1
|
Lund J, Sørensen TIA, Friedman MI. The Physiology of Hunger. N Engl J Med 2025; 392:1767-1768. [PMID: 40305732 DOI: 10.1056/nejmc2502445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Affiliation(s)
- Jens Lund
- University of Copenhagen, Copenhagen
| | | | | |
Collapse
|
2
|
La Rosa F, Guzzardi MA, Pardo-Tendero M, Barone M, Ruocco C, Conti G, Panetta D, Riabitch D, Bernardi S, Giorgetti A, Campani D, Monleon D, Nisoli E, Brigidi P, Iozzo P. Effects of children's microbiota on adipose and intestinal development in sex-matched mice persist into adulthood following a single fecal microbiota transplantation. Mol Metab 2025; 97:102157. [PMID: 40288637 DOI: 10.1016/j.molmet.2025.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/28/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The global prevalence of obesity and type 2 diabetes, particularly among children, is rising, yet the long-term impacts of early-life fecal microbiota transplantation (FMT) on metabolic health remain poorly understood. OBJECTIVES To investigate how early-life FMT from children to young, sex-matched mice influences metabolic outcomes and adipose tissue function in later, adult life. METHODS Germ-free mice were colonized with fecal microbiota from either lean children or children with obesity. The impacts on brown adipose tissue (BAT), white adipose tissue (WAT), glucose metabolism, and gut health were analyzed in male and female mice. Microbial communities and metabolite profiles were characterized using sequencing and metabolomics. RESULTS Male mice receiving FMT from obese donors exhibited marked BAT whitening and impaired amino acid and glucose metabolism. In contrast, female recipients developed hyperglycemia, accompanied by gut barrier dysfunction and WAT impairment. Distinct microbial and metabolite profiles were associated with these phenotypes: Collinsella and trimethylamine in females; and Paraprevotella, Collinsella, Lachnospiraceae NK4A136, Bacteroides, Coprobacillus, and multiple metabolites in males. These phenotypic effects persisted despite changes in host environment and diet. CONCLUSIONS Early-life FMT induced long-lasting effects on the metabolic landscape, profoundly affecting adipose tissue function and systemic glucose homeostasis in adulthood. Donor dietary habits correlated with the fecal microbial profiles observed in recipient mice. These findings highlight the critical need for identifying and leveraging beneficial exposures during early development to combat obesity and diabetes.
Collapse
Affiliation(s)
- Federica La Rosa
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| | - Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| | - Mercedes Pardo-Tendero
- Department of Pathology, University of Valencia, Health Research Institute INCLIVA/CIBERFES for Frailty and Healthy Aging, Blasco Ibañez, 15, 46010, Valencia, Spain.
| | - Monica Barone
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna Italy.
| | - Chiara Ruocco
- Center of Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, 20129 Milan, Italy.
| | - Gabriele Conti
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna Italy.
| | - Daniele Panetta
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| | - Daria Riabitch
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| | - Silvia Bernardi
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| | - Assuero Giorgetti
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, 56124 Pisa, Italy.
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy.
| | - Daniel Monleon
- Department of Pathology, University of Valencia, Health Research Institute INCLIVA/CIBERFES for Frailty and Healthy Aging, Blasco Ibañez, 15, 46010, Valencia, Spain.
| | - Enzo Nisoli
- Center of Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, 20129 Milan, Italy.
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna Italy.
