1
|
Rosati AG, Felsche E, Cole MF, Atencia R, Rukundo J. Flexible information-seeking in chimpanzees. Cognition 2024; 251:105898. [PMID: 39059117 PMCID: PMC11343684 DOI: 10.1016/j.cognition.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Humans can flexibly use metacognition to monitor their own knowledge and strategically acquire new information when needed. While humans can deploy these skills across a variety of contexts, most evidence for metacognition in animals has focused on simple situations, such as seeking out information about the location of food. Here, we examine the flexibility, breadth, and limits of this skill in chimpanzees. We tested semi-free-ranging chimpanzees on a novel task where they could seek information by standing up to peer into different containers. In Study 1, we tested n = 47 chimpanzees to assess if chimpanzees would spontaneously engage in information-seeking without prior experience, as well as to characterize individual variation in this propensity. We found that many chimpanzees engaged in information-seeking with minimal experience, and that younger chimpanzees and females were more likely to do so. In two subsequent studies, we then further tested chimpanzees who initially showed robust information-seeking on new variations of this task, to disentangle the cognitive processing shaping their behaviors. In Study 2, we examined how a subset of n = 12 chimpanzees applied these skills to seek information about the location versus the identity of rewards, and found that chimpanzees were equally adept at seeking out location and identity information. In Study 3, we examined whether a subset of n = 6 chimpanzees could apply these skills to make more efficacious decisions when faced with uncertainty about reward payoffs. Chimpanzees were able to use information-seeking to resolve risk and choose more optimally when faced with uncertain payoffs, although they often also engaged in information-seeking when it was not strictly necessary. These results identify core features of flexible metacognition that chimpanzees share with humans, as well as constraints that may represent key evolutionary shifts in human cognition.
Collapse
Affiliation(s)
- Alexandra G Rosati
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Anthropology, University of Michigan, Ann Arbor, MI, USA.
| | - Elisa Felsche
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Megan F Cole
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | | | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary / Chimpanzee Trust, Entebbe, Uganda
| |
Collapse
|
2
|
Cole MF, Barnes P, Monroe IG, Rukundo J, Emery Thompson M, Rosati AG. Age-related physiological dysregulation progresses slowly in semi-free-ranging chimpanzees. Evol Med Public Health 2024; 12:129-142. [PMID: 39239461 PMCID: PMC11375048 DOI: 10.1093/emph/eoae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/24/2024] [Indexed: 09/07/2024] Open
Abstract
Background and objectives Lifestyle has widespread effects on human health and aging. Prior results from chimpanzees (Pan troglodytes), one of humans' closest evolutionary relatives, indicate that these lifestyle effects may also be shared with other species, as semi-free-ranging chimpanzees fed a naturalistic diet show healthier values in several specific health biomarkers, compared with their sedentary, captive counterparts. Here, we examined how lifestyle factors associated with different environments affect rates of physiological aging in closely related chimpanzees. Methodology We compared physiological dysregulation, an index of biological aging, in semi-free-ranging chimpanzees in an African sanctuary versus captive chimpanzees in US laboratories. If the rate of aging is accelerated by high-calorie diet and sedentism, we predicted greater age-related dysregulation in the laboratory populations. Conversely, if costs of a wild lifestyle accelerate aging, then semi-free-ranging chimpanzees at the sanctuary, whose environment better approximates the wild, should show greater age-related dysregulation. We further tested whether dysregulation differed based on sex or body system, as in humans. Results We found that semi-free-ranging chimpanzees showed lower overall dysregulation, as well as lower age-related change in dysregulation, than laboratory chimpanzees. Males experienced lower dysregulation than females in both contexts, and the two populations exhibited distinct aging patterns based on body system. Conclusions and implications Our results support the conclusion that naturalistic living conditions result in healthier aging in chimpanzees. These data provide support for the proposal that lifestyle effects on human health and aging are conserved from deeper into our evolutionary history.
