1
|
Sigwart JD, Wong NLWS, González VL, Machado FM, Greve C, Schell T, Chen Z. Genome of the enigmatic watering-pot shell and morphological adaptations for anchoring in sediment. BMC Genomics 2025; 26:460. [PMID: 40346497 PMCID: PMC12063269 DOI: 10.1186/s12864-025-11622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND In this study, we present the first chromosome-scale genome of Verpa penis (Linnaeus, 1758), and the first for the bivalve clade Anomalodesmata. The present study has two separate foci. Primarily, we provide the genetic resource to bridge further studies from genome to phenome and propose hypotheses to guide future empirical investigations. Secondarily, based on morphology, we outline a conceptual exploration to address their adaptation. Watering-pot shells have been called "the weirdest bivalves" for their fused tubular shell resembling the spout of a watering can. This adventitious tube arose twice convergently in clavagelloidean bivalves. However, previous literature has never provided a convincing adaptive pathway. RESULTS The genome assembly of V. penis was about 507 Mb, with contig N50 of 5.33 Mb, and has 96.5% of sequences anchored onto 19 pseudochromosomes. Phylogenomic analyses of this new genome in context of other bivalves confirms the placement for Anomalodesmata as sister to the clade Imparidentia. Contrary to expectations from its highly modified body plan, there is no evidence of chromosome reduction compared to the ancestral karyotype of heterodont bivalves (1 N = 19). Drawing on established principles from engineering as well as morphology, the thought experiment about the adventitious tube seeks to extend current understanding by exploring parallels with other built structures. A new hypothesis explains one possible interpretation of the adaptive significance of this body form: it is potentially structurally optimised for vertical stability in relatively soft sediments, with parallels to the engineering principles of a suction anchor. CONCLUSIONS While the conclusions presented here on morphological interpretations are theoretical, this serves as a foundation for further empirical validation and refinement. Our study offers new insights to a long-standing mystery in molluscan body forms and provides genomic resources that are relevant to understanding molluscan evolution, biomineralisation, and biomimetic design.
Collapse
Affiliation(s)
- Julia D Sigwart
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany.
- Institute of Ecology, Evolution & Diversity, Goethe University, Frankfurt, Germany.
| | - Nur Leena W S Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Malaysia
| | - Vanessa Liz González
- Informatics and Data Science Center, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | | | - Carola Greve
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Tilman Schell
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Zeyuan Chen
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Xu B, Kong L, Sun J, Zhang J, Zhang Y, Song H, Li Q, Uribe JE, Halanych KM, Cai C, Dong YW, Wang S, Li Y. Molluscan systematics: historical perspectives and the way ahead. Biol Rev Camb Philos Soc 2025; 100:672-697. [PMID: 39505387 DOI: 10.1111/brv.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Mollusca, the second-most diverse animal phylum, is estimated to have over 100,000 living species with great genetic and phenotypic diversity, a rich fossil record, and a considerable evolutionary significance. Early work on molluscan systematics was grounded in morphological and anatomical studies. With the transition from oligo gene Sanger sequencing to cutting-edge genomic sequencing technologies, molecular data has been increasingly utilised, providing abundant information for reconstructing the molluscan phylogenetic tree. However, relationships among and within most major lineages of Mollusca have long been contentious, often due to limited genetic markers, insufficient taxon sampling and phylogenetic conflict. Fortunately, remarkable progress in molluscan systematics has been made in recent years, which has shed light on how major molluscan groups have evolved. In this review of molluscan systematics, we first synthesise the current understanding of the molluscan Tree of Life at higher taxonomic levels. We then discuss how micromolluscs, which have adult individuals with a body size smaller than 5 mm, offer unique insights into Mollusca's vast diversity and deep phylogeny. Despite recent advancements, our knowledge of molluscan systematics and phylogeny still needs refinement. Further advancements in molluscan systematics will arise from integrating comprehensive data sets, including genome-scale data, exceptional fossils, and digital morphological data (including internal structures). Enhanced access to these data sets, combined with increased collaboration among morphologists, palaeontologists, evolutionary developmental biologists, and molecular phylogeneticists, will significantly advance this field.
