using a spatial learning paradigm over three generations. We found low, yet significant, repeatability (R = 0.15) of reversal learning performance. Our artificial selection experiment showed no evidence for narrow-sense heritability of associative or reversal learning, while we confirmed the heritability of exploratory behaviour. We observed a phenotypic, but no genetic, correlation between associative and reversal learning, showing the importance of prior information on reversal learning. We found no correlation between cognitive and personality traits. Our findings emphasize that cognitive flexibility is a multi-faceted trait that is affected by memory and prior experience, making it challenging to retrieve reliable values of temporal consistency and assess the contribution of additive genetic variation. Future studies need to identify what cognitive components underlie variation in reversal learning and study their between-individual and additive genetic components.
Collapse
Affiliation(s)
- Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - John L. Quinn
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, T23 N73K4, Ireland
- Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Alexander Kotrschal
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|
11
|
Rubene D, Low M, Brodin A. Birds differentially prioritize visual and olfactory foraging cues depending on habitat of origin and sex. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221336. [PMID: 36778952 PMCID: PMC9905992 DOI: 10.1098/rsos.221336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Animals interpret their environment by combining information from multiple senses. The relative usefulness of different senses may vary between species, habitats and sexes; yet, how multimodal stimuli are integrated and prioritized is unknown for most taxa. We experimentally assessed foraging preferences of great tits (Parus major) to test whether urban and forest individuals prioritize visual and olfactory cues differently during foraging. We trained 13 wild-caught birds to associate multimodal (colour + odour) cues with a food reward and assessed their foraging preferences in a cue-separation test. In this, the birds could choose between the multimodal training cue and its olfactory or visual components. Our results suggest that the birds did not perceive multimodal cues in an integrated way, as their response was not stronger than for unimodal cue components. Urban birds preferred olfactory cues, while forest birds preferred visual cues. Nevertheless, female birds preferred the multimodal cue, while males foraged more randomly with respect to which cue was present. These findings contribute to our understanding of the relative roles of vision and olfaction in bird foraging behaviour. Future work should focus on how habitat- and sex-specific sensory prioritization modifies bird foraging behaviour and foraging success in the context of urban adaptations across populations.
Collapse
Affiliation(s)
- Diana Rubene
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Brodin
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Alvarenga AB, Oliveira HR, Turner SP, Garcia A, Retallick KJ, Miller SP, Brito LF. Unraveling the phenotypic and genomic background of behavioral plasticity and temperament in North American Angus cattle. Genet Sel Evol 2023; 55:3. [PMID: 36658485 PMCID: PMC9850537 DOI: 10.1186/s12711-023-00777-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Longitudinal records of temperament can be used for assessing behavioral plasticity, such as aptness to learn, memorize, or change behavioral responses based on affective state. In this study, we evaluated the phenotypic and genomic background of North American Angus cow temperament measured throughout their lifetime around the weaning season, including the development of a new indicator trait termed docility-based learning and behavioral plasticity. The analyses included 273,695 and 153,898 records for yearling (YT) and cow at weaning (CT) temperament, respectively, 723,248 animals in the pedigree, and 8784 genotyped animals. Both YT and CT were measured when the animal was loading into/exiting the chute. Moreover, CT was measured around the time in which the cow was separated from her calf. A random regression model fitting a first-order Legendre orthogonal polynomial was used to model the covariance structure of temperament and to assess the learning and behavioral plasticity (i.e., slope of the regression) of individual cows. This study provides, for the first time, a longitudinal perspective of the genetic and genomic mechanisms underlying temperament, learning, and behavioral plasticity in beef cattle. RESULTS CT measured across years is heritable (0.38-0.53). Positive and strong genetic correlations (0.91-1.00) were observed among all CT age-group pairs and between CT and YT (0.84). Over 90% of the candidate genes identified overlapped among CT age-groups and the estimated effect of genomic markers located within important candidate genes changed over time. A small but significant genetic component was observed for learning and behavioral plasticity (heritability = 0.02 ± 0.002). Various candidate genes were identified, revealing the polygenic nature of the traits evaluated. The pathways and candidate genes identified are associated with steroid and glucocorticoid hormones, development delay, cognitive development, and behavioral changes in cattle and other species. CONCLUSIONS Cow temperament is highly heritable and repeatable. The changes in temperament can be genetically improved by selecting animals with favorable learning and behavioral plasticity (i.e., habituation). Furthermore, the environment explains a large part of the variation in learning and behavioral plasticity, leading to opportunities to also improve the overall temperament by refining management practices. Moreover, behavioral plasticity offers opportunities to improve the long-term animal and handler welfare through habituation.
Collapse
Affiliation(s)
- Amanda B. Alvarenga
- grid.169077.e0000 0004 1937 2197Department of Animal Sciences, Purdue University, West Lafayette, IN USA
| | - Hinayah R. Oliveira
- grid.169077.e0000 0004 1937 2197Department of Animal Sciences, Purdue University, West Lafayette, IN USA ,Lactanet, Guelph, ON Canada
| | - Simon P. Turner
- grid.426884.40000 0001 0170 6644Animal and Veterinary Sciences Department, Scotland’s Rural College, Edinburgh, UK
| | - Andre Garcia
- American Angus Association, Angus Genetics Inc., Saint Joseph, MO USA
| | | | - Stephen P. Miller
- American Angus Association, Angus Genetics Inc., Saint Joseph, MO USA ,grid.1020.30000 0004 1936 7371AGBU, a joint venture of NSW Department of Primary Industries and University of New England, Armidale, 2351 Australia
| | - Luiz F. Brito
- grid.169077.e0000 0004 1937 2197Department of Animal Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
13
|
Investigation of structural and neurobiochemical differences in brains from high-performance and native hen breeds. Sci Rep 2023; 13:224. [PMID: 36604556 PMCID: PMC9816186 DOI: 10.1038/s41598-023-27517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Selection of livestock has not only led to changes in the level of their performance but also modified their behavior. As a result, within a single species, we have to deal with different behaviors of different breeds. In our study, we assumed that the different behaviors within a species are due to differences in the morphology and physiology of behavior-related systems. Two breeds of hens were used as a model: the highly reactive, fearful and high-performance Leghorn breed and proactive, unselected Green-legged Partridge breed. The higher reactivity and fearfulness of Leghorn hens in comparison to the Green-legged Partridge breed may be related to the greater number of neurons in the paraventricular nucleus and anterior hypothalamus and the higher content of zinc and iron in the brain, as these elements are involved in neuronal conduction and myelination processes. The reactive behaviours of Green-legged Partridge hens may be associated with the lower number of neurons in the paraventricular nucleus and the anterior hypothalamus and the higher concentration of dopamine and copper ions in the brain. The analyses confirmed the hypothesis of the existence of interbreed differences in the morphology and physiology of behaviour-related systems, which most probably emerged through unintentional and correlated selection towards high production performance. Consequently, attention should be drawn that the selection of a given genotype (breed) towards a specific environment could lead to creation of highly specialised lines that may not achieve homeostasis in every maintenance system.