Collapse
Affiliation(s)
- Megan F Cole
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Paige Barnes
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle G Monroe
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Rukundo
- Chimpanzee Sanctuary and Wildlife Conservation Trust, Entebbe, Uganda
| | | | - Alexandra G Rosati
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Rimbach R, Pontzer H. Increased physical activity is not related to markers of cardiometabolic health in two lemur species. Am J Primatol 2024; 86:e23564. [PMID: 37839049 DOI: 10.1002/ajp.23564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Insufficient physical activity is a major risk factor for cardiometabolic disease (i.e., unhealthy weight gain, heart disease, and diabetes) in humans and may also negatively affect health of primates in human care. Effects of physical activity on energy expenditure and cardiometabolic health are virtually unstudied in nonhuman primates. We investigated physical activity and metabolic markers in 15 adult ring-tailed lemurs (Lemur catta) and 11 Coquerel's sifakas (Propithecus coquereli) at the Duke Lemur Center during a period of low activity in winter when the animals were housed in buildings (with outdoor access) and a period of high activity when individuals were free-ranging in large, outdoor, forested enclosures. We compared body mass, blood glucose, triglycerides, HDL- and LDL-cholesterol, physical activity via accelerometry, and total energy expenditure (TEE) via the doubly labeled water method (in ring-tailed lemurs only) between both conditions. Both species were more active and had a lower body mass in summer. Ring-tailed lemurs had a higher TEE and lower triglyceride levels in summer, whereas sifaka had higher triglyceride levels in summer. Individuals that increased their activity more, also lost more body mass. Individuals that lost more body mass, also had a positive change in HDL-cholesterol (i.e., higher values in summer). Changes in activity were not associated with changes in markers of metabolic health, body fat percentage and TEE (both unadjusted and adjusted for body composition). Older age was associated with lower activity in both species, and decreased glucose in ring-tailed lemurs, but was otherwise unrelated to metabolic markers and, for ring-tailed lemurs, adjusted TEE. Overall, body mass was lower during summer but the increase in physical activity did not strongly influence metabolic health or TEE in these populations.
Collapse
Affiliation(s)
- Rebecca Rimbach
- Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Department of Behavioural Biology, University of Münster, Münster, Germany
- School of Animal, Plant & Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Pontzer H. The provisioned primate: patterns of obesity across lemurs, monkeys, apes and humans. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220218. [PMID: 37661747 PMCID: PMC10475869 DOI: 10.1098/rstb.2022.0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Non-human primates are potentially informative but underutilized species for investigating obesity. I examined patterns of obesity across the Primate order, calculating the ratio of body mass in captivity to that in the wild. This index, relative body mass, for n = 40 non-human primates (mean ± s.d.: females: 1.28 ± 0.30, range 0.67-1.78, males: 1.24 ± 0.28, range 0.70-1.97) overlapped with a reference value for humans (women: 1.52, men: 1.44). Among non-human primates, relative body mass was unrelated to dietary niche, and was marginally greater among female cohorts of terrestrial species. Males and females had similar relative body masses, but species with greater sexual size dimorphism (male/female mass) in wild populations had comparatively larger female body mass in captivity. Provisioned populations in wild and free-ranging settings had similar relative body mass to those in research facilities and zoos. Compared to the wild, captive diets are unlikely to be low in protein or fat, or high in carbohydrate, suggesting these macronutrients are not driving overeating in captive populations. Several primate species, including chimpanzees, a sister-species to humans, had relative body masses similar to humans. Humans are not unique in the propensity to overweight and obesity. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Duke Global Health Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Rosenbaum S, Kuzawa CW. The promise of great apes as model organisms for understanding the downstream consequences of early life experiences. Neurosci Biobehav Rev 2023; 152:105240. [PMID: 37211151 DOI: 10.1016/j.neubiorev.2023.105240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Early life experiences have a significant influence on adult health and aging processes in humans. Despite widespread interest in the evolutionary roots of this phenomenon, very little research on this topic has been conducted in humans' closest living relatives, the great apes. The longitudinal data sets that are now available on wild and captive great ape populations hold great promise to clarify the nature, evolutionary function, and mechanisms underlying these connections in species which share key human life history characteristics. Here, we explain features of great ape life history and socioecologies that make them of particular interest for this topic, as well as those that may limit their utility as comparative models; outline the ways in which available data are complementary to and extend the kinds of data that are available for humans; and review what is currently known about the connections among early life experiences, social behavior, and adult physiology and biological fitness in our closest living relatives. We conclude by highlighting key next steps for this emerging area of research.
