1
|
Panahi Hassan Barough S, Monroe DJ, Clark TC, Gabor CR. Investigating the Temporal Effects of Thermal Stress on Corticosterone Release and Growth in Toad Tadpoles. BIOLOGY 2025; 14:255. [PMID: 40136512 PMCID: PMC11940675 DOI: 10.3390/biology14030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Corticosterone (CORT) is a key glucocorticoid hormone that regulates energy balance and physiological responses to environmental stressors, making it a valuable biomarker for assessing how organisms cope with changing conditions. Understanding how amphibians respond to chronic thermal stress is critical in the context of climate change and urbanization. We investigated the effects of a week-long exposure to elevated water temperatures on CORT release rates and growth in Gulf Coast toad (Incilius nebulifer) tadpoles, a species adapted to variable thermal environments. Using a non-invasive water-borne hormone method, we measured CORT at multiple time points (1 h, 2 h, 6 h, 24 h, 48 h, and 5 days) post-treatment to assess how CORT varied with time after exposure to elevated heat vs. the control temperature. We found a significant time-by-treatment response in tadpoles after a week of exposure to 32 °C versus 23 °C (control) temperatures. Both control and treatment individuals showed a marked decrease in CORT release rates 6 h post-return to room temperature, but by 24 h post-experiment, CORT release rates were higher in the tadpoles exposed to 32 °C. Heat-exposed tadpoles also showed significantly faster growth during and after treatment, but a lower survival to 12 days, indicating a potential trade-off between survival and accelerated growth. Overall, our study highlights a trade-off for populations of I. nebulifer when exposed to thermal stress and suggests that amphibian responses to chronic environmental stressors are shaped by adaptive physiological strategies, with implications for understanding and conserving amphibian populations in a rapidly changing world.
Collapse
Affiliation(s)
- Saeid Panahi Hassan Barough
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA; (S.P.H.B.); (D.J.M.); (T.C.C.)
| | - Dillon J. Monroe
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA; (S.P.H.B.); (D.J.M.); (T.C.C.)
- Department of Biology, Southern Utah University, 351 W University Blvd., Cedar City, UT 84720, USA
| | - Thomas C. Clark
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA; (S.P.H.B.); (D.J.M.); (T.C.C.)
| | - Caitlin R. Gabor
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA; (S.P.H.B.); (D.J.M.); (T.C.C.)
| |
Collapse
|
2
|
Scheun J, Venter L, Ganswindt A. A frog in hot water: the effect of temperature elevation on the adrenal stress response of an African amphibian. PeerJ 2024; 12:e17847. [PMID: 39157773 PMCID: PMC11328835 DOI: 10.7717/peerj.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Amphibians, with their unique physiology and habitat requirements, are especially vulnerable to changes in environmental temperatures. While the activation of the physiological stress response can help to mitigate the impact of such habitat alteration, chronic production of elevated glucocorticoid levels can be deleterious in nature. There is no empirical evidence indicating the physiological response of African amphibians to temperature changes, where individuals are unable to emigrate away from potential stressors. To rectify this, we used the edible bullfrog (Pyxicephalus edulis) as a model species to determine the effect of elevated temperature on the adrenocortical response of the species using a recently established matrix. While a control group was kept at a constant temperature (25 °C) throughout the study period, an experimental group was exposed to control (25 °C) and elevated temperatures (30 °C). Mucous swabs were collected throughout the study period to determine dermal glucocorticoid (dGC) concentrations, as a proxy for physiological stress. In addition to this, individual body mass measurements were collected. The results showed that individuals within the experimental group who experienced increased temperatures had significantly elevated dGC levels compared to the control animals. Furthermore, there was a significant difference in the percentage mass change between experimental and control animals . These findings indicate the physiological sensitivity of the edible bullfrog to a thermal stressor in captivity. While this study shows the importance of proper amphibian management within the captive environment, it also highlights the coming danger of global climate change to this and similar amphibian species.
