1
|
Larkin AA, Hagstrom GI, Brock ML, Garcia NS, Martiny AC. Basin-scale biogeography of Prochlorococcus and SAR11 ecotype replication. THE ISME JOURNAL 2023; 17:185-194. [PMID: 36273241 PMCID: PMC9589681 DOI: 10.1038/s41396-022-01332-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Establishing links between microbial diversity and environmental processes requires resolving the high degree of functional variation among closely related lineages or ecotypes. Here, we implement and validate an improved metagenomic approach that estimates the spatial biogeography and environmental regulation of ecotype-specific replication patterns (RObs) across ocean regions. A total of 719 metagenomes were analyzed from meridional Bio-GO-SHIP sections in the Atlantic and Indian Ocean. Accounting for sequencing bias and anchoring replication estimates in genome structure were critical for identifying physiologically relevant biological signals. For example, ecotypes within the dominant marine cyanobacteria Prochlorococcus exhibited distinct diel cycles in RObs that peaked between 19:00-22:00. Additionally, both Prochlorococcus ecotypes and ecotypes within the highly abundant heterotroph Pelagibacter (SAR11) demonstrated systematic biogeographies in RObs that differed from spatial patterns in relative abundance. Finally, RObs was significantly regulated by nutrient stress and temperature, and explained by differences in the genomic potential for nutrient transport, energy production, cell wall structure, and replication. Our results suggest that our new approach to estimating replication is reflective of gross population growth. Moreover, this work reveals that the interaction between adaptation and environmental change drives systematic variability in replication patterns across ocean basins that is ecotype-specific, adding an activity-based dimension to our understanding of microbial niche space.
Collapse
Affiliation(s)
- Alyse A Larkin
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - George I Hagstrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Melissa L Brock
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Nathan S Garcia
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, CA, USA.
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Saraf M, Tavakkoli Yaraki M, Prateek, Tan YN, Gupta RK. Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS APPLIED NANO MATERIALS 2021; 4:911-948. [PMID: 37556236 PMCID: PMC7885806 DOI: 10.1021/acsanm.0c02945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 07/28/2023]
Abstract
The COVID-19 outbreak has exposed the world's preparation to fight against unknown/unexplored infectious and life-threatening pathogens. The unavailability of vaccines, slow or sometimes unreliable real-time virus/bacteria detection techniques, insufficient personal protective equipment (PPE), and a shortage of ventilators and many other transportation equipments have further raised serious concerns. Material research has been playing a pivotal role in developing antimicrobial agents for water treatment and photodynamic therapy, fast and ultrasensitive biosensors for virus/biomarkers detection, as well as for relevant biomedical and environmental applications. It has been noticed that these research efforts nowadays primarily focus on the nanomaterials-based platforms owing to their simplicity, reliability, and feasibility. In particular, nanostructured fluorescent materials have shown key potential due to their fascinating optical and unique properties at the nanoscale to combat against a COVID-19 kind of pandemic. Keeping these points in mind, this review attempts to give a perspective on the four key fluorescent materials of different families, including carbon dots, metal nanoclusters, aggregation-induced-emission luminogens, and MXenes, which possess great potential for the development of ultrasensitive biosensors and infective antimicrobial agents to fight against various infections/diseases. Particular emphasis has been given to the biomedical and environmental applications that are linked directly or indirectly to the efforts in combating COVID-19 pandemics. This review also aims to raise the awareness of researchers and scientists across the world to utilize such powerful materials in tackling similar pandemics in future.
Collapse
Affiliation(s)
- Mohit Saraf
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering,
National University of Singapore, 4 Engineering Drive 4,
117585, Singapore
- Research and Development Department,
Nanofy Technologies Pte. Ltd., 048580,
Singapore
| | - Prateek
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Yen Nee Tan
- Faculty of Science, Agriculture & Engineering,
Newcastle University, Newcastle upon Tyne NE1 7RU,
U.K.