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
3
|
Boshuizen B, De Maré L, Oosterlinck M, Van Immerseel F, Eeckhaut V, De Meeus C, Devisscher L, Vidal Moreno de Vega C, Willems M, De Oliveira JE, Hosotani G, Gansemans Y, Meese T, Van Nieuwerburgh F, Deforce D, Vanderperren K, Verdegaal EL, Delesalle C. Aleurone supplementation enhances the metabolic benefits of training in Standardbred mares: impacts on glucose-insulin dynamics and gut microbiome composition. Front Physiol 2025; 16:1565005. [PMID: 40276369 PMCID: PMC12018385 DOI: 10.3389/fphys.2025.1565005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Aleurone, derived from the bran layer of grains like wheat and barley, has demonstrated positive effects on energy metabolism in pigs, mice, and untrained horses, influencing glucose-insulin dynamics and gut microbiome composition. Training itself enhances insulin sensitivity in horses, similar to the improvements in performance capacity observed in human athletes. This study aimed to investigate whether aleurone supplementation provides additional benefits to training by modulating insulin metabolism and gut microbiota in Standardbred mares. Methods Sixteen Standardbred mares (aged 3-5 years) participated in a cross-over study with two 8-week training periods separated by 8 weeks of detraining. Each horse received either 200 g/day aleurone supplementation or a control diet. Insulin metabolism was evaluated using oral (OGTT) and intravenous (FSIGTT) glucose tolerance tests, measuring parameters such as Maximumglucose, AUCglucose, Maximuminsulin, AUCinsulin, Time to peakinsulin (OGTT), Acute Insulin Response to Glucose (AIRg), glucose effectiveness (Sg), and disposition index (DI) (FSIGTT). Fecal samples underwent metagenomic analysis to assess alpha and beta diversity and microbial composition. Results Training alone: Training significantly improved OGTT parameters by decreasing Maximuminsulin (P = 0.005) and AUCinsulin (P = 0.001), while increasing Time to peakinsulin (P = 0.03), indicating enhanced insulin sensitivity. FSIGTT results also showed a decrease in logAIRg (P = 0.044). Training with Aleurone: Aleurone supplementation further reduced FSIGTT AIRg (P = 0.030), logAIRg (P = 0.021) while increasing glucose effectiveness (Sg; P = 0.031). These findings suggest aleurone improves insulin sensitivity, glucose disposal, and fasting glucose regulation beyond training. Microbiome analysis revealed training decreased Pseudomonas, associated with dysbiosis, while aleurone reduced inflammation-associated Desulfovibrio. Beta diversity metrics showed no significant changes. Conclusion Aleurone supplementation enhances training-induced improvements in glucose metabolism and fecal microbiota composition, which could offer potential benefits for equine athletes by optimizing metabolic flexibility. It also supports improvements in glucose and insulin dynamics, particularly by further enhancing insulin sensitivity and glucose-mediated disposal. Future studies should investigate the mechanisms of aleurone at the muscle and gut level and explore its potential applications for metabolic disorders such as Equine Metabolic Syndrome.
Collapse
Affiliation(s)
- Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Hospital Wolvega, Oldeholtpade, Netherlands
| | - Lorie De Maré
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Oosterlinck
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathobiology, Pharmacology and Special Animals Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathobiology, Pharmacology and Special Animals Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Constance De Meeus
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lindsey Devisscher
- Gut-Liver ImmunoPharmacology Unit, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Willems
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Katrien Vanderperren
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Elisabeth-Lidwien Verdegaal
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Health and Performance Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Health and Performance Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
van Baak MA, Mariman ECM. Physiology of Weight Regain after Weight Loss: Latest Insights. Curr Obes Rep 2025; 14:28. [PMID: 40163180 PMCID: PMC11958498 DOI: 10.1007/s13679-025-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE OF REVIEW This review summarizes the most recent research on the physiology of weight regain. It describes developments in areas that are currently being addressed and that may indicate promising directions for future research. RECENT FINDINGS Weight regain occurs independent of the way prior weight loss is achieved, i.e. by lifestyle, surgery or pharmacotherapy. Recent novel findings regarding weight regain belong to four areas. First, the immune obesity memory of which besides persistent immune cells promoting weight regain cells have been found that reduce weight regain. Second, the gut microbiome where autologous transplantation can limit weight regain. Third, the composition of the weight loss with the percentage of lost fat-free mass being inverse to the amount of regained weight independent of the weight loss procedure. Fourth, appetite control where after weight loss altered hypothalamic activity promoting hunger and weight regain persists, possibly mediated by altered neurotensin responses. In all four areas more conclusive evidence for their role in weight regain still needs to be obtained. Most studies on physiological mechanisms of weight regain are associative in nature and the number of intervention studies is very limited. To bring the field further, carefully designed intervention studies taking into account the dynamic character of weight loss and weight regain are needed.