Collapse
Affiliation(s)
- Juan Scheun
- Department Nature Conservation, Faculty of Science, Tshwane University of Pretoria, Pretoria, Gauteng, South Africa
- Mammal Research Institute, Department Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Leanne Venter
- Department Nature Conservation, Faculty of Science, Tshwane University of Pretoria, Pretoria, Gauteng, South Africa
| | - Andre Ganswindt
- Mammal Research Institute, Department Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
3
|
Vega-Yánez MA, Quezada-Riera AB, Rios-Touma B, Vizcaíno-Barba MDC, Millingalli W, Ganzino O, Coloma LA, Tapia EE, Dupérré N, Páez-Vacas M, Parra-Puente D, Franco-Mena D, Gavilanes G, Salazar-Valenzuela D, Valle CA, Guayasamin JM. Path for recovery: an ecological overview of the Jambato Harlequin Toad (Bufonidae: Atelopus ignescens) in its last known locality, Angamarca Valley, Ecuador. PeerJ 2024; 12:e17344. [PMID: 38915382 PMCID: PMC11195548 DOI: 10.7717/peerj.17344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/15/2024] [Indexed: 06/26/2024] Open
Abstract
The Jambato Harlequin toad (Atelopus ignescens), a formerly abundant species in the Andes of Ecuador, faced a dramatic population decline in the 1980s, with its last recorded sighting in 1988. The species was considered Extinct by the IUCN until 2016, when a fortuitous discovery of one Jambato by a local boy reignited hope. In this study, we present findings from an investigation conducted in the Angamarca parish, focusing on distribution, abundance, habitat preferences, ecology, disease susceptibility, and dietary habits of the species. In one year we identified 71 individuals at different stages of development in various habitats, with a significant presence in agricultural mosaic areas and locations near water sources used for crop irrigation, demonstrating the persistence of the species in a complex landscape, with considerable human intervention. The dietary analysis based on fecal samples indicated a diverse prey selection, primarily comprising arthropods such as Acari, Coleoptera, and ants. Amphibian declines have been associated with diseases and climate change; notably, our study confirmed the presence of the pathogen Batrachochytrium dendrobatidis (Bd), but, surprisingly, none of the infected Jambatos displayed visible signs of illness. When analyzing climatic patterns, we found that there are climatic differences between historical localities and Angamarca; the temporal analysis also exposes a generalized warming trend. Finally, in collaboration with the local community, we developed a series of management recommendations for terrestrial and aquatic environments occupied by the Jambato.
Collapse
Affiliation(s)
- Mateo A. Vega-Yánez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Maestría en Ecología Tropical y Conservación, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Laboratorio de Biología Evolutiva, Calle Diego de Robles s/n y Pampite, Campus Cumbayá, Quito, Ecuador
| | | | - Blanca Rios-Touma
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS). Facultad de Ingenierías y Ciencias Aplicadas, Universidad de Las Américas, Vía Nayón S/N, Campus UDLAPARK, Quito, Ecuador
| | | | | | | | - Luis A. Coloma
- Alianza Jambato, Las Casas, Quito, Ecuador
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, San Rafael, Quito, Ecuador
| | - Elicio E. Tapia
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Germany
| | - Nadine Dupérré
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Germany
| | - Mónica Páez-Vacas
- Alianza Jambato, Las Casas, Quito, Ecuador
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, San Rafael, Quito, Ecuador
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Universidad Indoamérica, Machala y Sabanilla, Quito, Ecuador
| | - David Parra-Puente
- Alianza Jambato, Las Casas, Quito, Ecuador
- Fundación de Conservación Jocotoco, Quito, Ecuador
| | - Daniela Franco-Mena
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Laboratorio de Biología Evolutiva, Calle Diego de Robles s/n y Pampite, Campus Cumbayá, Quito, Ecuador
| | - Gabriela Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Laboratorio de Biología Evolutiva, Calle Diego de Robles s/n y Pampite, Campus Cumbayá, Quito, Ecuador
| | - David Salazar-Valenzuela
- Alianza Jambato, Las Casas, Quito, Ecuador
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Universidad Indoamérica, Machala y Sabanilla, Quito, Ecuador
- Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Machala y Sabanilla, Quito, Ecuador
| | - Carlos A. Valle
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Quito, Ecuador
| | - Juan M. Guayasamin
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Maestría en Ecología Tropical y Conservación, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Laboratorio de Biología Evolutiva, Calle Diego de Robles s/n y Pampite, Campus Cumbayá, Quito, Ecuador
- Alianza Jambato, Las Casas, Quito, Ecuador
| |
Collapse
|
4
|
Mao Y, Kong X, Liang Z, Yang C, Wang S, Fan H, Ning C, Xiao W, Wu Y, Wu J, Yuan L, Yuan Z. Viola yedoensis Makino alleviates heat stress-induced inflammation, oxidative stress, and cell apoptosis in the spleen and thymus of broilers. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117350. [PMID: 37907144 DOI: 10.1016/j.jep.2023.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viola yedoensis Makino (VYM) is a traditional Chinese herbal medicine widely distributed in China. It has many pharmacological effects such as anti-inflammatory, immune regulation and anti-oxidation. However, the protective effect of VYM on the spleen and thymus of broilers induced by heat stress has rarely been reported. AIM OF THE STUDY We established a heat stress model of broilers to explore the protective effect of VYM on spleen and thymus of broilers. MATERIALS AND METHODS In this experiment, a heat stress model was made by adjusting the feeding temperature of broilers. The protective effect of VYM on the spleen and thymus of heat-stressed broilers were evaluated by detecting immune organ coefficient, histological observation, Enzyme-Linked Immunosorbent Assay, production of antioxidant enzymes and peroxides, TUNEL Staining, Quantitative Real-time PCR. RESULTS In this study, 60 healthy male AA broilers were divided into 6 groups: Control, 4.5% VYM, HS, HS + 0.5% VYM, HS + 1.5% VYM, HS + 4.5% VYM. After 42 days of feeding, serum, spleen and thymus were collected for detection and analysis. The study revealed that heat stress can lead to pathological damage in the spleen and thymus of broilers, reduce the content of immunoglobulin and newcastle disease (ND), infectious bursal disease (IBD) antibody levels, increase the expression of inflammatory factors IL-1β, INF-γ, heat shock 70 kDa protein (HSP70), heat shock 90 kDa protein (HSP90). Heat stress inhibits the activity of antioxidant enzymes CAT and SOD, promotes the production of MDA, and then lead to oxidative damage of the spleen and thymus. In addition, apoptotic cells and the ratio of Bax/Bcl-2 was increased. However, the addition of VYM to the feed can alleviate the adverse effects of heat stress on the spleen and thymus of broilers. CONCLUSIONS This study showed that the addition of VYM to the diet could inhibit oxidative stress and apoptosis, and reduce the inflammatory damage of heat stress on the spleen and thymus of broilers. This study provides a basis for further exploring the regulatory role of VYM in heat stress-induced immune imbalance in broilers. In addition, this study also provides a theoretical basis for the development of VYM as a feed additive with immunomodulatory effects.