Collapse
Affiliation(s)
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, USA; Institute for Policy Research, Northwestern University, USA
| |
Collapse
|
6
|
Rosati AG, Sabbi KH, Bryer MAH, Barnes P, Rukundo J, Mukungu T, Sekulya P, Ampeire I, Aligumisiriza H, Kyama S, Masereka J, Nabukeera W, Okello A, Waiga B, Atwijuze S, Peña NC, Cantwell A, Felsche E, Flores-Mendoza K, Mohamed S, Monroe I, Mulhinch M, O'Gorman K, Salamango J, Shamah R, Otali E, Wrangham RW, Machanda ZP. Observational approaches to chimpanzee behavior in an African sanctuary: Implications for research, welfare, and capacity-building. Am J Primatol 2023; 85:e23534. [PMID: 37461356 PMCID: PMC10530331 DOI: 10.1002/ajp.23534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 08/04/2023]
Abstract
Research in African ape sanctuaries has emerged as an important context for our understanding of comparative cognition and behavior. While much of this work has focused on experimental studies of cognition, these animals semi-free-range in forest habitats and therefore can also provide important information about the behavior of primates in socioecologically-relevant naturalistic contexts. In this "New Approaches" article, we describe a project where we implemented a synthetic program of observational data collection at Ngamba Island Chimpanzee Sanctuary in Uganda, directly modeled after long-term data collection protocols at the Kibale Chimpanzee Project in Uganda, a wild chimpanzee field site. The foundation for this project was a strong partnership between sanctuary staff, field site staff, and external researchers. We describe how we developed a data-collection protocol through discussion and collaboration among these groups, and trained sanctuary caregivers to collect novel observational data using these protocols. We use these data as a case study to examine: (1) how behavioral observations in sanctuaries can inform primate welfare and care practices, such as by understanding aggression within the group; (2) how matched observational protocols across sites can inform our understanding of primate behavior across different contexts, including sex differences in social relationships; and (3) how more robust collaborations between foreign researchers and local partners can support capacity-building in primate range countries, along with mentoring and training students more broadly.
Collapse
Affiliation(s)
- Alexandra G Rosati
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kris H Sabbi
- Department of Anthropology, Tufts University, Medford, Massachusetts, USA
- Kibale Chimpanzee Project, Kibale National Park, Uganda
| | - Margaret A H Bryer
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Paige Barnes
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Titus Mukungu
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Phillip Sekulya
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Innocent Ampeire
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | | | - Stanley Kyama
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Joseph Masereka
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Winnie Nabukeera
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Amos Okello
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Boris Waiga
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | | | | | - Averill Cantwell
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elisa Felsche
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Safa Mohamed
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabelle Monroe
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan Mulhinch
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Psychology, University of California San Diego, La Jolla, California, USA
| | - Kathleen O'Gorman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia Salamango
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rayna Shamah
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Otali
- Kibale Chimpanzee Project, Kibale National Park, Uganda
| | - Richard W Wrangham
- Department of Biology, Tufts University, Medford, Massachusetts, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Zarin P Machanda
- Department of Anthropology, Tufts University, Medford, Massachusetts, USA
- Department of Biology, Tufts University, Medford, Massachusetts, USA
- Kibale Chimpanzee Project, Kibale National Park, Uganda
| |
Collapse
|
7
|
Dunay E, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in saliva from sanctuary chimpanzees (Pan troglodytes) in Republic of Congo and Uganda. PLoS One 2023; 18:e0288007. [PMID: 37384730 PMCID: PMC10310015 DOI: 10.1371/journal.pone.0288007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Pathogen surveillance for great ape health monitoring has typically been performed on non-invasive samples, primarily feces, in wild apes and blood in sanctuary-housed apes. However, many important primate pathogens, including known zoonoses, are shed in saliva and transmitted via oral fluids. Using metagenomic methods, we identified viruses in saliva samples from 46 wild-born, sanctuary-housed chimpanzees at two African sanctuaries in Republic of Congo and Uganda. In total, we identified 20 viruses. All but one, an unclassified CRESS DNA virus, are classified in five families: Circoviridae, Herpesviridae, Papillomaviridae, Picobirnaviridae, and Retroviridae. Overall, viral prevalence ranged from 4.2% to 87.5%. Many of these viruses are ubiquitous in primates and known to replicate in the oral cavity (simian foamy viruses, Retroviridae; a cytomegalovirus and lymphocryptovirus; Herpesviridae; and alpha and gamma papillomaviruses, Papillomaviridae). None of the viruses identified have been shown to cause disease in chimpanzees or, to our knowledge, in humans. These data suggest that the risk of zoonotic viral disease from chimpanzee oral fluids in sanctuaries may be lower than commonly assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary / Chimpanzee Trust, Entebbe, Uganda