Collapse
Affiliation(s)
- Marleen A van Baak
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and life Sciences+, Maastricht University, Maastricht, The Netherlands.
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, Maastricht, 6200MD, The Netherlands.
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and life Sciences+, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Shallangwa SM, Ross AW, Morgan PJ. Single, but not mixed dietary fibers suppress body weight gain and adiposity in high fat-fed mice. Front Microbiol 2025; 16:1544433. [PMID: 40012787 PMCID: PMC11861375 DOI: 10.3389/fmicb.2025.1544433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025] Open
Abstract
Dietary fiber can suppress excess adipose tissue and weight gain in rodents and humans when fed high fat diets. The gut microbiome is thought to have a key role, although exactly how remains unclear. In a tightly controlled murine study, we explored how different types of dietary fiber and doses affect the gut microbiota and gut epithelial gene expression. We show that 10% pectin and 10% FOS suppress high fat diet (HFD)-induced weight gain, effects not seen at 2% doses. Furthermore, 2 and 10% mixtures of dietary fiber were also without effect. Each fiber treatment stimulated a distinct gut microbiota profile at the family and operational taxonomic unit (OTU) level. Mechanistically it is likely that the single 10% fiber dose shifted selected bacteria above some threshold abundance, required to suppress body weight, which was not achieved by the 10% Mix, composed of 4 fibers each at 2.5%. Plasma levels of the gut hormone PYY were elevated by 10% pectin and FOS, but not 10% mixed fibers, and similarly RNA seq revealed some distinct effects of the 10% single fibers on gut epithelial gene expression. These data show how the ability of dietary fiber to suppress HFD-induced weight gain is dependent upon both fiber type and dose. It also shows that the microbial response to dietary fiber is distinct and that there is not a single microbial response associated with the inhibition of adiposity and weight gain. PYY seems key to the latter response, although the role of other factors such as Reg3γ and CCK needs to be explored.
Collapse
Affiliation(s)
| | | | - Peter J. Morgan
- Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
6
|
Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, Stanton C. The interplay between diet and the gut microbiome: implications for health and disease. Nat Rev Microbiol 2024; 22:671-686. [PMID: 39009882 DOI: 10.1038/s41579-024-01068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Dhrati Patangia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Ghjuvan Grimaud
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Liu E, Ji X, Zhou K. Akkermansia muciniphila for the Prevention of Type 2 Diabetes and Obesity: A Meta-Analysis of Animal Studies. Nutrients 2024; 16:3440. [PMID: 39458436 PMCID: PMC11510203 DOI: 10.3390/nu16203440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND More than half of the states in the U.S. report that over 30% of adults are obese. Obesity increases the risk of many chronic diseases, including type 2 diabetes, hypertension, and cardiovascular disease, and can even reduce one's lifespan. Similarly, the prevalence of type 2 diabetes follows a comparable trend. As a result, researchers are striving to find solutions to reduce obesity rates, with a particular focus on gut health, which has been previously linked to both obesity and type 2 diabetes. Recent studies suggest that Akkermansia muciniphila (Akk) may have a positive probiotic effect on preventing the onset of type 2 diabetes and obesity. METHODS We conducted a quantitative meta-analysis of 15 qualified animal studies investigating the effects of Akk administration as a probiotic. RESULTS The statistical analyses showed that Akk administration significantly reduced body weight gain by 10.4% and fasting blood glucose by 21.2%, while also significantly improving glucose tolerance by 22.1% and increasing blood insulin levels by 26.9%. However, our analysis revealed substantial heterogeneity between the control and experimental groups across all subgroups. CONCLUSIONS Overall, Akk appears to be effective at reducing the onset of type 2 diabetes and diet-induced obesity. Long-term studies with larger sample sizes are needed to confirm these beneficial effects, as the current animal studies were of short duration (less than 20 weeks).