Collapse
|
14
|
Durosaro SO, Iyasere OS, Ilori BM, Oguntade DO, Oyeniran VJ, Oghate EB, Fasola HO, Ozoje MO. Genetic parameters of fear-related behaviours in Nigerian indigenous turkey poults: A pilot study. J Vet Behav 2023. [DOI: 10.1016/j.jveb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Degrande R, Cornilleau F, Lansade L, Jardat P, Colson V, Calandreau L. Domestic hens succeed at serial reversal learning and perceptual concept generalisation using a new automated touchscreen device. Animal 2022; 16:100607. [PMID: 35963029 DOI: 10.1016/j.animal.2022.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Improving the welfare of farm animals depends on our knowledge on how they perceive and interpret their environment; the latter depends on their cognitive abilities. Hence, limited knowledge of the range of cognitive abilities of farm animals is a major concern. An effective approach to explore the cognitive range of a species is to apply automated testing devices, which are still underdeveloped in farm animals. In screen-like studies, the uses of automated devices are few in domestic hens. We developed an original fully automated touchscreen device using digital computer-drawn colour pictures and independent sensible cells adapted for cognitive testing in domestic hens, enabling a wide range of test types from low to high complexity. This study aimed to test the efficiency of our device using two cognitive tests. We focused on tasks related to adaptive capacities to environmental variability, such as flexibility and generalisation capacities as this is a good start to approach more complex cognitive capacities. We implemented a serial reversal learning task, categorised as a simple cognitive test, and a delayed matching-to-sample (dMTS) task on an identity concept, followed by a generalisation test, categorised as more complex. In the serial reversal learning task, the hens performed equally for the two changing reward contingencies in only three reversal stages. In the dMTS task, the hens increased their performance rapidly throughout the training sessions. Moreover, to the best of our knowledge, we present the first positive result of identity concept generalisation in a dMTS task in domestic hens. Our results provide additional information on the behavioural flexibility and concept understanding of domestic hens. They also support the idea that fully automated devices would improve knowledge of farm animals' cognition.
Collapse
Affiliation(s)
- Rachel Degrande
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France.
| | - Fabien Cornilleau
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| | - Léa Lansade
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| | - Plotine Jardat
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| | - Violaine Colson
- INRAE, LPGP (Laboratoire de Physiologie et Génomique des Poissons), Campus de Beaulieu, F-35042 Rennes cedex, Ille-et-Vilaine, France
| | - Ludovic Calandreau
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| |
Collapse
|
16
|
De Meester G, Pafilis P, Vasilakis G, Van Damme R. Exploration and spatial cognition show long-term repeatability but no heritability in the Aegean wall lizard. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Finkemeier MA, Krause A, Tuchscherer A, Puppe B, Langbein J. Personality traits affect learning performance in dwarf goats ( Capra hircus). Front Vet Sci 2022; 9:916459. [PMID: 35909682 PMCID: PMC9336648 DOI: 10.3389/fvets.2022.916459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
A wide range of species exhibit time- and context-consistent interindividual variation in a number of specific behaviors related to an individual's personality. Several studies have shown that individual differences in personality-associated behavioral traits have an impact on cognitive abilities. The aim of this study was to investigate the relationship between personality traits and learning abilities in dwarf goats. The behavior of 95 goats during a repeated open field (OF) and novel object test (NO) was analyzed, and two main components were identified using principal component analysis: boldness and activity. In parallel, the goats learned a 4-choice visual initial discrimination task (ID) and three subsequent reversal learning (RL) tasks. The number of animals that reached the learning criterion and the number of trials needed (TTC) in each task were calculated. Our results show that goats with the lowest learning performance in ID needed more TTC in RL1 and reached the learning criterion less frequently in RL2 and RL3 compared to animals with better learning performance in ID. This suggests a close relationship between initial learning and flexibility in learning behavior. To study the link between personality and learning, we conducted two analyses, one using only data from the first OF- and NO-test (momentary personality traits), while the other included both tests integrating only animals that were stable for their specific trait (stable personality traits). No relationship between personality and learning was found using data from only the first OF- and NO-test. However, stability in the trait boldness was found to have an effect on learning. Unbold goats outperformed bold goats in RL1. This finding supports the general hypothesis that bold animals tend to develop routines and show less flexibility in the context of learning than unbold individuals. Understanding how individual personality traits can affect cognitive abilities will help us gain insight into mechanisms that can constrain cognitive processing and adaptive behavioral responses.
Collapse
Affiliation(s)
- Marie-Antonine Finkemeier
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Annika Krause
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Birger Puppe
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Jan Langbein
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
18
|
Bračić M, Bohn L, Siewert V, von Kortzfleisch VT, Schielzeth H, Kaiser S, Sachser N, Richter SH. Once an optimist, always an optimist? Studying cognitive judgment bias in mice. Behav Ecol 2022; 33:775-788. [PMID: 35812364 PMCID: PMC9262167 DOI: 10.1093/beheco/arac040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Individuals differ in the way they judge ambiguous information: some individuals interpret ambiguous information in a more optimistic, and others in a more pessimistic way. Over the past two decades, such "optimistic" and "pessimistic" cognitive judgment biases (CJBs) have been utilized in animal welfare science as indicators of animals' emotional states. However, empirical studies on their ecological and evolutionary relevance are still lacking. We, therefore, aimed at transferring the concept of "optimism" and "pessimism" to behavioral ecology and investigated the role of genetic and environmental factors in modulating CJB in mice. In addition, we assessed the temporal stability of individual differences in CJB. We show that the chosen genotypes (C57BL/6J and B6D2F1N) and environments ("scarce" and "complex") did not have a statistically significant influence on the responses in the CJB test. By contrast, they influenced anxiety-like behavior with C57BL/6J mice and mice from the "complex" environment displaying less anxiety-like behavior than B6D2F1N mice and mice from the "scarce" environment. As the selected genotypes and environments did not explain the existing differences in CJB, future studies might investigate the impact of other genotypes and environmental conditions on CJB, and additionally, elucidate the role of other potential causes like endocrine profiles and epigenetic modifications. Furthermore, we show that individual differences in CJB were repeatable over a period of seven weeks, suggesting that CJB represents a temporally stable trait in laboratory mice. Therefore, we encourage the further study of CJB within an animal personality framework.