- Newcastle Research & Innovation Institute,
Devan Nair Institute for Employment & Employability, 80
Jurong East Street 21, 609607, Singapore
| | - Raju Kumar Gupta
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Centre for Environmental Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Department of Sustanable Energy Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| |
Collapse
|
3
|
Visualization of probiotics via epifluorescence microscopy and fluorescence in situ hybridization (FISH). J Microbiol Methods 2021; 182:106151. [PMID: 33592223 DOI: 10.1016/j.mimet.2021.106151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/21/2022]
Abstract
Aerobic plate counts, the standard for bacterial enumeration in the probiotic industry, can be biased towards fast-growing organisms that replicate on synthetic media and can significantly underestimate total bacterial abundance. Culture-independent approaches such as fluorescence in situ hybridization (FISH) hold promise as a means to rapidly and accurately enumerate bacteria in probiotic products. In addition, FISH has the potential to more accurately represent bacterial growth dynamics in the environment in which products are applied without imposing additional growth constraints that are required for enumeration via plate counts. In this study, we designed and optimized three new FISH probes to visualize and quantify Bacillus amyloliquefaciens, Bacillus pumilus, and Bacillus licheniformis within probiotic products. Microscopy-based estimates were consistent or higher than label claims for Pediococcus acidilactici, Pediococcus pentosaceus, Lactobacillus plantarum, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus in both a direct fed microbial (DFM) product as well as a crop microbial biostimulant (CMB) product. Quantification with FISH after a germination experiment revealed the potential for this approach to be used after application of the product.
Collapse
|
4
|
Ruiz-González C, Rodellas V, Garcia-Orellana J. The microbial dimension of submarine groundwater discharge: current challenges and future directions. FEMS Microbiol Rev 2021; 45:6128669. [PMID: 33538813 PMCID: PMC8498565 DOI: 10.1093/femsre/fuab010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the relevance of submarine groundwater discharge (SGD) for ocean biogeochemistry, the microbial dimension of SGD remains poorly understood. SGD can influence marine microbial communities through supplying chemical compounds and microorganisms, and in turn, microbes at the land–ocean transition zone determine the chemistry of the groundwater reaching the ocean. However, compared with inland groundwater, little is known about microbial communities in coastal aquifers. Here, we review the state of the art of the microbial dimension of SGD, with emphasis on prokaryotes, and identify current challenges and future directions. Main challenges include improving the diversity description of groundwater microbiota, characterized by ultrasmall, inactive and novel taxa, and by high ratios of sediment-attached versus free-living cells. Studies should explore microbial dynamics and their role in chemical cycles in coastal aquifers, the bidirectional dispersal of groundwater and seawater microorganisms, and marine bacterioplankton responses to SGD. This will require not only combining sequencing methods, visualization and linking taxonomy to activity but also considering the entire groundwater–marine continuum. Interactions between traditionally independent disciplines (e.g. hydrogeology, microbial ecology) are needed to frame the study of terrestrial and aquatic microorganisms beyond the limits of their presumed habitats, and to foster our understanding of SGD processes and their influence in coastal biogeochemical cycles.
Collapse
Affiliation(s)
- Clara Ruiz-González
- Institut de Ciències del Mar (ICM-CSIC). Passeig Marítim de la Barceloneta 37-49, E08003 Barcelona, Spain
| | - Valentí Rodellas
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| | - Jordi Garcia-Orellana
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain.,Departament de Física, Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| |
Collapse
|
5
|
Phosphate-Solubilizing Fungi: Current Perspective and Future Need for Agricultural Sustainability. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Chung CZ, Amikura K, Söll D. Using Genetic Code Expansion for Protein Biochemical Studies. Front Bioeng Biotechnol 2020; 8:598577. [PMID: 33195171 PMCID: PMC7604363 DOI: 10.3389/fbioe.2020.598577] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/31/2023] Open
Abstract
Protein identification has gone beyond simply using protein/peptide tags and labeling canonical amino acids. Genetic code expansion has allowed residue- or site-specific incorporation of non-canonical amino acids into proteins. By taking advantage of the unique properties of non-canonical amino acids, we can identify spatiotemporal-specific protein states within living cells. Insertion of more than one non-canonical amino acid allows for selective labeling that can aid in the identification of weak or transient protein-protein interactions. This review will discuss recent studies applying genetic code expansion for protein labeling and identifying protein-protein interactions and offer considerations for future work in expanding genetic code expansion methods.
Collapse
Affiliation(s)
- Christina Z. Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
7
|
Abstract
Cells are the building blocks of life, from single-celled microbes through to multi-cellular organisms. To understand a multitude of biological processes we need to understand how cells behave, how they interact with each other and how they respond to their environment. The use of new methodologies is changing the way we study cells allowing us to study them on minute scales and in unprecedented detail. These same methods are allowing researchers to begin to sample the vast diversity of microbes that dominate natural environments. The aim of this special issue is to bring together research and perspectives on the application of new approaches to understand the biological properties of cells, including how they interact with other biological entities. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Thomas A Richards
- Biosciences and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003 Barcelona, Spain
| | - Stefano Pagliara
- Biosciences and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TU, UK
| |
Collapse
|