| | - Rebeca Atencia
- Jane Goodall Institute Congo, Pointe-Noire, Republic of Congo
| | - Megan F. Cole
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Averill Cantwell
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Alexandra G. Rosati
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
8
|
Rosati AG, Thompson ME, Atencia R, Buckholtz JW. Distinct developmental trajectories for risky and impulsive decision-making in chimpanzees. J Exp Psychol Gen 2023; 152:1551-1564. [PMID: 36689365 PMCID: PMC10271938 DOI: 10.1037/xge0001347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human adolescence is characterized by a suite of changes in decision-making and emotional regulation that promote risky and impulsive behavior. Accumulating evidence suggests that behavioral and physiological shifts seen in human adolescence are shared by some primates, yet it is unclear if the same cognitive mechanisms are recruited. We examined developmental changes in risky choice, intertemporal choice, and emotional responses to decision outcomes in chimpanzees, our closest-living relatives. We found that adolescent chimpanzees were more risk-seeking than adults, as in humans. However, chimpanzees showed no developmental change in intertemporal choice, unlike humans, although younger chimpanzees did exhibit elevated emotional reactivity to waiting compared to adults. Comparisons of cortisol and testosterone indicated robust age-related variation in these biomarkers, and patterns of individual differences in choices, emotional reactivity, and hormones also supported a developmental dissociation between risk and choice impulsivity. These results show that some but not all core features of human adolescent decision-making are shared with chimpanzees. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Alexandra G. Rosati
- Department of Psychology, University of Michigan, Ann Arbor, Michigan USA
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan USA
| | | | - Rebeca Atencia
- Jane Goodall Institute Congo, Pointe Noire, Republic of Congo
| | - Joshua W. Buckholtz
- Department of Psychology, Harvard University, Cambridge, MA USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| |
Collapse
|
9
|
Dunay E, Owens LA, Dunn CD, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in sanctuary chimpanzees across Africa. Am J Primatol 2023; 85:e23452. [PMID: 36329642 PMCID: PMC9812903 DOI: 10.1002/ajp.23452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Leah A. Owens
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee TrustEntebbeUganda
| | - Rebeca Atencia
- Jane Goodall Institute CongoPointe‐NoireRepublic of Congo
| | - Megan F. Cole
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Averill Cantwell
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Alexandra G. Rosati
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
10
|
Curry BA, Drane AL, Atencia R, Feltrer Y, Howatson G, Calvi T, Palmer C, Moittie S, Unwin S, Tremblay JC, Sleeper MM, Lammey ML, Cooper S, Stembridge M, Shave R. Body mass and growth rates in captive chimpanzees (Pan troglodytes) cared for in African wildlife sanctuaries, zoological institutions, and research facilities. Zoo Biol 2023; 42:98-106. [PMID: 35815730 PMCID: PMC10084351 DOI: 10.1002/zoo.21718] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/19/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Captive chimpanzees (Pan troglodytes) mature earlier in body mass and have a greater growth rate compared to wild individuals. However, relatively little is known about how growth parameters compare between chimpanzees living in different captive environments. To investigate, body mass was measured in 298 African sanctuary chimpanzees and was acquired from 1030 zoological and 442 research chimpanzees, using data repositories. An analysis of covariance, adjusting for age, was performed to assess same-sex body mass differences between adult sanctuary, zoological, and research populations. Piecewise linear regression was performed to estimate sex-specific growth rates and the age at maturation, which were compared between sexes and across populations using extra-sum-of-squares F tests. Adult body mass was greater in the zoological and resarch populations compared to the sanctuary chimpanzees, in both sexes. Male and female sanctuary chimpanzees were estimated to have a slower rate of growth compared with their zoological and research counterparts. Additionally, male sanctuary chimpanzees were estimated to have an older age at maturation for body mass compared with zoological and research males, whereas the age at maturation was similar across female populations. For both the zoological and research populations, the estimated growth rate was greater in males compared to females. Together, these data contribute to current understanding of growth and maturation in this species and suggest marked differences between the growth patterns of chimpanzees living in different captive environments.