Collapse
Affiliation(s)
- Marko Bračić
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Lena Bohn
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Viktoria Siewert
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | | | - Holger Schielzeth
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| |
Collapse
|
19
|
Garnham LC, Clarke C, Løvlie H. How Inhibitory Control Relates to Positive and Negative Affective States in Red Junglefowl. Front Vet Sci 2022; 9:872487. [PMID: 35464350 PMCID: PMC9024352 DOI: 10.3389/fvets.2022.872487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Individual differences in inhibitory control, an aspect of cognition, are found in many species. How this variation links to affective states is not much explored, and could be relevant for welfare. As less fearful, more optimistic, individuals may act more impulsively, inhibitory control could link to less negative, more positive, affective states. Alternatively, poorer inhibitory control could associate with more negative, less positive, affective states, as poorer inhibitory control can result in individuals being less able to adapt to changing environments and more likely to show stereotypies. We here explored in three cohorts (N = 209) of captive red junglefowl, the ancestor of domestic chickens, how inhibitory control associated with affective states. Specifically, we measured inhibitory control with a detour task, and negative and positive affective states with a tonic immobility test and a cognitive judgement bias test, respectively. Cognition and behaviour can differ between ages and sexes. Therefore, we investigated how inhibitory control related to affective states in younger chicks (≈2.5 weeks old), older chicks (≈5 weeks old) and sexually mature adults (≈28 weeks old) of both sexes. In younger chicks, poorer inhibitory control associated with less negative, more positive, affective states. We found no relationship between inhibitory control and affective states in older chicks or adults, nor sex differences regarding how inhibitory control related to affective states. Overall, our results suggest that inhibitory control can link to affective states and that the nature of these links can change over ontogeny.
Collapse
Affiliation(s)
- Laura Clare Garnham
- Division of Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Charlie Clarke
- Division of Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Hanne Løvlie
- Division of Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- *Correspondence: Hanne Løvlie
| |
Collapse
|
20
|
Garnham LC, Boddington R, Løvlie H. Variation in inhibitory control does not influence social rank, foraging efficiency, or risk taking, in red junglefowl females. Anim Cogn 2022; 25:867-879. [PMID: 35122185 PMCID: PMC9334373 DOI: 10.1007/s10071-022-01598-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/17/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Individual variation in cognition, seen in many taxa, is not well understood, despite its potential evolutionary consequences. Inhibitory control is an aspect of cognition which differs between individuals. However, how selection could act on this variation remains unclear. First, individual consistency over time of behaviours affected by inhibitory control, and how these behaviours relate to each other, is not well understood. Second, consequences in ecologically relevant contexts of variation in behaviours affected by inhibitory control, are scarcely investigated. Therefore, we explored the temporal consistency and inter-relatedness of two behaviours influenced by inhibitory control (impulsive action and persistence) and how these link to social rank, foraging efficiency, and risk taking in adult female red junglefowl (Gallus gallus). We measured impulsive action in a detour test, and persistence in both a detour test and a foraging test. Impulsive action and persistence, measured in a detour test, were moderately consistent over time, and positively correlated. This implies that selection could act on inhibitory control via these behaviours, and selection on one behaviour could affect the other. However, we found no evidence of links between inhibitory control and social rank, foraging efficiency, or risk taking. This implies that selection may not act on inhibitory control via these measures, and that, in general, there may be a lack of strong selection on inhibitory control. This, in turn, could help explain individual variation in this aspect of cognition. Future research should explore the specificity of when inhibitory control has implications for individuals, and continue to investigate how variation in cognitive traits influences how individuals behave in contexts with potential evolutionary implications.
Collapse
Affiliation(s)
- Laura Clare Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Robert Boddington
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
21
|
Bold and bright: shy and supple? The effect of habitat type on personality-cognition covariance in the Aegean wall lizard (Podarcis erhardii). Anim Cogn 2022; 25:745-767. [PMID: 35037121 DOI: 10.1007/s10071-021-01587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Animals exhibit considerable and consistent among-individual variation in cognitive abilities, even within a population. Recent studies have attempted to address this variation using insights from the field of animal personality. Generally, it is predicted that animals with "faster" personalities (bolder, explorative, and neophilic) should exhibit faster but less flexible learning. However, the empirical evidence for a link between cognitive style and personality is mixed. One possible reason for such conflicting results may be that personality-cognition covariance changes along ecological conditions, a hypothesis that has rarely been investigated so far. In this study, we tested the effect of habitat complexity on multiple aspects of animal personality and cognition, and how this influenced their relationship, in five populations of the Aegean wall lizard (Podarcis erhardii). Overall, lizards from both habitat types did not differ in average levels of personality or cognition, with the exception that lizards from more complex habitats performed better on a spatial learning task. Nevertheless, we found an intricate interplay between ecology, cognition, and personality, as behavioral associations were often habitat- but also year-dependent. In general, behavioral covariance was either independent of habitat, or found exclusively in the simple, open environments. Our results highlight that valuable insights may be gained by taking ecological variation into account while studying the link between personality and cognition.
Collapse
|
22
|
Lecorps B, Weary DM, von Keyserlingk MAG. Negative expectations and vulnerability to stressors in animals. Neurosci Biobehav Rev 2021; 130:240-251. [PMID: 34454913 DOI: 10.1016/j.neubiorev.2021.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023]
Abstract
Humans express stable differences in pessimism that render some individuals more vulnerable to stressors and mood disorders. We explored whether non-human animals express stable individual differences in expectations (assessed via judgment bias tests) and whether these differences relate to susceptibility to stressors. Judgment bias tests do not distinguish pessimism from sensitivity to reinforcers; negative expectations are likely driven by a combination of these two elements. The available evidence suggests that animals express stable individual differences in expectations such that some persistently perceive ambiguous situations in a more negative way. A lack of research prevents drawing firm conclusions on how negative expectations affect responses to stressors, but current evidence suggests a link between negative expectations and the adoption of avoidance coping strategies, stronger responses to uncontrollable stressors and risk of mood-related disorders. We explore implications for animals living in captivity and for research using animals as models for human disorders.
Collapse
Affiliation(s)
- Benjamin Lecorps
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada
| | - Daniel M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada
| | - Marina A G von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada.
| |
Collapse
|
23
|
Ryding S, Garnham LC, Abbey-Lee RN, Petkova I, Kreshchenko A, Løvlie H. Impulsivity is affected by cognitive enrichment and links to brain gene expression in red junglefowl chicks. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Rubene D, Løvlie H. Red Junglefowl Chicks Seek Contact With Humans During Foraging Task. Front Psychol 2021; 12:675526. [PMID: 34248772 PMCID: PMC8260840 DOI: 10.3389/fpsyg.2021.675526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Contact seeking with humans is documented in some domestic animals, mainly dogs, which have advanced communication skills. Domestication as a companion animal is thought to underlie this ability. However, also domesticated horses and goats display similar human-directed behaviors. This suggests either a broader effect of domestication on contact-seeking behavior, or alternatively, that social interactions with humans can result in the development of human contact seeking. As part of another study, we observed contact-seeking behavior in juvenile red junglefowl (Gallus gallus) chicks exposed to behavioral training since hatching, during a foraging task, where chicks were singly required to collect food rewards in a familiar arena using odor cues. If chicks left the arena, we recorded if they approached and looked up at the experimenter, or if they approached other objects (including another human). Chicks approached the experimenter significantly more often than they approached other objects. This behavior was not linked to a fast performance in the test arena, which gave some birds more time to explore the surroundings, or to learning ability measured in a cognitive task. Yet, the preference for the experimenter was lower for chicks that were handled more prior to the experiment. Also, approach probability was positively correlated with escape attempts in a novel arena test. The observed variation in approach behavior suggests a link to aspects of personality, and exposure to human interactions and experimental procedures. Our observations suggest that, although neither domesticated nor selectively bred, red junglefowl that are socialized with humans can potentially develop behavior used to describe contact seeking. Together with evidence from cognitive and behavioral studies, our results suggest that social experiences, not only domestication, can affect human-animal interactions. We propose how interactions between behavior, cognition and handling could be studied further in controlled settings to validate the preliminary findings of our study and uncover the underlying mechanisms.