Collapse
Affiliation(s)
- Biyang Xu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Jin Sun
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institude of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Junlong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laoshan Laboratory, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Marine Biological Museum, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 1111 Haibin Road, Guangzhou, 510301, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
| | - Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2 C. de José Gutiérrez Abascal, Madrid, 28006, Spain
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, 1000 Madison Drive NW, Washington, 20013-7012, DC, USA
| | - Kenneth M Halanych
- Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, 28409, NC, USA
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shi Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Guangzhou, 511458, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| |
Collapse
|
3
|
Chen Z, Baeza JA, Chen C, Gonzalez MT, González VL, Greve C, Kocot KM, Arbizu PM, Moles J, Schell T, Schwabe E, Sun J, Wong NLWS, Yap-Chiongco M, Sigwart JD. A genome-based phylogeny for Mollusca is concordant with fossils and morphology. Science 2025; 387:1001-1007. [PMID: 40014700 DOI: 10.1126/science.ads0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 03/01/2025]
Abstract
Extreme morphological disparity within Mollusca has long confounded efforts to reconstruct a stable backbone phylogeny for the phylum. Familiar molluscan groups-gastropods, bivalves, and cephalopods-each represent a diverse radiation with myriad morphological, ecological, and behavioral adaptations. The phylum further encompasses many more unfamiliar experiments in animal body-plan evolution. In this work, we reconstructed the phylogeny for living Mollusca on the basis of metazoan BUSCO (Benchmarking Universal Single-Copy Orthologs) genes extracted from 77 (13 new) genomes, including multiple members of all eight classes with two high-quality genome assemblies for monoplacophorans. Our analyses confirm a phylogeny proposed from morphology and show widespread genomic variation. The flexibility of the molluscan genome likely explains both historic challenges with their genomes and their evolutionary success.
Collapse
Affiliation(s)
- Zeyuan Chen
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Departamento de Biologia Marina, Universidad Catolica del Norte, Coquimbo, Chile
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Maria Teresa Gonzalez
- Instituto Ciencias Naturales "Alexander von Humboldt," Universidad de Antofagasta, FACIMAR, Antofagasta, Chile
| | - Vanessa Liz González
- Informatics and Data Science Center, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - Carola Greve
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL, USA
| | - Pedro Martinez Arbizu
- German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | - Juan Moles
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Tilman Schell
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | | | - Jin Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Nur Leena W S Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Malaysia
| | - Meghan Yap-Chiongco
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Julia D Sigwart
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany
| |
Collapse
|
4
|
Sun X, Chen X, Wu B, Zhou L, Chen Y, Zheng S, Wang S, Liu Z. Clam Genome and Transcriptomes Provide Insights into Molecular Basis of Morphological Novelties and Adaptations in Mollusks. BIOLOGY 2024; 13:870. [PMID: 39596825 PMCID: PMC11592408 DOI: 10.3390/biology13110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Bivalve mollusks, comprising animals enclosed in two shell valves, are well-adapted to benthic life in many intertidal zones. Clams have evolved the buried lifestyle, which depends on their unique soft tissue structure and their wedge-shaped muscular foot and long extendible siphons. However, molecular mechanisms of adaptative phenotype evolution remain largely unknown. In the present study, we obtain the high-quality chromosome-level genome of Manila clam R. philippinarum, an economically important marine bivalve in many coastal areas. The genome is constructed by the Hi-C assisted assembly, which yields 19 chromosomes with a total of 1.17 Gb and BUSCO integrity of 92.23%. The de novo assembled genome has a contig N50 length of 307.7 kb and scaffold N50 of 59.5 Mb. Gene family expansion analysis reveals that a total of 24 single-copy gene families have undergone the significant expansion or contraction, including E3 ubiquitin ligase and dynein heavy chain. The significant expansion of transposable elements has been also identified, including long terminal repeats (LTR) and non-LTR retrotransposons. The comparative transcriptomics among different clam tissues reveals that extracellular matrix (ECM) receptors and neuroactive ligand receptors may play the important roles in tissue structural support and neurotransmission during their infaunal life. These findings of gene family expansion and tissue-specific expression may reflect the unique soft tissue structure of clams, suggesting the evolution of lineage-specific morphological novelties. The high-quality genome and transcriptome data of R. philippinarum will not only facilitate the genetic studies on clams but will also provide valuable information on morphological novelties in mollusks.