Collapse
Affiliation(s)
- Yan Mao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, PR China
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Liyun Yuan
- Xiangyang Vocational and Technical College, Xiangyang 441050, PR China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
5
|
Tsukada E, Rodrigues CC, Jacintho JC, Franco-Belussi L, Jones-Costa M, Abdalla FC, Rocha TL, Salla RF. The amphibian's spleen as a source of biomarkers for ecotoxicity assessment: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165915. [PMID: 37532037 DOI: 10.1016/j.scitotenv.2023.165915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Amphibians are very sensitive to many environmental changes, so these animals are considered good bioindicator models for ecotoxicology. Given the importance of the amphibian spleen for hematopoietic and immune responses, this can be a key organ for the evaluation of biomarkers to monitor the health of individuals in nature or in captivity. In this systematic review, we searched databases and summarized the main findings concerning the amphibian spleen as a source of possible biomarkers applied in different scientific fields. The searches resulted in 83 articles published from 1923 to 2022, which applied the use of splenic samples to evaluate the effects of distinct stressors on amphibians. Articles were distributed in more than twenty countries, with USA, Europe, and Brazil, standing out among them. Publications focused mainly on anatomical and histomorphological characterization of the spleen, its physiology, and development. Recently, the use of splenic biomarkers in pathology and ecotoxicology began to grow but many gaps still need to be addressed in herpetological research. About 85 % of the splenic biomarkers showed responses to various stressors, which indicates that the spleen can provide numerous biomarkers to be used in many study fields. The limited amount of information on morphological description and splenic anatomy in amphibians may be a contributing factor to the underestimated use of splenic biomarkers in herpetological research around the world. We hope that this unprecedented review can instigate researchers to refine herpetological experimentation, using the spleen as a versatile and alternative source for biomarkers in ecotoxicology.
Collapse
Affiliation(s)
- Elisabete Tsukada
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Cândido C Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Jaqueline C Jacintho
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Lilian Franco-Belussi
- Departament of Biological Sciences, São Paulo State University, campus São José do Rio Preto, São Paulo, Brazil; Laboratory of Experimental Pathology (LAPex), Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Monica Jones-Costa
- Department of Biology, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Fábio Camargo Abdalla
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil; Laboratory of Structural and Functional Biology, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Raquel F Salla
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
6
|
Assis VR, Robert J, Titon SCM. Introduction to the special issue Amphibian immunity: stress, disease and ecoimmunology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220117. [PMID: 37305915 PMCID: PMC10258669 DOI: 10.1098/rstb.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibian populations have been declining worldwide, with global climate changes and infectious diseases being among the primary causes of this scenario. Infectious diseases are among the primary drivers of amphibian declines, including ranavirosis and chytridiomycosis, which have gained more attention lately. While some amphibian populations are led to extinction, others are disease-resistant. Although the host's immune system plays a major role in disease resistance, little is known about the immune mechanisms underlying amphibian disease resistance and host-pathogen interactions. As ectotherms, amphibians are directly subjected to changes in temperature and rainfall, which modulate stress-related physiology, including immunity and pathogen physiology associated with diseases. In this sense, the contexts of stress, disease and ecoimmunology are essential for a better understanding of amphibian immunity. This issue brings details about the ontogeny of the amphibian immune system, including crucial aspects of innate and adaptive immunity and how ontogeny can influence amphibian disease resistance. In addition, the papers in the issue demonstrate an integrated view of the amphibian immune system associated with the influence of stress on immune-endocrine interactions. The collective body of research presented herein can provide valuable insights into the mechanisms underlying disease outcomes in natural populations, particularly in the context of changing environmental conditions. These findings may ultimately enhance our ability to forecast effective conservation strategies for amphibian populations. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, Brazil
- College of Public Health, University of South Florida, Tampa, FL 33612-9415, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|