Collapse
Affiliation(s)
- Diana Rubene
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, Biology Division, Linköping University, Linköping, Sweden
| |
Collapse
|
25
|
Bray EE, Gnanadesikan GE, Horschler DJ, Levy KM, Kennedy BS, Famula TR, MacLean EL. Early-emerging and highly heritable sensitivity to human communication in dogs. Curr Biol 2021; 31:3132-3136.e5. [PMID: 34087106 DOI: 10.1016/j.cub.2021.04.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Human cognition is believed to be unique in part because of early-emerging social skills for cooperative communication.1 Comparative studies show that at 2.5 years old, children reason about the physical world similarly to other great apes, yet already possess cognitive skills for cooperative communication far exceeding those in our closest primate relatives.2,3 A growing body of research indicates that domestic dogs exhibit functional similarities to human children in their sensitivity to cooperative-communicative acts. From early in development, dogs flexibly respond to diverse forms of cooperative gestures.4,5 Like human children, dogs are sensitive to ostensive signals marking gestures as communicative, as well as contextual factors needed for inferences about these communicative acts.6-8 However, key questions about potential biological bases for these abilities remain untested. To investigate their developmental and genetic origins, we tested 375 8-week-old dog puppies on a battery of social-cognitive measures. We hypothesized that if dogs' skills for cooperating with humans are biologically prepared, then they should emerge robustly in early development, not require extensive socialization or learning, and exhibit heritable variation. Puppies were highly skillful at using diverse human gestures, and we found no evidence that their performance required learning. Critically, over 40% of the variation in dogs' point-following abilities and attention to human faces was attributable to genetic factors. Our results suggest that these social skills in dogs emerge early in development and are under strong genetic control.
Collapse
Affiliation(s)
- Emily E Bray
- Arizona Canine Cognition Center, School of Anthropology, University of Arizona, Tucson, AZ 85719, USA; Canine Companions for Independence, National Headquarters, Santa Rosa, CA 95407, USA.
| | - Gitanjali E Gnanadesikan
- Arizona Canine Cognition Center, School of Anthropology, University of Arizona, Tucson, AZ 85719, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85719, USA
| | - Daniel J Horschler
- Arizona Canine Cognition Center, School of Anthropology, University of Arizona, Tucson, AZ 85719, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85719, USA
| | - Kerinne M Levy
- Canine Companions for Independence, National Headquarters, Santa Rosa, CA 95407, USA
| | - Brenda S Kennedy
- Canine Companions for Independence, National Headquarters, Santa Rosa, CA 95407, USA
| | - Thomas R Famula
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Evan L MacLean
- Arizona Canine Cognition Center, School of Anthropology, University of Arizona, Tucson, AZ 85719, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85719, USA; Department of Psychology, University of Arizona, Tucson, AZ 85719, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
26
|
Espigares F, Abad-Tortosa D, Varela SAM, Ferreira MG, Oliveira RF. Short telomeres drive pessimistic judgement bias in zebrafish. Biol Lett 2021; 17:20200745. [PMID: 33726560 PMCID: PMC8086985 DOI: 10.1098/rsbl.2020.0745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
The role of telomerase reverse transcriptase has been widely investigated in the contexts of ageing and age-related diseases. Interestingly, decreased telomerase activities (and accelerated telomere shortening) have also been reported in patients with emotion-related disorders, opening the possibility for subjective appraisal of stressful stimuli playing a key role in stress-driven telomere shortening. In fact, patients showing a pessimistic judgement bias have shorter telomeres. However, in humans the evidence for this is correlational and the causal directionality between pessimism and telomere shortening has not been established experimentally yet. We have developed and validated a judgement bias experimental paradigm to measure subjective evaluations of ambiguous stimuli in zebrafish. This behavioural assay allows classification of individuals in an optimistic-pessimistic dimension (i.e. from individuals that consistently evaluate ambiguous stimuli as negative to others that perceive them as positive). Using this behavioural paradigm we found that telomerase-deficient zebrafish (tert-/-) were more pessimistic in response to ambiguous stimuli than wild-type zebrafish. The fact that individuals with constitutive shorter telomeres have pessimistic behaviours demonstrates for the first time in a vertebrate model a genetic basis of judgement bias.
Collapse
Affiliation(s)
- F. Espigares
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - D. Abad-Tortosa
- Department of Psychobiology, University of Valencia, Avenida Blasco Ibañez, 21, Valencia 46010, Spain
| | - S. A. M. Varela
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - M. G. Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM, U1081 UMR7284 CNRS, 06107 Nice, France
| | - R. F. Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
- ISPA-Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, Lisboa 1400-038, Portugal
| |
Collapse
|
27
|
Poirier MA, Kozlovsky DY, Morand-Ferron J, Careau V. How general is cognitive ability in non-human animals? A meta-analytical and multi-level reanalysis approach. Proc Biol Sci 2020; 287:20201853. [PMID: 33290683 PMCID: PMC7739923 DOI: 10.1098/rspb.2020.1853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
General intelligence has been a topic of high interest for over a century. Traditionally, research on general intelligence was based on principal component analyses and other dimensionality reduction approaches. The advent of high-speed computing has provided alternative statistical tools that have been used to test predictions of human general intelligence. In comparison, research on general intelligence in non-human animals is in its infancy and still relies mostly on factor-analytical procedures. Here, we argue that dimensionality reduction, when incorrectly applied, can lead to spurious results and limit our understanding of ecological and evolutionary causes of variation in animal cognition. Using a meta-analytical approach, we show, based on 555 bivariate correlations, that the average correlation among cognitive abilities is low (r = 0.185; 95% CI: 0.087-0.287), suggesting relatively weak support for general intelligence in animals. We then use a case study with relatedness (genetic) data to demonstrate how analysing traits using mixed models, without dimensionality reduction, provides new insights into the structure of phenotypic variance among cognitive traits, and uncovers genetic associations that would be hidden otherwise. We hope this article will stimulate the use of alternative tools in the study of cognition and its evolution in animals.