Collapse
Affiliation(s)
- Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Xi Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Yancui Chen
- Zhangzhou Aquatic Technology Promotion Station, Zhangzhou 363000, China;
| | - Sichen Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
5
|
Männer L, Schell T, Spies J, Galià-Camps C, Baranski D, Ben Hamadou A, Gerheim C, Neveling K, Helfrich EJN, Greve C. Chromosome-level genome assembly of the sacoglossan sea slug Elysia timida (Risso, 1818). BMC Genomics 2024; 25:941. [PMID: 39375624 PMCID: PMC11460185 DOI: 10.1186/s12864-024-10829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Sequencing and annotating genomes of non-model organisms helps to understand genome architecture, the genetic processes underlying species traits, and how these genes have evolved in closely-related taxa, among many other biological processes. However, many metazoan groups, such as the extremely diverse molluscs, are still underrepresented in the number of sequenced and annotated genomes. Although sequencing techniques have recently improved in quality and quantity, molluscs are still neglected due to difficulties in applying standardized protocols for obtaining genomic data. RESULTS In this study, we present the chromosome-level genome assembly and annotation of the sacoglossan sea slug species Elysia timida, known for its ability to store the chloroplasts of its food algae. In particular, by optimizing the long-read and chromosome conformation capture library preparations, the genome assembly was performed using PacBio HiFi and Arima HiC data. The scaffold and contig N50s, at 41.8 Mb and 1.92 Mb, respectively, are approximately 30-fold and fourfold higher compared to other published sacoglossan genome assemblies. Structural annotation resulted in 19,904 protein-coding genes, which are more contiguous and complete compared to publicly available annotations of Sacoglossa with respect to metazoan BUSCOs. We found no evidence for horizontal gene transfer (HGT), i.e. no photosynthetic genes encoded in the sacoglossan nucleus genome. However, we detected genes encoding polyketide synthases in E. timida, indicating that polypropionates are produced. HPLC-MS/MS analysis confirmed the presence of a large number of polypropionates, including known and yet uncharacterised compounds. CONCLUSIONS We can show that our methodological approach helps to obtain a high-quality genome assembly even for a "difficult-to-sequence" organism, which may facilitate genome sequencing in molluscs. This will enable a better understanding of complex biological processes in molluscs, such as functional kleptoplasty in Sacoglossa, by significantly improving the quality of genome assemblies and annotations.
Collapse
Affiliation(s)
- Lisa Männer
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany.
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany.
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Julia Spies
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-Von-Laue Straße 9, Frankfurt am Main, 60438, Germany
| | - Carles Galià-Camps
- Centre d'Estudis Avançats de Blanes (CEAB, CSIC), Accés Cala St. Francesc 14, Blanes, Girona, 17300, Spain
- Institut de Recerca de La Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Damian Baranski
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Charlotte Gerheim
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Eric J N Helfrich
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-Von-Laue Straße 9, Frankfurt am Main, 60438, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany.
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany.
| |
Collapse
|
6
|
Galià-Camps C, Araujo AK, Carmona L, Martín-Hervás MDR, Pola M, Palero F, Cervera JL. New mitogenomes of Runcinidae and Facelinidae: two understudied heterobranch families (Mollusca: Gastropoda). Mitochondrial DNA B Resour 2024; 9:771-776. [PMID: 38919811 PMCID: PMC11198154 DOI: 10.1080/23802359.2024.2363365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Here, we present the mitochondrial sequences of two sea slugs (Heterobranchia): Runcina aurata and Facelina auriculata, the latter being the type species of the family. The mitochondrial genomes are 14,282 and 14,171bp in length, respectively, with a complete set of 13 PCGs, 2 rRNAs, and 22 tRNAs. None of the mitogenomes show gene reorganization, keeping the standard mitogenomic structure of Heterobranchia. Nucleotide composition differs significantly between them, with R. aurata showing the most AT-rich mitogenome (25.7% GC content) reported to date in Heterobranchia, and F. auriculata showing a rich GC content (35%) compared with other heterobranch mitochondrial genomes.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Ana Karla Araujo
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Puerto Real, Spain
- Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | - Leila Carmona
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Puerto Real, Spain
- Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | - María del Rosario Martín-Hervás
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Puerto Real, Spain
- Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | - Marta Pola