Collapse
Affiliation(s)
- Bryony A Curry
- International Primate Heart Project, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Aimee L Drane
- International Primate Heart Project, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.,Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Rebeca Atencia
- International Primate Heart Project, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.,Tchimpounga Chimpanzee Sanctuary, Jane Goodall Institute, Pointe Noire, Republic of Congo
| | - Yedra Feltrer
- International Primate Heart Project, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | | | - Christopher Palmer
- Biological Science, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Steve Unwin
- International Primate Heart Project, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.,College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Joshua C Tremblay
- International Primate Heart Project, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Meg M Sleeper
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Michael L Lammey
- Alamogordo Primate Facility, Holloman AFB, Alamogordo, New Mexico, USA
| | - Steve Cooper
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Rob Shave
- International Primate Heart Project, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
11
|
The evolution of human step counts and its association with the risk of chronic disease. Curr Biol 2022; 32:R1206-R1214. [PMID: 36347224 DOI: 10.1016/j.cub.2022.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Walking - humans' most fundamental form of moderate intensity physical activity - is associated with reduced risks of morbidity and mortality. Evolutionary perspectives have contributed much to understanding the effects of walking and other physical activities on health; however, we know comparatively little about how step counts (steps taken per day) changed over the course of human evolution, potentially affecting how selection operated on physiological responses to moderate intensity physical activity that influence morbidity and mortality. Here, we compare step counts across humans and our closest living relatives, the great apes. Compiling data from epidemiology and comparative physiology, we show how step counts more than tripled during human evolution, potentially linking higher levels of moderate intensity physical activity with reduced morbidity and mortality, and we highlight how recent decreases in step counts are an evolutionary mismatch. We raise the hypothesis that the dose-response relationship between moderate intensity physical activity and health was shifted in humans to require more steps per day to promote extended healthspan and lifespan.
Collapse
|
12
|
Abstract
While evolutionary explanations for aging have been widely acknowledged, the application of evolutionary principles to the practice of aging research has, until recently, been limited. Aging research has been dominated by studies of populations in evolutionarily novel industrialized environments and by use of short-lived animal models that are distantly related to humans. In this review, I address several emerging areas of "evolutionarily relevant" aging research, which provide a valuable complement to conventional biomedical research on aging. Nonhuman primates offer particular value as both translational and comparative models due to their long life spans, shared evolutionary history with humans, and social complexity. Additionally, because the human organism evolved in a radically different environment than that in which most humans live today, studying populations living in diverse ecologies has redefined our understanding of healthy aging by revealing the contribution of industrialized human environments to age-related pathologies.
Collapse
Affiliation(s)
- Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
13
|
Cantwell A, Buckholtz J, Atencia R, Rosati AG. The origins of cognitive flexibility in chimpanzees. Dev Sci 2022; 25:e13266. [PMID: 35397187 PMCID: PMC9841514 DOI: 10.1111/desc.13266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/23/2021] [Accepted: 03/24/2022] [Indexed: 01/19/2023]
Abstract
Cognitive flexibility is a core component of executive function, a suite of cognitive capacities that enables individuals to update their behavior in dynamic environments. Human executive functions are proposed to be enhanced compared to other species, but this inference is based primarily on neuroanatomical studies. To address this, we examined the nature and origins of cognitive flexibility in chimpanzees, our closest living relatives. Across three studies, we examined different components of cognitive flexibility using reversal learning tasks where individuals first learned one contingency and then had to shift responses when contingencies flipped. In Study 1, we tested n = 82 chimpanzees ranging from juvenility to adulthood on a spatial reversal task, to characterize the development of basic shifting skills. In Study 2, we tested how n = 24 chimpanzees use spatial versus arbitrary perceptual information to shift, a proposed difference between human and nonhuman cognition. In Study 3, we tested n = 40 chimpanzees on a probabilistic reversal task. We found an extended developmental trajectory for basic shifting and shifting in response to probabilistic feedback-chimpanzees did not reach mature performance until late in ontogeny. Additionally, females were faster to shift than males were. We also found that chimpanzees were much more successful when using spatial versus perceptual cues, and highly perseverative when faced with probabilistic versus consistent outcomes. These results identify both core features of chimpanzee cognitive flexibility that are shared with humans, as well as constraints on chimpanzee cognitive flexibility that may represent evolutionary changes in human cognitive development.