Collapse
Affiliation(s)
| | - Dovid Y. Kozlovsky
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | | | - Vincent Careau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Matzel LD, Patel HM, Piela MC, Manzano MD, Tu A, Crawford DW. General Cognitive Ability Predicts Survival-Readiness in Genetically Heterogeneous Laboratory Mice. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.531014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Bensky MK, Bell AM. Predictors of individual variation in reversal learning performance in three-spined sticklebacks. Anim Cogn 2020; 23:925-938. [PMID: 32514661 PMCID: PMC12060797 DOI: 10.1007/s10071-020-01399-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/30/2022]
Abstract
Behavioral flexibility is a type of phenotypic plasticity that can influence how animals cope with environmental change and is often measured with a reversal learning paradigm. The goal of this study was to understand why individuals differ in behavioral flexibility, and whether individual differences in behavioral flexibility fit the predictions of coping styles theory. We tested whether individual variation in flexibility correlates with response to novelty (response to a novel object), boldness (emergence into a novel environment), and behavioral persistence (response to a barrier), and tested for trade-offs between how quickly individuals learn an initial discrimination and flexibility. We compare results when reversal learning performance is measured during an early step of reversal learning (e.g. the number of errors during the first reversal session) to when reversal learning performance is measured by time to criterion. Individuals that made fewer mistakes during an early step of reversal learning spent more time away from the novel object, were less bold, less persistent, and performed worse during initial discrimination learning. In contrast, time to criterion was not correlated with any of the behaviors measured. This result highlights the utility of dissecting the steps of reversal learning to better understand variation in behavioral flexibility. Altogether, this study suggests that individuals differ in flexibility because flexibility is a key ingredient to their overall integrated strategy for coping with environmental challenges.
Collapse
Affiliation(s)
- Miles K Bensky
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL, 61801, USA.
| | - Alison M Bell
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| |
Collapse
|
30
|
Camacho-Alpízar A, Griffin AS, Guillette LM. Are cognitive abilities under selection by female choice? A comment on Chen et al. (2019). Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Boddington R, Gómez Dunlop CA, Garnham LC, Ryding S, Abbey-Lee RN, Kreshchenko A, Løvlie H. The relationship between monoaminergic gene expression, learning, and optimism in red junglefowl chicks. Anim Cogn 2020; 23:901-911. [PMID: 32440792 PMCID: PMC7415762 DOI: 10.1007/s10071-020-01394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Intra-species cognitive variation is commonly observed, but explanations for why individuals within a species differ in cognition are still understudied and not yet clear. Cognitive processes are likely influenced by genetic differences, with genes in the monoaminergic systems predicted to be important. To explore the potential role of these genes in association with individual variation in cognition, we exposed red junglefowl (Gallus gallus) chicks to behavioural assays measuring variation in learning (discriminative learning, reversal learning, and cognitive flexibility) and optimism (measured in a cognitive judgement bias test). Following this, we analysed prefrontal cortex gene expression of several dopaminergic and serotonergic genes in these chicks. Of our explored genes, serotonin receptor genes 5HT2A and 5HT2B, and dopaminergic receptor gene DRD1 were associated with measured behaviour. Chicks that had higher 5HT2A were less flexible in the reversal learning task, and chicks with higher 5HT2B also tended to be less cognitively flexible. Additionally, chicks with higher DRD1 were more optimistic, whilst chicks with higher 5HT2A tended to be less optimistic. These results suggest that the serotonergic and dopaminergic systems are linked to observed cognitive variation, and, thus, individual differences in cognition can be partially explained by variation in brain gene expression.
Collapse
Affiliation(s)
- Robert Boddington
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Clara A Gómez Dunlop
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Laura C Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Sara Ryding
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Robin N Abbey-Lee
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Anastasia Kreshchenko
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
32
|
Langley EJG, Adams G, Beardsworth CE, Dawson DA, Laker PR, van Horik JO, Whiteside MA, Wilson AJ, Madden JR. Heritability and correlations among learning and inhibitory control traits. Behav Ecol 2020; 31:798-806. [PMID: 32821079 PMCID: PMC7428062 DOI: 10.1093/beheco/araa029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
To understand the evolution of cognitive abilities, we need to understand both how selection acts upon them and their genetic (co)variance structure. Recent work suggests that there are fitness consequences for free-living individuals with particular cognitive abilities. However, our current understanding of the heritability of these abilities is restricted to domesticated species subjected to artificial selection. We investigated genetic variance for, and genetic correlations among four cognitive abilities: inhibitory control, visual and spatial discrimination, and spatial ability, measured on >450 pheasants, Phasianus colchicus, over four generations. Pheasants were reared in captivity but bred from adults that lived in the wild and hence, were subject to selection on survival. Pheasant chicks are precocial and were reared without parents, enabling us to standardize environmental and parental care effects. We constructed a pedigree based on 15 microsatellite loci and implemented animal models to estimate heritability. We found moderate heritabilities for discrimination learning and inhibitory control (h2 = 0.17-0.23) but heritability for spatial ability was low (h2 = 0.09). Genetic correlations among-traits were largely positive but characterized by high uncertainty and were not statistically significant. Principle component analysis of the genetic correlation matrix estimate revealed a leading component that explained 69% of the variation, broadly in line with expectations under a general intelligence model of cognition. However, this pattern was not apparent in the phenotypic correlation structure which was more consistent with a modular view of animal cognition. Our findings highlight that the expression of cognitive traits is influenced by environmental factors which masks the underlying genetic structure.
Collapse
Affiliation(s)
- Ellis J G Langley
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| | - Gracie Adams
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, UK
| | - Christine E Beardsworth
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| | - Deborah A Dawson
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, UK
| | - Philippa R Laker
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| | - Jayden O van Horik
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Joah R Madden
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| |
Collapse
|
33
|
Behavioural Variability in Chicks vs. the Pattern of Behaviour in Adult Hens. Animals (Basel) 2020; 10:ani10020269. [PMID: 32050458 PMCID: PMC7070742 DOI: 10.3390/ani10020269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Environmental requirements ensuring behavioural welfare to laying hens may vary depending on the breed. Chickens representing various breeds and reared in the same environment were found not only to differ in the level of activity, emotional arousal, and degree of curiosity, but also to prefer different enrichments of the environment, which was reflected by different levels of stress in these birds. Hence, a question was posed whether the behavioural differences observed were innate behavioural patterns typical of the breed or whether they are an effect of the modifying impact of the environment, which varies between breeds. It has been hypothesised that differences observed already in chicks of different breeds may not be associated with the modifying effect of the environment. Instead, they may be a genetically determined breed-specific behaviour. The present investigations consisted in behavioural tests and assessment of the behaviour of chicks of three laying hen breeds. The study involved 60 green-legged partridge (Zk), 60 Polbar (Pb), and 60 Leghorn (Lg) chicks. The investigations have demonstrated that the birds from the analysed breeds exhibit behavioural differences already on the first days of life. The effect of the breed was evident in the case of such traits as strategy for acquisition of food resources, fearfulness/curiosity, and interest in elements of the environment. With age, chicks may exhibit changes in their emotions, e.g., more pronounced fearfulness, and environmental preferences. However, in the latter case, there is clear tendency towards breed-specific behaviours exhibited from the first days of life. The level of activity, which largely differentiates adult birds, does not discriminate between chicks. Abstract The aim of the study was to assess the behaviour of chicks of three different breeds of laying hens differing in the activity, emotional reactivity, and environmental preferences. Another objective was to answer the question whether the behavioural differences between adult birds would be evident already in the chick period or whether they are an effect of the further modifying impact of the environment. 60 green-legged partridge, 60 Polbar, and 60 Leghorn chicks were used in the experiments. The chicks hatched in a flock where hens were previously assessed with behavioural tests and the corticosterone levels in their feathers was determined, indicating significant differences in the temperament and stress level between the breeds. Five tests were carried out: two on competitiveness, activity, interest and fearfulness/curiosity. The experiments revealed considerable differences between the chicks. The Zk birds coped better with situations requiring swiftness and initiative. The Pb chicks were slower than Zk and Lg and did not make quick decisions. Hence, a lower number of these birds entering and leaving the test cage and staying inside was recorded. The Zk chicks exhibited a higher level of fearfulness than the other breeds. In terms of the environment enrichment elements, sand and woodchips were more attractive to the Zk chicks, whereas the Lg and Pb birds preferred pecking the string. No differences in the time of undertaking the analysed activities were found between the breeds.