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, CSIC, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), CSIC, Madrid, Spain
| | - Ferran Palero
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Juan Lucas Cervera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Puerto Real, Spain
- Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| |
Collapse
|
7
|
Jackson DJ, Cerveau N, Posnien N. De novo assembly of transcriptomes and differential gene expression analysis using short-read data from emerging model organisms - a brief guide. Front Zool 2024; 21:17. [PMID: 38902827 PMCID: PMC11188175 DOI: 10.1186/s12983-024-00538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Many questions in biology benefit greatly from the use of a variety of model systems. High-throughput sequencing methods have been a triumph in the democratization of diverse model systems. They allow for the economical sequencing of an entire genome or transcriptome of interest, and with technical variations can even provide insight into genome organization and the expression and regulation of genes. The analysis and biological interpretation of such large datasets can present significant challenges that depend on the 'scientific status' of the model system. While high-quality genome and transcriptome references are readily available for well-established model systems, the establishment of such references for an emerging model system often requires extensive resources such as finances, expertise and computation capabilities. The de novo assembly of a transcriptome represents an excellent entry point for genetic and molecular studies in emerging model systems as it can efficiently assess gene content while also serving as a reference for differential gene expression studies. However, the process of de novo transcriptome assembly is non-trivial, and as a rule must be empirically optimized for every dataset. For the researcher working with an emerging model system, and with little to no experience with assembling and quantifying short-read data from the Illumina platform, these processes can be daunting. In this guide we outline the major challenges faced when establishing a reference transcriptome de novo and we provide advice on how to approach such an endeavor. We describe the major experimental and bioinformatic steps, provide some broad recommendations and cautions for the newcomer to de novo transcriptome assembly and differential gene expression analyses. Moreover, we provide an initial selection of tools that can assist in the journey from raw short-read data to assembled transcriptome and lists of differentially expressed genes.
Collapse
Affiliation(s)
- Daniel J Jackson
- University of Göttingen, Department of Geobiology, Goldschmidtstr.3, Göttingen, 37077, Germany.
| | - Nicolas Cerveau
- University of Göttingen, Department of Geobiology, Goldschmidtstr.3, Göttingen, 37077, Germany
| | - Nico Posnien
- University of Göttingen, Department of Developmental Biology, GZMB, Justus-Von-Liebig-Weg 11, Göttingen, 37077, Germany.
| |
Collapse
|
8
|
Stelbrink B, von Rintelen T, Marwoto RM, Salzburger W. Mitogenomes do not substantially improve phylogenetic resolution in a young non-model adaptive radiation of freshwater gastropods. BMC Ecol Evol 2024; 24:42. [PMID: 38589809 PMCID: PMC11000327 DOI: 10.1186/s12862-024-02235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Species flocks in ancient lakes, and particularly those arising from adaptive radiation, make up the bulk of overall taxonomic and morphological diversity in these insular ecosystems. For these mostly young species assemblages, classical mitochondrial barcoding markers have so far been key to disentangle interspecific relationships. However, with the rise and further development of next-generation sequencing (NGS) methods and mapping tools, genome-wide data have become an increasingly important source of information even for non-model groups. RESULTS Here, we provide, for the first time, a comprehensive mitogenome dataset of freshwater gastropods endemic to Sulawesi and thus of an ancient lake invertebrate species flock in general. We applied low-coverage whole-genome sequencing for a total of 78 individuals including 27 out of the 28 Tylomelania morphospecies from the Malili lake system as well as selected representatives from Lake Poso and adjacent catchments. Our aim was to assess whether mitogenomes considerably contribute to the phylogenetic resolution within this young species flock. Interestingly, we identified a high number of variable and parsimony-informative sites across the other 'non-traditional' mitochondrial loci. However, although the overall support was very high, the topology obtained was largely congruent with previously published single-locus phylogenies. Several clades remained unresolved and a large number of species was recovered polyphyletic, indicative of both rapid diversification and mitochondrial introgression. CONCLUSIONS This once again illustrates that, despite the higher number of characters available, mitogenomes behave like a single locus and thus can only make a limited contribution to resolving species boundaries, particularly when introgression events are involved.
Collapse
Affiliation(s)
- Björn Stelbrink
- Justus Liebig University Giessen, Giessen, Germany.