Collapse
Affiliation(s)
- Averill Cantwell
- Department of Psychology, University of Michigan, Ann Arbor, MI USA,,
| | | | - Rebeca Atencia
- Jane Goodall Institute Congo, Pointe Noire, Republic of Congo
| | - Alexandra G Rosati
- Department of Psychology, University of Michigan, Ann Arbor, MI USA,Department of Anthropology, University of Michigan, Ann Arbor, MI USA,,
| |
Collapse
|
14
|
Emery Thompson M, Rosati AG, Snyder-Mackler N. Insights from evolutionarily relevant models for human ageing. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190605. [PMID: 32951550 PMCID: PMC7540954 DOI: 10.1098/rstb.2019.0605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
As the world confronts the health challenges of an ageing population, there has been dramatically increased interest in the science of ageing. This research has overwhelmingly focused on age-related disease, particularly in industrialized human populations and short-lived laboratory animal models. However, it has become clear that humans and long-lived primates age differently than many typical model organisms, and that many of the diseases causing death and disability in the developed world are greatly exacerbated by modern lifestyles. As such, research on how the human ageing process evolved is vital to understanding the origins of prolonged human lifespan and factors increasing vulnerability to degenerative disease. In this issue, we highlight emerging comparative research on primates, highlighting the physical, physiological, behavioural and cognitive processes of ageing. This work comprises data and theory on non-human primates, as well as under-represented data on humans living in small-scale societies, which help elucidate how environment shapes senescence. Component papers address (i) the critical processes that comprise senescence in long-lived primates; (ii) the social, ecological or individual characteristics that predict variation in the pace of ageing; and (iii) the complicated relationship between ageing trajectories and disease outcomes. Collectively, this work provides essential comparative, evolutionary data on ageing and demonstrates its unique potential to inform our understanding of the human ageing process. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, 500 University Boulevard NE, Albuquerque, NM 87131, USA
| | - Alexandra G. Rosati
- Department of Psychology and Anthropology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85281, USA
| |
Collapse
|
15
|
Cole MF, Cantwell A, Rukundo J, Ajarova L, Fernandez-Navarro S, Atencia R, Rosati AG. Healthy cardiovascular biomarkers across the lifespan in wild-born chimpanzees ( Pan troglodytes). Philos Trans R Soc Lond B Biol Sci 2020; 375:20190609. [PMID: 32951545 PMCID: PMC7540951 DOI: 10.1098/rstb.2019.0609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Chimpanzees (Pan troglodytes) are a crucial model for understanding the evolution of human health and longevity. Cardiovascular disease is a major source of mortality during ageing in humans and therefore a key issue for comparative research. Current data indicate that compared to humans, chimpanzees have proatherogenic blood lipid profiles, an important risk factor for cardiovascular disease in humans. However, most work to date on chimpanzee lipids come from laboratory-living populations where lifestyles diverge from a wild context. Here, we examined cardiovascular profiles in chimpanzees living in African sanctuaries, who range semi-free in large forested enclosures, consume a naturalistic diet, and generally experience conditions more similar to a wild chimpanzee lifestyle. We measured blood lipids, body weight and body fat in 75 sanctuary chimpanzees and compared them to publicly available data from laboratory-living chimpanzees from the Primate Aging Database. We found that semi-free-ranging chimpanzees exhibited lower body weight and lower levels of lipids that are risk factors for human cardiovascular disease, and that some of these disparities increased with age. Our findings support the hypothesis that lifestyle can shape health indices in chimpanzees, similar to effects observed across human populations, and contribute to an emerging understanding of human cardiovascular health in an evolutionary context. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Megan F. Cole
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Averill Cantwell
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Rukundo
- Chimpanzee Sanctuary and Wildlife Conservation Trust, Entebbe, Uganda
| | - Lilly Ajarova
- Chimpanzee Sanctuary and Wildlife Conservation Trust, Entebbe, Uganda
| | | | - Rebeca Atencia
- Jane Goodall Institute Congo, Pointe Noire, Republic of Congo
| | - Alexandra G. Rosati
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|