Collapse
Affiliation(s)
- Ethan Liu
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| | - Xiangming Ji
- Department of Nutritional Sciences, The College of Health and Human Development, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kequan Zhou
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| |
Collapse
|
8
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Secchiero P, Rimondi E, Marcuzzi A, Longo G, Papi C, Manfredini M, Fields M, Caruso L, Di Caprio R, Balato A. Metabolic Syndrome and Psoriasis: Pivotal Roles of Chronic Inflammation and Gut Microbiota. Int J Mol Sci 2024; 25:8098. [PMID: 39125666 PMCID: PMC11311610 DOI: 10.3390/ijms25158098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, the incidence of metabolic syndrome (MS) has increased due to lifestyle-related factors in developed countries. MS represents a group of conditions that increase the risk of diabetes, cardiovascular diseases, and other severe health problems. Low-grade chronic inflammation is now considered one of the key aspects of MS and could be defined as a new cardiovascular risk factor. Indeed, an increase in visceral adipose tissue, typical of obesity, contributes to the development of an inflammatory state, which, in turn, induces the production of several proinflammatory cytokines responsible for insulin resistance. Psoriasis is a chronic relapsing inflammatory skin disease and is characterized by the increased release of pro-inflammatory cytokines, which can contribute to different pathological conditions within the spectrum of MS. A link between metabolic disorders and Psoriasis has emerged from evidence indicating that weight loss obtained through healthy diets and exercise was able to improve the clinical course and therapeutic response of Psoriasis in patients with obesity or overweight patients and even prevent its occurrence. A key factor in this balance is the gut microbiota; it is an extremely dynamic system, and this makes its manipulation through diet possible via probiotic, prebiotic, and symbiotic compounds. Given this, the gut microbiota represents an additional therapeutic target that can improve metabolism in different clinical conditions.
Collapse
Affiliation(s)
- Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (E.R.)
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (E.R.)
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Giovanna Longo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Chiara Papi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Marta Manfredini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Matteo Fields
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Roberta Di Caprio
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (R.D.C.); (A.B.)
| | - Anna Balato
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (R.D.C.); (A.B.)
| |
Collapse
|
10
|
Seyrling I, Clauss M, Dierkes PW, Burger-Schulz AL. Breaking the spell: Changes in the behavior of two zoo-kept tigers (Panthera tigris) after exposure to a distinct feast-and-fast feeding regime. Zoo Biol 2024; 43:340-353. [PMID: 38738552 DOI: 10.1002/zoo.21836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/25/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
The behavior of zoo carnivores has received intense attention due to their propensity for locomotor stereotypies. We observed two adult male tiger (Panthera tigris) siblings kept together for the duration of 104 days by round-the-clock video observation. The period consisted of three baseline periods with the zoo's regular feeding regime of five feeding days per week interrupted by two individual fasting days, with feeding occurring in the evening (B1-B3 of 14 days each). These periods were interrupted by two intervention periods (I1: randomized feeding times, 28 days; I2: gorge-feeding with three 10-day fasting periods, 34 days). As expected, day and night-time behavior was different, with the majority of sleep occurring at night. Pacing, which was mainly considered anticipatory, significantly decreased from 88 ± 132 min/day during B1 to 20 ± 33 min/day during B3. Pacing did not increase during the fasting days of I2. Over the course of whole study, lying time decreased and nonpacing locomotion increased. A major difference was observed between gorge-feeding and the subsequent first fasting days: during gorge-feeding, tigers spent a large part of the day feeding and locomoting (and less sleeping); on the subsequent day, they locomoted about 4.5 h less and slept about 4.3 h more. We suggest that interrupting routines by fasting periods of several days may be effective for reducing regular anticipatory behavior and creates an across-day structure that may correspond to the evolved psychological disposition of large carnivores.