- University of Basel, Basel, Switzerland.
| | - Thomas von Rintelen
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ristiyanti M Marwoto
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, BRIN Gedung Widyasatwaloka, Cibinong, Indonesia
| | | |
Collapse
|
9
|
McIlroy SE, Guibert I, Archana A, Chung WYH, Duffy JE, Gotama R, Hui J, Knowlton N, Leray M, Meyer C, Panagiotou G, Paulay G, Russell B, Thompson PD, Baker DM. Life goes on: Spatial heterogeneity promotes biodiversity in an urbanized coastal marine ecosystem. GLOBAL CHANGE BIOLOGY 2024; 30:e17248. [PMID: 38581126 DOI: 10.1111/gcb.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 04/08/2024]
Abstract
Both human populations and marine biodiversity are concentrated along coastlines, with growing conservation interest in how these ecosystems can survive intense anthropogenic impacts. Tropical urban centres provide valuable research opportunities because these megacities are often adjacent to mega-diverse coral reef systems. The Pearl River Delta is a prime exemplar, as it encompasses one of the most densely populated and impacted regions in the world and is located just northwest of the Coral Triangle. However, the spatial and taxonomic complexity of this biodiversity, most of which is small, cryptic in habitat and poorly known, make comparative analyses challenging. We deployed standardized settlement structures at seven sites differing in the intensity of human impacts and used COI metabarcoding to characterize benthic biodiversity, with a focus on metazoans. We found a total of 7184 OTUs, with an average of 665 OTUs per sampling unit; these numbers exceed those observed in many previous studies using comparable methods, despite the location of our study in an urbanized environment. Beta diversity was also high, with 52% of the OTUs found at just one site. As expected, we found that the sites close to point sources of pollution had substantially lower diversity (44% less) relative to sites bathed in less polluted oceanic waters. However, the polluted sites contributed substantially to the total animal diversity of the region, with 25% of all OTUs occurring only within polluted sites. Further analysis of Arthropoda, Annelida and Mollusca showed that phylogenetic clustering within a site was common, suggesting that environmental filtering reduced biodiversity to a subset of lineages present within the region, a pattern that was most pronounced in polluted sites and for the Arthropoda. The water quality gradients surrounding the PRD highlight the unique role of in situ studies for understanding the impacts of complex urbanization pressures on biodiversity.
Collapse
Affiliation(s)
- Shelby E McIlroy
- School of Biological Sciences, The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, P.R. China
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Isis Guibert
- School of Biological Sciences, The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, P.R. China
| | - Anand Archana
- School of Biological Sciences, The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, P.R. China
- San Francisco State University, San Francisco, California, USA
| | - Wing Yi Haze Chung
- School of Biological Sciences, The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, P.R. China
| | - J Emmett Duffy
- MarineGEO Program and Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Rinaldi Gotama
- School of Biological Sciences, The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, P.R. China
- Indo Ocean Project, Banjar Adegan Kawan, Desa Ped, Bali, Indonesia
| | - Jerome Hui
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Nancy Knowlton
- National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Matthieu Leray
- MarineGEO Program and Smithsonian Environmental Research Center, Edgewater, Maryland, USA
- Smithsonian Tropical Research Institute, Smithsonian Institution, Panama City, Balboa, Ancon, Republic of Panama
| | - Chris Meyer
- National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
- Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Gustav Paulay
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Bayden Russell
- School of Biological Sciences, The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, P.R. China
| | - Philip D Thompson
- School of Biological Sciences, The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, P.R. China
| | - David M Baker
- School of Biological Sciences, The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, P.R. China
| |
Collapse
|
10
|
Johannesson K, Faria R, Le Moan A, Rafajlović M, Westram AM, Butlin RK, Stankowski S. Diverse pathways to speciation revealed by marine snails. Trends Genet 2024; 40:337-351. [PMID: 38395682 DOI: 10.1016/j.tig.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024]
Abstract
Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, SE 45296 Strömstad, Sweden; The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Rui Faria
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Alan Le Moan
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; CNRS & Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Marina Rafajlović
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Department of Marine Sciences, University of Gothenburg, SE 41390 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Anja Marie Westram
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, SE 45296 Strömstad, Sweden; The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Roger K Butlin
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, SE 45296 Strömstad, Sweden; The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Sean Stankowski
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Institute of Science and Technology Austria, Klosterneuburg, Austria; Department of Ecology and Evolution, University of Sussex, Brighton, UK
| |
Collapse
|
11
|
Varney R. The Genomics in Emerging Marine Systems Checklist for Clear and Reproducible Genomics in Emerging, Marine Systems. Integr Comp Biol 2023; 63:1010-1016. [PMID: 37381586 DOI: 10.1093/icb/icad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023] Open
Abstract
Genome sequencing becomes more accessible and powerful every year, but there is a lack of consensus on what information should be provided in publications that include genomic data. The result is a flood of sequencing data without a framework to evaluate its quality and completeness, hindering reproducibility. In non-model taxa in marine systems, a lack of detail in methods sections often hinders future researchers from adopting improved techniques, leaving them to repeat costly protocols and take up computational (wall) time with programs that are already known to fail. Here, I present a set of guidelines tailored for marine taxa (emerging model organisms) to promote consistency between publications, increase transparency of sequencing projects, and preserve the value of sequence data as sequencing technologies advance. Included is a checklist to (1) guide authors toward including more detailed information in their manuscripts, (2) expand data availability, and (3) assist reviewers to thoroughly vet methods and results of future 'omic publications. This set of guidelines will support the usefulness of 'omic data in future analyses by providing a framework to document and evaluate these data, leading to transparent and reproducible genomics research on emerging marine systems.
Collapse
|
12
|
Ortiz-Sepulveda CM, Genete M, Blassiau C, Godé C, Albrecht C, Vekemans X, Van Bocxlaer B. Target enrichment of long open reading frames and ultraconserved elements to link microevolution and macroevolution in non-model organisms. Mol Ecol Resour 2023; 23:659-679. [PMID: 36349833 DOI: 10.1111/1755-0998.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Despite the increasing accessibility of high-throughput sequencing, obtaining high-quality genomic data on non-model organisms without proximate well-assembled and annotated genomes remains challenging. Here, we describe a workflow that takes advantage of distant genomic resources and ingroup transcriptomes to select and jointly enrich long open reading frames (ORFs) and ultraconserved elements (UCEs) from genomic samples for integrative studies of microevolutionary and macroevolutionary dynamics. This workflow is applied to samples of the African unionid bivalve tribe Coelaturini (Parreysiinae) at basin and continent-wide scales. Our results indicate that ORFs are efficiently captured without prior identification of intron-exon boundaries. The enrichment of UCEs was less successful, but nevertheless produced substantial data sets. Exploratory continent-wide phylogenetic analyses with ORF supercontigs (>515,000 parsimony informative sites) resulted in a fully resolved phylogeny, the backbone of which was also retrieved with UCEs (>11,000 informative sites). Variant calling on ORFs and UCEs of Coelaturini from the Malawi Basin produced ~2000 SNPs per population pair. Estimates of nucleotide diversity and population differentiation were similar for ORFs and UCEs. They were low compared to previous estimates in molluscs, but comparable to those in recently diversifying Malawi cichlids and other taxa at an early stage of speciation. Skimming off-target sequence data from the same enriched libraries of Coelaturini from the Malawi Basin, we reconstructed the maternally-inherited mitogenome, which displays the gene order inferred for the most recent common ancestor of Unionidae. Overall, our workflow and results provide exciting perspectives for integrative genomic studies of microevolutionary and macroevolutionary dynamics in non-model organisms.
