1
|
Zhang M, Livi A, Carter M, Schoknecht H, Burkhalter A, Holy TE, Padoa-Schioppa C. The representation of decision variables in orbitofrontal cortex is longitudinally stable. Cell Rep 2024; 43:114772. [PMID: 39331504 PMCID: PMC11549877 DOI: 10.1016/j.celrep.2024.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
The computation and comparison of subjective values underlying economic choices rely on the orbitofrontal cortex (OFC). In this area, distinct groups of neurons encode the value of individual options, the binary choice outcome, and the chosen value. These variables capture both the choice input and the choice output, suggesting that the cell groups found in the OFC constitute the building blocks of a decision circuit. Here, we show that this neural circuit is longitudinally stable. Using two-photon calcium imaging, we record from the OFC of mice engaged in a juice-choice task. Imaging of individual cells continues for up to 40 weeks. For each cell and each session pair, we compare activity profiles using cosine similarity, and we assess whether the neuron encodes the same variable in both sessions. We find a high degree of stability and a modest representational drift. Quantitative estimates indicate that this drift would not randomize the circuit within the animal's lifetime.
Collapse
Affiliation(s)
- Manning Zhang
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alessandro Livi
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mary Carter
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Heide Schoknecht
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andreas Burkhalter
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Timothy E Holy
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Camillo Padoa-Schioppa
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Economics, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Zhang M, Livi A, Carter M, Schoknecht H, Burkhalter A, Holy TE, Padoa-Schioppa C. The Representation of Decision Variables in Orbitofrontal Cortex is Longitudinally Stable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580715. [PMID: 38712111 PMCID: PMC11071317 DOI: 10.1101/2024.02.16.580715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The computation and comparison of subjective values underlying economic choices rely on the orbitofrontal cortex (OFC). In this area, distinct groups of neurons encode the value of individual options, the binary choice outcome, and the chosen value. These variables capture both the input and the output of the choice process, suggesting that the cell groups found in OFC constitute the building blocks of a decision circuit. Here we show that this neural circuit is longitudinally stable. Using two-photon calcium imaging, we recorded from mice choosing between different juice flavors. Recordings of individual cells continued for up to 20 weeks. For each cell and each pair of sessions, we compared the activity profiles using cosine similarity, and we assessed whether the cell encoded the same variable in both sessions. These analyses revealed a high degree of stability and a modest representational drift. A quantitative estimate indicated this drift would not randomize the circuit within the animal's lifetime.
Collapse
|
3
|
Seak LCU, Ferrari-Toniolo S, Jain R, Nielsen K, Schultz W. Systematic comparison of risky choices in humans and monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527517. [PMID: 36798272 PMCID: PMC9934584 DOI: 10.1101/2023.02.07.527517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The past decades have seen tremendous progress in fundamental studies on economic choice in humans. However, elucidation of the underlying neuronal processes requires invasive neurophysiological studies that are met with difficulties in humans. Monkeys as evolutionary closest relatives offer a solution. The animals display sophisticated and well-controllable behavior that allows to implement key constructs of proven economic choice theories. However, the similarity of economic choice between the two species has never been systematically investigated. We investigated compliance with the independence axiom (IA) of expected utility theory as one of the most demanding choice tests and compared IA violations between humans and monkeys. Using generalized linear modeling and cumulative prospect theory (CPT), we found that humans and monkeys made comparable risky choices, although their subjective values (utilities) differed. These results suggest similar fundamental choice mechanism across these primate species and encourage to study their underlying neurophysiological mechanisms.
Collapse
Affiliation(s)
- Leo Chi U Seak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Simone Ferrari-Toniolo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Ritesh Jain
- Management School, University of Liverpool, Liverpool L697ZY, United Kingdom
| | - Kirby Nielsen
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena CA 91125, USA
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
4
|
Yokoyama C, Autio JA, Ikeda T, Sallet J, Mars RB, Van Essen DC, Glasser MF, Sadato N, Hayashi T. Comparative connectomics of the primate social brain. Neuroimage 2021; 245:118693. [PMID: 34732327 PMCID: PMC9159291 DOI: 10.1016/j.neuroimage.2021.118693] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Social interaction is thought to provide a selection pressure for human intelligence, yet little is known about its neurobiological basis and evolution throughout the primate lineage. Recent advances in neuroimaging have enabled whole brain investigation of brain structure, function, and connectivity in humans and non-human primates (NHPs), leading to a nascent field of comparative connectomics. However, linking social behavior to brain organization across the primates remains challenging. Here, we review the current understanding of the macroscale neural mechanisms of social behaviors from the viewpoint of system neuroscience. We first demonstrate an association between the number of cortical neurons and the size of social groups across primates, suggesting a link between neural information-processing capacity and social capabilities. Moreover, by capitalizing on recent advances in species-harmonized functional MRI, we demonstrate that portions of the mirror neuron system and default-mode networks, which are thought to be important for representation of the other's actions and sense of self, respectively, exhibit similarities in functional organization in macaque monkeys and humans, suggesting possible homologies. With respect to these two networks, we describe recent developments in the neurobiology of social perception, joint attention, personality and social complexity. Together, the Human Connectome Project (HCP)-style comparative neuroimaging, hyperscanning, behavioral, and other multi-modal investigations are expected to yield important insights into the evolutionary foundations of human social behavior.
Collapse
Affiliation(s)
- Chihiro Yokoyama
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takuro Ikeda
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; University of Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - David C Van Essen
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America
| | - Matthew F Glasser
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America; Department of Radiology, Washington University Medical School, St Louis, MO, United States of America
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Japan; The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|