Collapse
Affiliation(s)
- Isabel Seyrling
- Department of Bioscience Education and Zoo Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Paul Wilhelm Dierkes
- Department of Bioscience Education and Zoo Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Anna Lena Burger-Schulz
- Department of Bioscience Education and Zoo Biology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
11
|
Kenkel WM, Ahmed S, Partie M, Rogers K. Delivery by cesarean section leads to heavier adult bodyweight in prairie voles (Microtus ochrogaster). Horm Behav 2024; 160:105499. [PMID: 38350334 PMCID: PMC10961198 DOI: 10.1016/j.yhbeh.2024.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Delivery by cesarean section now makes up 32.1 % of all births in the United States. Meta-analyses have estimated that delivery by cesarean section is associated with a > 50 % increased risk for childhood obesity by 5 years of age. While this association is independent of maternal obesity, breastfeeding, and heritable factors, studies in humans have been unable to test for a causal role of cesarean delivery in this regard. Here, we set out to use an animal model to experimentally test whether delivery by cesarean section would increase offspring weight in adulthood. Delivery by cesarean section may exert neurodevelopmental consequences by impacting hormones that are important at birth as well as during metabolic regulation in later life, such as oxytocin and vasopressin. The prairie vole (Microtus ochrogaster) has long been studied to investigate the roles of oxytocin and vasopressin in brain development and social behavior. Here, we establish that prairie voles tolerate a range of ambient temperatures, including conventional 22° housing, which makes them translationally appropriate for studies of diet-induced obesity. We also studied vole offspring for their growth, sucrose preference, home cage locomotor activity, and food consumption after birth by either cesarean section or vaginal delivery. At sacrifice, we collected measures of weight, length, and adipose tissue to analyze body composition in adulthood. Voles delivered by cesarean section had consistently greater bodyweights than those born vaginally, despite having lower food consumption and greater locomotive activity. Cesarean-delivered animals were also longer, though this did not explain their greater body weights. While cesarean delivery had no effect on vasopressin, it resulted in less oxytocin immunoreactivity within the hypothalamus in adulthood. These results support the case that cesarean section delivery plays a causal role in increasing offspring body weight, potentially by affecting the oxytocin system.
Collapse
Affiliation(s)
- William M Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, United States of America.
| | - Sabreen Ahmed
- Department of Psychological and Brain Sciences, University of Delaware, United States of America
| | - Miranda Partie
- Department of Psychological and Brain Sciences, University of Delaware, United States of America
| | - Katelyn Rogers
- Department of Psychological and Brain Sciences, University of Delaware, United States of America
| |
Collapse
|
12
|
Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: a unifying theory for the global rise in obesity. Int J Obes (Lond) 2024; 48:449-460. [PMID: 38212644 PMCID: PMC10978495 DOI: 10.1038/s41366-024-01460-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Despite varied treatment, mitigation, and prevention efforts, the global prevalence and severity of obesity continue to worsen. Here we propose a combined model of obesity, a unifying paradigm that links four general models: the energy balance model (EBM), based on calories as the driver of weight gain; the carbohydrate-insulin model (CIM), based on insulin as a driver of energy storage; the oxidation-reduction model (REDOX), based on reactive oxygen species (ROS) as a driver of altered metabolic signaling; and the obesogens model (OBS), which proposes that environmental chemicals interfere with hormonal signaling leading to adiposity. We propose a combined OBS/REDOX model in which environmental chemicals (in air, food, food packaging, and household products) generate false autocrine and endocrine metabolic signals, including ROS, that subvert standard regulatory energy mechanisms, increase basal and stimulated insulin secretion, disrupt energy efficiency, and influence appetite and energy expenditure leading to weight gain. This combined model incorporates the data supporting the EBM and CIM models, thus creating one integrated model that covers significant aspects of all the mechanisms potentially contributing to the obesity pandemic. Importantly, the OBS/REDOX model provides a rationale and approach for future preventative efforts based on environmental chemical exposure reduction.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA.