Collapse
Affiliation(s)
| | - Mathieu Genete
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | | - Cécile Godé
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, D-35392 Giessen, Germany.,Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
13
|
Li X, Bai Y, Dong Z, Xu C, Liu S, Yu H, Kong L, Li Q. Chromosome-level genome assembly of the European flat oyster (Ostrea edulis) provides insights into its evolution and adaptation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101045. [PMID: 36470107 DOI: 10.1016/j.cbd.2022.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The European flat oyster (Ostrea edulis) is an endangered and economically important marine bivalve species that plays a critical role in the coastal ecosystem. Here, we report a high-quality chromosome-level genome assembly of O. edulis, generated using PacBio HiFi-CCS long reads and annotated with Nanopore full-length transcriptome. The O. edulis genome covers 946.06 Mb (scaffold N50 94.82 Mb) containing 34,495 protein-coding genes and a high proportion of repeat sequences (58.49 %). The reconstructed demographic histories show that O. edulis population might be shaped by breeding habit (embryo brooding) and historical climatic change. Comparative genomic analysis indicates that transposable elements may drive lineage-specific evolution in oysters. Notably, the O. edulis genome has a Hox gene cluster rearrangement that has never been reported in bivalves, making this species valuable for evolutionary studies of molluscan diversification. Moreover, genome expansion of O. edulis is probably central to its adaptation to filter-feeding and sessile lifestyles, as well as embryo brooding and pathogen resistance, in coastal ecosystems. This chromosome-level genome assembly provides new insights into the genome feature of oysters, and presents an important resource for genetic research, evolutionary studies, and biological conservation of O. edulis.
Collapse
Affiliation(s)
- Xinchun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yitian Bai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhen Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
14
|
Ghaffari H, Ahmadzadeh F, Saberi-Pirooz R, Abtahi B. A molecular phylogeny of the Persian Gulf and the Gulf of Oman oyster species. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The taxonomy of oysters along the northern coasts of the Persian Gulf and the Gulf of Oman is not well recognized. We present a phylogenetic analysis of oyster species in these regions. We combined morphological and molecular techniques to obtain the identity of oysters to the lowest taxonomic levels. Analysis of partial nucleotide sequences from mitochondrial cytochrome c oxidase subunit I (COI) was used for the phylogenetic evaluation. Based on our findings, Iranian samples nested within the genus Saccostrea and belonged to Saccostrea mordax and Saccostrea palmula clades. The shell morphology of the studied samples was variable, as in other rock oyster species. The examination of morphological features was in line with the molecular outcomes, but despite some similarities, Iranian S. palmula had well-developed and elongated chomata. The results also showed that S. mordax and S. palmula possessed significant relative abundance as dominant oysters in the Persian Gulf and the Gulf of Oman, respectively. Phylogenetic analysis revealed that Iranian samples of S. palmula formed a separate subclade from the Gulf of California and Panama samples, with large genetic distances (6–7%). Iranian specimens differed morphologically and genetically, suggesting that they could be a new species, although more research is needed.
Collapse
Affiliation(s)
- Hamze Ghaffari
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS) , No. 3, Etemadzadeh Street, Fatemi Avenue, Tehran 1411813389 , Islamic Republic of Iran
| | - Faraham Ahmadzadeh
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University , G.C., Tehran 1983963113 , Islamic Republic of Iran
| | - Reihaneh Saberi-Pirooz
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University , G.C., Tehran 1983963113 , Islamic Republic of Iran
| | - Behrooz Abtahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University , G.C. , Tehran 1983969411 , Islamic Republic of Iran
| |
Collapse
|
15
|
Balakrishnan S, Singh ISB, Puthumana J. Status in molluscan cell line development in last one decade (2010–2020): impediments and way forward. Cytotechnology 2022; 74:433-457. [PMID: 36110153 PMCID: PMC9374870 DOI: 10.1007/s10616-022-00539-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the attempts that have started since the 1960s, not even a single cell line of marine molluscs is available. Considering the vast contribution of marine bivalve aquaculture to the world economy, the prevailing viral threats, and the dismaying lack of advancements in molluscan virology, the requirement of a marine molluscan cell line is indispensable. This synthetic review discusses the obstacles in developing a marine molluscan cell line concerning the choice of species, the selection of tissue and decontamination, and cell culture media, with emphasis given on the current decade 2010-2020. Detailed accounts on the experiments on the virus cultivation in vitro and molluscan cell immortalization, with a brief note on the history and applications of the molluscan cell culture, are elucidated to give a holistic picture of the current status and future trends in molluscan cell line development. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00539-x.