Collapse
|
34
|
Spatial learning in captive and wild-born lizards: heritability and environmental effects. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2805-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
The role of personality, cognition, and affective state in same-sex contests in the red junglefowl. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2762-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Intra-species contests are common in the animal kingdom and can have fitness consequences. Most research on what predicts contest outcome focuses on morphology, although differences in personality and cognition may also be involved. Supporting this, more proactive individuals often have dominant status, although the causality of this relationship is rarely investigated. Contest initiators often win; thus, individuals that are more proactive in their personality (e.g., more aggressive, risk-taking) or cognition (e.g., more optimistic, impulsive) may initiate contests more often. To investigate this, we assayed the behavior and cognition of sexually mature male and female red junglefowl (Gallus gallus), a species in which both sexes contest over social status, before staging intra-sexual contests. We confirm that contest initiators were more likely to win. In males, individuals that behaved more boldly in a novel arena test were more likely to initiate and win contests. Female initiators tended to be less active in novel object test, more aggressive in a restrained opponent test, and respond less optimistically in a cognitive judgement bias test, whereas the main predictor of whether a female would win a contest was whether she initiated it. These results suggest that behaviors attributed to proactive and reactive personalities, and—at least for female red junglefowl—optimism, can affect contest initiation and outcome. Therefore, within species, and depending on sex, different aspects of behavior and cognition may independently affect contest initiation and outcome. The generality of these findings, and their fitness consequences, requires further investigation.
Significance statement
In red junglefowl, we explored how behavior previously shown to describe personality, cognition, and affective state affected initiation and outcome of intra-sexual contests, by staging contests between sexually mature individuals previously assayed in behavioral and cognitive tests. In both sexes, contest initiators usually won. Bolder males were more likely to initiate and win contests. Female contests initiators were less active, more aggressive, and less optimistic. Our results suggest that personality and cognition could affect the initiation and outcome of contests and that how this occurs may differ between sexes.
Collapse
|
36
|
|
37
|
Zidar J, Balogh ACV, Leimar O, Løvlie H. Generalization of learned preferences covaries with behavioral flexibility in red junglefowl chicks. Behav Ecol 2019; 30:1375-1381. [PMID: 31579147 PMCID: PMC6765379 DOI: 10.1093/beheco/arz088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/19/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
The relationship between animal cognition and consistent among-individual behavioral differences (i.e., behavioral types, animal personality, or coping styles), has recently received increased research attention. Focus has mainly been on linking different behavioral types to performance in learning tasks. It has been suggested that behavioral differences could influence also how individuals use previously learnt information to generalize about new stimuli with similar properties. Nonetheless, this has rarely been empirically tested. Here, we therefore explore the possibility that individual variation in generalization is related to variation in behavioral types in red junglefowl chicks (Gallus gallus). We show that more behaviorally flexible chicks have a stronger preference for a novel stimulus that is intermediate between 2 learnt positive stimuli compared to more inflexible chicks. Thus, more flexible and inflexible chicks differ in how they generalize. Further, behavioral flexibility correlates with fearfulness, suggesting a coping style, supporting that variation in generalization is related to variation in behavioral types. How individuals generalize affects decision making and responses to novel situations or objects, and can thus have a broad influence on the life of an individual. Our results add to the growing body of evidence linking cognition to consistent behavioral differences.
Collapse
Affiliation(s)
- Josefina Zidar
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Campus Valla, inköping, Sweden
| | - Alexandra C V Balogh
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Campus Valla, inköping, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Olof Leimar
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Campus Valla, inköping, Sweden
| |
Collapse
|
38
|
Contextual fear learning and memory differ between stress coping styles in zebrafish. Sci Rep 2019; 9:9935. [PMID: 31289317 PMCID: PMC6617452 DOI: 10.1038/s41598-019-46319-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022] Open
Abstract
Animals frequently overcome stressors and the ability to learn and recall these salient experiences is essential to an individual’s survival. As part of an animal’s stress coping style, behavioral and physiological responses to stressors are often consistent across contexts and time. However, we are only beginning to understand how cognitive traits can be biased by different coping styles. Here we investigate learning and memory differences in zebrafish (Danio rerio) displaying proactive and reactive stress coping styles. We assessed learning rate and memory duration using an associative fear conditioning paradigm that trained zebrafish to associate a context with exposure to a natural olfactory alarm cue. Our results show that both proactive and reactive zebrafish learn and remember this fearful association. However, we note significant interaction effects between stress coping style and cognition. Zebrafish with the reactive stress coping style acquired the fear memory at a significantly faster rate than proactive fish. While both stress coping styles showed equal memory recall one day post-conditioning, reactive zebrafish showed significantly stronger recall of the conditioned context relative to proactive fish four days post-conditioning. Through understanding how stress coping strategies promote biases in processing salient information, we gain insight into mechanisms that can constrain adaptive behavioral responses.
Collapse
|
39
|
Madden JR, Langley EJG, Whiteside MA, Beardsworth CE, van Horik JO. The quick are the dead: pheasants that are slow to reverse a learned association survive for longer in the wild. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0297. [PMID: 30104439 PMCID: PMC6107567 DOI: 10.1098/rstb.2017.0297] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Cognitive abilities probably evolve through natural selection if they provide individuals with fitness benefits. A growing number of studies demonstrate a positive relationship between performance in psychometric tasks and (proxy) measures of fitness. We assayed the performance of 154 common pheasant (Phasianus colchicus) chicks on tests of acquisition and reversal learning, using a different set of chicks and different set of cue types (spatial location and colour) in each of two years and then followed their fates after release into the wild. Across all birds, individuals that were slow to reverse previously learned associations were more likely to survive to four months old. For heavy birds, individuals that rapidly acquired an association had improved survival to four months, whereas for light birds, slow acquirers were more likely to be alive. Slow reversers also exhibited less exploratory behaviour in assays when five weeks old. Fast acquirers visited more artificial feeders after release. In contrast to most other studies, we showed that apparently ‘poor’ cognitive performance (slow reversal speed suggesting low behavioural flexibility) correlates with fitness benefits in at least some circumstances. This correlation suggests a novel mechanism by which continued exaggeration of cognitive abilities may be constrained. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.