| | - Robert H Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, CA, 94143, USA
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University, Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
13
|
Toubon G, Butel MJ, Rozé JC, Delannoy J, Ancel PY, Aires J, Charles MA. Association between gut microbiota at 3.5 years of age and body mass index at 5 years: results from two French nationwide birth cohorts. Int J Obes (Lond) 2024; 48:503-511. [PMID: 38097759 DOI: 10.1038/s41366-023-01442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 04/02/2024]
Abstract
BACKGROUND/OBJECTIVES The relationship between gut microbiota and changes in body mass index (BMI) or pediatric overweight in early life remains unclear, and information regarding the preterm population is scarce. This study aimed to investigate how the gut microbiota at 3.5 years of age is associated with (1) later BMI at 5 years, and (2) BMI z-score variations between 2 and 5 years in children from two French nationwide birth cohorts. SUBJECTS/METHODS Bacterial 16S rRNA gene sequencing was performed to profile the gut microbiota at 3.5 years of age in preterm children (n = 143, EPIPAGE 2 cohort) and late preterm/full-term children (n = 369, ELFE cohort). The predicted abundances of metabolic functions were computed using PICRUSt2. Anthropometric measurements were collected at 2 and 5 years of age during medical examinations or retrieved from children's health records. Statistical analyses included multivariable linear and logistic regressions, random forest variable selection, and MiRKAT. RESULTS The Firmicutes to Bacteroidetes (F/B) ratio at 3.5 years was positively associated with the BMI z-score at 5 years. Several genera were positively ([Eubacterium] hallii group, Fusicatenibacter, and [Eubacterium] ventriosum group) or negatively (Eggerthella, Colidextribacter, and Ruminococcaceae CAG-352) associated with the BMI z-scores at 5 years. Some genera were also associated with variations in the BMI z-scores between 2 and 5 years of age. Predicted metabolic functions, including steroid hormone biosynthesis, biotin metabolism, glycosaminoglycan degradation, and amino sugar and nucleotide sugar metabolism, were associated with lower BMI z-scores at 5 years. The unsaturated fatty acids biosynthesis pathway was associated with higher BMI z-scores. CONCLUSIONS These findings indicate that the gut microbiota at 3.5 years is associated with later BMI during childhood, independent of preterm or term birth, suggesting that changes in the gut microbiota that may predispose to adult obesity begin in early childhood.
Collapse
Affiliation(s)
- Gaël Toubon
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Marie-José Butel
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Jean-Christophe Rozé
- INRAE, UMR 1280, Physiologie des Adaptations Nutritionnelles (PhAN), Centre d'investigation clinique 1413, Centre hospitalo-universitaire de Nantes, F-44300, Nantes, France
| | - Johanne Delannoy
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Pierre-Yves Ancel
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France
| | - Julio Aires
- Université Paris Cité, INSERM, UMR-S 1139, Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), F-75006, Paris, France.
- FHU PREMA, « Fighting Prematurity », F-75006, Paris, France.
| | - Marie-Aline Charles
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et StatistiqueS (CRESS), F-75004, Paris, France.