Collapse
|
16
|
Corrochano-Fraile A, Davie A, Carboni S, Bekaert M. Evidence of multiple genome duplication events in Mytilus evolution. BMC Genomics 2022; 23:340. [PMID: 35501689 PMCID: PMC9063065 DOI: 10.1186/s12864-022-08575-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background Molluscs remain one significantly under-represented taxa amongst available genomic resources, despite being the second-largest animal phylum and the recent advances in genomes sequencing technologies and genome assembly techniques. With the present work, we want to contribute to the growing efforts by filling this gap, presenting a new high-quality reference genome for Mytilus edulis and investigating the evolutionary history within the Mytilidae family, in relation to other species in the class Bivalvia. Results Here we present, for the first time, the discovery of multiple whole genome duplication events in the Mytilidae family and, more generally, in the class Bivalvia. In addition, the calculation of evolution rates for three species of the Mytilinae subfamily sheds new light onto the taxa evolution and highlights key orthologs of interest for the study of Mytilus species divergences. Conclusions The reference genome presented here will enable the correct identification of molecular markers for evolutionary, population genetics, and conservation studies. Mytilidae have the capability to become a model shellfish for climate change adaptation using genome-enabled systems biology and multi-disciplinary studies of interactions between abiotic stressors, pathogen attacks, and aquaculture practises. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08575-9.
Collapse
Affiliation(s)
- Ana Corrochano-Fraile
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Andrew Davie
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Stefano Carboni
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK. .,International Marine Centre, Loc. Sa Mardini snc, 09170, Torre Grande, OR, Italy.
| | - Michaël Bekaert
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
17
|
Chen Z, Schrödl M. How many single-copy orthologous genes from whole genomes reveal deep gastropod relationships? PeerJ 2022; 10:e13285. [PMID: 35497189 PMCID: PMC9048639 DOI: 10.7717/peerj.13285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
The Gastropoda contains 80% of existing mollusks and is the most diverse animal class second only to the Insecta. However, the deep phylogeny of gastropods has been controversial for a long time. Especially the position of Patellogastropoda is a major uncertainty. Morphology and some mitochondria studies concluded that Patellogastropoda is likely to be sister to all other gastropods (Orthogastropoda hypothesis), while transcriptomic and other mitogenomic studies indicated that Patellogastropoda and Vetigastropoda are sister taxa (Psilogastropoda). With the release of high-quality genomes, orthologous genes can be better identified and serve as powerful candidates for phylogenetic analysis. The question is, given the current limitations on the taxon sampling side, how many markers are needed to provide robust results. Here, we identified single-copy orthologous genes (SOGs) from 14 gastropods species with whole genomes available which cover five main gastropod subclasses. We generated different datasets from 395 to 1610 SOGs by allowing species missing in different levels. We constructed gene trees of each SOG, and inferred species trees from different collections of gene trees. We found as the number of SOGs increased, the inferred topology changed from Patellogastropoda being sister to all other gastropods to Patellogastropoda being sister to Vetigastropoda + Neomphalina (Psilogastropoda s.l.), with considerable support. Our study thus rejects the Orthogastropoda concept showing that the selection of the representative species and use of sufficient informative sites greatly influence the analysis of deep gastropod phylogeny.
Collapse
Affiliation(s)
- Zeyuan Chen
- Mollusca, SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany,Department Biology II, Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany
| | - Michael Schrödl
- Mollusca, SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany,Department Biology II, Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany,GeoBio-Center LMU, Munich, Bavaria, Germany
| |
Collapse
|
18
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Davison A, Neiman M. Pearls of wisdom-a Theo Murphy issue on molluscan genomics. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200151. [PMID: 33813890 PMCID: PMC8059963 DOI: 10.1098/rstb.2020.0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Angus Davison
- School of Life Sciences, University of Nottingham, Nottingham, Nottinghamshire NG7 2RD, UK
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| |
Collapse
|
20
|
Davison A, Neiman M. Mobilizing molluscan models and genomes in biology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200163. [PMID: 33813892 PMCID: PMC8059959 DOI: 10.1098/rstb.2020.0163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Molluscs are among the most ancient, diverse, and important of all animal taxa. Even so, no individual mollusc species has emerged as a broadly applied model system in biology. We here make the case that both perceptual and methodological barriers have played a role in the relative neglect of molluscs as research organisms. We then summarize the current application and potential of molluscs and their genomes to address important questions in animal biology, and the state of the field when it comes to the availability of resources such as genome assemblies, cell lines, and other key elements necessary to mobilising the development of molluscan model systems. We conclude by contending that a cohesive research community that works together to elevate multiple molluscan systems to 'model' status will create new opportunities in addressing basic and applied biological problems, including general features of animal evolution. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|