Collapse
Affiliation(s)
- Joah R Madden
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Ellis J G Langley
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Christine E Beardsworth
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Jayden O van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
40
|
Sauce B, Bendrath S, Herzfeld M, Siegel D, Style C, Rab S, Korabelnikov J, Matzel LD. The impact of environmental interventions among mouse siblings on the heritability and malleability of general cognitive ability. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0289. [PMID: 30104434 DOI: 10.1098/rstb.2017.0289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
General cognitive ability can be highly heritable in some species, but at the same time, is very malleable. This apparent paradox could potentially be explained by gene-environment interactions and correlations that remain hidden due to experimental limitations on human research and blind spots in animal research. Here, we shed light on this issue by combining the design of a sibling study with an environmental intervention administered to laboratory mice. The analysis included 58 litters of four full-sibling genetically heterogeneous CD-1 male mice, for a total of 232 mice. We separated the mice into two subsets of siblings: a control group (maintained in standard laboratory conditions) and an environmental-enrichment group (which had access to continuous physical exercise and daily exposure to novel environments). We found that general cognitive ability in mice has substantial heritability (24% for all mice) and is also malleable. The mice that experienced the enriched environment had a mean intelligence score that was 0.44 standard deviations higher than their siblings in the control group (equivalent to gains of 6.6 IQ points in humans). We also found that the estimate of heritability changed between groups (55% in the control group compared with non-significant 15% in the enrichment group), analogous to findings in humans across socio-economic status. Unexpectedly, no evidence of gene-environment interaction was detected, and so the change in heritability might be best explained by higher environmental variance in the enrichment group. Our findings, as well as the 'sibling intervention procedure' for mice, may be valuable to future research on the heritability, mechanisms and evolution of cognition.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Bruno Sauce
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, Solna 171 65, Sweden
| | - Sophie Bendrath
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Margalit Herzfeld
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Dan Siegel
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Conner Style
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Sayeeda Rab
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Jonathan Korabelnikov
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Louis D Matzel
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
41
|
Boogert NJ, Madden JR, Morand-Ferron J, Thornton A. Measuring and understanding individual differences in cognition. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0280. [PMID: 30104425 DOI: 10.1098/rstb.2017.0280] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Individuals vary in their cognitive performance. While this variation forms the foundation of the study of human psychometrics, its broader importance is only recently being recognized. Explicitly acknowledging this individual variation found in both humans and non-human animals provides a novel opportunity to understand the mechanisms, development and evolution of cognition. The papers in this special issue highlight the growing emphasis on individual cognitive differences from fields as diverse as neurobiology, experimental psychology and evolutionary biology. Here, we synthesize this body of work. We consider the distinct challenges in quantifying individual differences in cognition and provide concrete methodological recommendations. In particular, future studies would benefit from using multiple task variants to ensure they target specific, clearly defined cognitive traits and from conducting repeated testing to assess individual consistency. We then consider how neural, genetic, developmental and behavioural factors may generate individual differences in cognition. Finally, we discuss the potential fitness consequences of individual cognitive variation and place these into an evolutionary framework with testable hypotheses. We intend for this special issue to stimulate researchers to position individual variation at the centre of the cognitive sciences.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Neeltje J Boogert
- Centre for Ecology and Conservation, Daphne du Maurier Building, University of Exeter, Penryn TR10 9FE, UK
| | - Joah R Madden
- Department of Psychology, Washington Singer Labs, University of Exeter, Exeter EX4 4QG, UK
| | - Julie Morand-Ferron
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada, K1N 6N5
| | - Alex Thornton
- Centre for Ecology and Conservation, Daphne du Maurier Building, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
42
|
Laubu C, Louâpre P, Dechaume-Moncharmont FX. Pair-bonding influences affective state in a monogamous fish species. Proc Biol Sci 2019; 286:20190760. [PMID: 31185864 DOI: 10.1098/rspb.2019.0760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In humans, affective states are a key component in pair-bonding, particularly in the early stage of a relationship. Pairing with a high-quality partner elicits positive affective states which, in turn, validate and reinforce the mate choice. Affective states thus strongly affect pair stability and future reproductive success. We propose generalizing the link between affective states and pair-bonding to encompass other monogamous species exhibiting biparental care, chiefly where the reproductive success of the pair critically depends on the coordination between partners. The convict cichlid Amatitlania siquia is a monogamous fish species that forms long-lasting pairs with strong cooperation between parents for parental care. In this species, we showed that females paired with their non-preferred male had lower reproductive success than those paired with their preferred male. We then transposed the judgement bias paradigm, previously used in other animal species, to assess objectively affective states in fishes. Females that were assigned their non-preferred partner exhibited pessimistic bias, which indicates a negative affective state. By contrast, females that were assigned their preferred partner did not exhibit changes in their affective state. Our results highlight that the influence of pair-bonding on affective states is not human-specific and can also be observed in non-human species.
Collapse
Affiliation(s)
- Chloé Laubu
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté , 6 Boulevard Gabriel, 21000 Dijon , France
| | - Philippe Louâpre
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté , 6 Boulevard Gabriel, 21000 Dijon , France
| | | |
Collapse
|
43
|
Dubois J, Galdi P, Paul LK, Adolphs R. A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170284. [PMID: 30104429 PMCID: PMC6107566 DOI: 10.1098/rstb.2017.0284] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 02/04/2023] Open
Abstract
Individual people differ in their ability to reason, solve problems, think abstractly, plan and learn. A reliable measure of this general ability, also known as intelligence, can be derived from scores across a diverse set of cognitive tasks. There is great interest in understanding the neural underpinnings of individual differences in intelligence, because it is the single best predictor of long-term life success. The most replicated neural correlate of human intelligence to date is total brain volume; however, this coarse morphometric correlate says little about function. Here, we ask whether measurements of the activity of the resting brain (resting-state fMRI) might also carry information about intelligence. We used the final release of the Young Adult Human Connectome Project (N = 884 subjects after exclusions), providing a full hour of resting-state fMRI per subject; controlled for gender, age and brain volume; and derived a reliable estimate of general intelligence from scores on multiple cognitive tasks. Using a cross-validated predictive framework, we predicted 20% of the variance in general intelligence in the sampled population from their resting-state connectivity matrices. Interestingly, no single anatomical structure or network was responsible or necessary for this prediction, which instead relied on redundant information distributed across the brain.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Julien Dubois
- Division of Humanities and Social Sciences, Pasadena, CA 91125, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paola Galdi
- Department of Management and Innovation Systems, University of Salerno, Fisciano Salerno, Italy
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Lynn K Paul
- Division of Humanities and Social Sciences, Pasadena, CA 91125, USA
- Chen Neuroscience Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ralph Adolphs
- Division of Humanities and Social Sciences, Pasadena, CA 91125, USA
- Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
- Chen Neuroscience Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
44
|
Zidar J, Balogh A, Favati A, Jensen P, Leimar O, Sorato E, Løvlie H. The relationship between learning speed and personality is age- and task-dependent in red junglefowl. Behav Ecol Sociobiol 2018; 72:168. [PMID: 30369707 PMCID: PMC6182743 DOI: 10.1007/s00265-018-2579-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 11/06/2022]
Abstract
Abstract Cognition is fundamental to animals’ lives and an important source of phenotypic variation. Nevertheless, research on individual variation in animal cognition is still limited. Further, although individual cognitive abilities have been suggested to be linked to personality (i.e., consistent behavioral differences among individuals), few studies have linked performance across multiple cognitive tasks to personality traits. Thus, the interplays between cognition and personality are still unclear. We therefore investigated the relationships between an important aspect of cognition, learning, and personality, by exposing young and adult red junglefowl (Gallus gallus) to multiple learning tasks (discriminative, reversal, and spatial learning) and personality assays (novel arena, novel object, and tonic immobility). Learning speed was not correlated across learning tasks, and learning speed in discrimination and spatial learning tasks did not co-vary with personality. However, learning speed in reversal tasks was associated with individual variation in exploration, and in an age-dependent manner. More explorative chicks learned the reversal task faster than less explorative ones, while the opposite association was found for adult females (learning speed could not be assayed in adult males). In the same reversal tasks, we also observed a sex difference in learning speed of chicks, with females learning faster than males. Our results suggest that the relationship between cognition and personality is complex, as shown by its task- and age-dependence, and encourage further investigation of the causality and dynamics of this relationship. Significance statement In the ancestor of today’s chickens, the red junglefowl, we explored how personality and cognition relate by exposing both chicks and adults to several learning tasks and personality assays. Our birds differed in personality and learning speed, while fast learners in one task did not necessarily learn fast in another (i.e., there were no overall “smarter” birds). Exploration correlated with learning speed in the more complex task of reversal learning: faster exploring chicks, but slower exploring adult females, learned faster, compared to less explorative birds. Other aspects of cognition and personality did not correlate. Our results suggest that cognition and personality are related, and that the relationship can differ depending on task and age of the animal. Electronic supplementary material The online version of this article (10.1007/s00265-018-2579-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josefina Zidar
- 1Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - Alexandra Balogh
- 1Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden.,2Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Anna Favati
- 2Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Per Jensen
- 1Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - Olof Leimar
- 2Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Enrico Sorato
- 1Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - Hanne Løvlie
- 1Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
45
|
Cauchoix M, Chow PKY, van Horik JO, Atance CM, Barbeau EJ, Barragan-Jason G, Bize P, Boussard A, Buechel SD, Cabirol A, Cauchard L, Claidière N, Dalesman S, Devaud JM, Didic M, Doligez B, Fagot J, Fichtel C, Henke-von der Malsburg J, Hermer E, Huber L, Huebner F, Kappeler PM, Klein S, Langbein J, Langley EJG, Lea SEG, Lihoreau M, Lovlie H, Matzel LD, Nakagawa S, Nawroth C, Oesterwind S, Sauce B, Smith EA, Sorato E, Tebbich S, Wallis LJ, Whiteside MA, Wilkinson A, Chaine AS, Morand-Ferron J. The repeatability of cognitive performance: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170281. [PMID: 30104426 PMCID: PMC6107569 DOI: 10.1098/rstb.2017.0281] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Behavioural and cognitive processes play important roles in mediating an individual's interactions with its environment. Yet, while there is a vast literature on repeatable individual differences in behaviour, relatively little is known about the repeatability of cognitive performance. To further our understanding of the evolution of cognition, we gathered 44 studies on individual performance of 25 species across six animal classes and used meta-analysis to assess whether cognitive performance is repeatable. We compared repeatability (R) in performance (1) on the same task presented at different times (temporal repeatability), and (2) on different tasks that measured the same putative cognitive ability (contextual repeatability). We also addressed whether R estimates were influenced by seven extrinsic factors (moderators): type of cognitive performance measurement, type of cognitive task, delay between tests, origin of the subjects, experimental context, taxonomic class and publication status. We found support for both temporal and contextual repeatability of cognitive performance, with mean R estimates ranging between 0.15 and 0.28. Repeatability estimates were mostly influenced by the type of cognitive performance measures and publication status. Our findings highlight the widespread occurrence of consistent inter-individual variation in cognition across a range of taxa which, like behaviour, may be associated with fitness outcomes.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- M Cauchoix
- Station d'Ecologie Théorique et Expérimentale du CNRS UMR5321, Evolutionary Ecology Group, 2 route du CNRS, 09200 Moulis, France
- Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse, France
| | - P K Y Chow
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
- Graduate School of Environmental Science, Division of Biospohere Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - J O van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - C M Atance
- School of Psychology, University of Ottawa, Ottawa, Canada
| | - E J Barbeau
- Centre de recherche Cerveau et Cognition, UPS-CNRS, UMR5549, Toulouse, France
| | - G Barragan-Jason
- Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse, France
| | - P Bize
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - A Boussard
- Department of Zoology/Ethology, Stockholm University, Svante Arrheniusväg 18B, 10691 Stockholm, Sweden
| | - S D Buechel
- Department of Zoology/Ethology, Stockholm University, Svante Arrheniusväg 18B, 10691 Stockholm, Sweden
| | - A Cabirol
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - L Cauchard
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - N Claidière
- LPC, Aix Marseille University, CNRS, Marseille, France
| | - S Dalesman
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - J M Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - M Didic
- AP-HM Timone & Institut de Neurosciences des Systèmes, Marseille, France
| | - B Doligez
- Department of Biometry and Evolutionary Biology, CNRS UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - J Fagot
- LPC, Aix Marseille University, CNRS, Marseille, France
| | - C Fichtel
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - J Henke-von der Malsburg
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - E Hermer
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
| | - L Huber
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - F Huebner
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - P M Kappeler
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - S Klein
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - J Langbein
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - E J G Langley
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - S E G Lea
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - M Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - H Lovlie
- IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - L D Matzel
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - S Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - C Nawroth
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - S Oesterwind
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - B Sauce
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - E A Smith
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - E Sorato
- IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - S Tebbich
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
| | - L J Wallis
- Clever Dog Lab, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - M A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - A Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - A S Chaine
- Station d'Ecologie Théorique et Expérimentale du CNRS UMR5321, Evolutionary Ecology Group, 2 route du CNRS, 09200 Moulis, France
- Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse, France
| | | |
Collapse
|