| |
Collapse
|
14
|
Li Y, Wang X, Zhang Z, Shi L, Cheng L, Zhang X. Effect of the gut microbiome, plasma metabolome, peripheral cells, and inflammatory cytokines on obesity: a bidirectional two-sample Mendelian randomization study and mediation analysis. Front Immunol 2024; 15:1348347. [PMID: 38558794 PMCID: PMC10981273 DOI: 10.3389/fimmu.2024.1348347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background Obesity is a metabolic and chronic inflammatory disease involving genetic and environmental factors. This study aimed to investigate the causal relationship among gut microbiota abundance, plasma metabolomics, peripheral cell (blood and immune cell) counts, inflammatory cytokines, and obesity. Methods Summary statistics of 191 gut microbiota traits (N = 18,340), 1,400 plasma metabolite traits (N = 8,299), 128 peripheral cell counts (blood cells, N = 408,112; immune cells, N = 3,757), 41 inflammatory cytokine traits (N = 8,293), and 6 obesity traits were obtained from publicly available genome-wide association studies. Two-sample Mendelian randomization (MR) analysis was applied to infer the causal links using inverse variance-weighted, maximum likelihood, MR-Egger, weighted median, weighted mode, and Wald ratio methods. Several sensitivity analyses were also utilized to ensure reliable MR results. Finally, we used mediation analysis to identify the pathway from gut microbiota to obesity mediated by plasma metabolites, peripheral cells, and inflammatory cytokines. Results MR revealed a causal effect of 44 gut microbiota taxa, 281 plasma metabolites, 27 peripheral cells, and 8 inflammatory cytokines on obesity. Among them, five shared causal gut microbiota taxa belonged to the phylum Actinobacteria, order Bifidobacteriales, family Bifidobacteriaceae, genus Lachnospiraceae UCG008, and species Eubacterium nodatum group. Furthermore, we screened 42 shared causal metabolites, 7 shared causal peripheral cells, and 1 shared causal inflammatory cytokine. Based on known causal metabolites, we observed that the metabolic pathways of D-arginine, D-ornithine, linoleic acid, and glycerophospholipid metabolism were closely related to obesity. Finally, mediation analysis revealed 20 mediation relationships, including the causal pathway from gut microbiota to obesity, mediated by 17 metabolites, 2 peripheral cells, and 1 inflammatory cytokine. Sensitivity analysis represented no heterogeneity or pleiotropy in this study. Conclusion Our findings support a causal relationship among gut microbiota, plasma metabolites, peripheral cells, inflammatory cytokines, and obesity. These biomarkers provide new insights into the mechanisms underlying obesity and contribute to its prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ying Li
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Xin Wang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liang Cheng
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xue Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Mehta NH, Huey SL, Kuriyan R, Peña-Rosas JP, Finkelstein JL, Kashyap S, Mehta S. Potential Mechanisms of Precision Nutrition-Based Interventions for Managing Obesity. Adv Nutr 2024; 15:100186. [PMID: 38316343 PMCID: PMC10914563 DOI: 10.1016/j.advnut.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
Precision nutrition (PN) considers multiple individual-level and environmental characteristics or variables to better inform dietary strategies and interventions for optimizing health, including managing obesity and metabolic disorders. Here, we review the evidence on potential mechanisms-including ones to identify individuals most likely to respond-that can be leveraged in the development of PN interventions addressing obesity. We conducted a review of the literature and included laboratory, animal, and human studies evaluating biochemical and genetic data, completed and ongoing clinical trials, and public programs in this review. Our analysis describes the potential mechanisms related to 6 domains including genetic predisposition, circadian rhythms, physical activity and sedentary behavior, metabolomics, the gut microbiome, and behavioral and socioeconomic characteristics, i.e., the factors that can be leveraged to design PN-based interventions to prevent and treat obesity-related outcomes such as weight loss or metabolic health as laid out by the NIH 2030 Strategic Plan for Nutrition Research. For example, single nucleotide polymorphisms can modify responses to certain dietary interventions, and epigenetic modulation of obesity risk via physical activity patterns and macronutrient intake have also been demonstrated. Additionally, we identified limitations including questions of equitable implementation across a limited number of clinical trials. These include the limited ability of current PN interventions to address systemic influences such as supply chains and food distribution, healthcare systems, racial or cultural inequities, and economic disparities, particularly when designing and implementing PN interventions in low- and middle-income communities. PN has the potential to help manage obesity by addressing intra- and inter-individual variation as well as context, as opposed to "one-size fits all" approaches though there is limited clinical trial evidence to date.
Collapse
Affiliation(s)
- Neel H Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, United States
| | - Rebecca Kuriyan
- Division of Nutrition, St. John's Research Institute, Bengaluru, Karnataka, India
| | - Juan Pablo Peña-Rosas
- Global Initiatives, The Department of Nutrition and Food Safety, World Health Organization, Geneva, Switzerland
| | - Julia L Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, United States; Division of Nutrition, St. John's Research Institute, Bengaluru, Karnataka, India
| | - Sangeeta Kashyap
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine New York Presbyterian, New York, NY, United States
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, United States; Division of Medical Informatics, St. John's Research Institute, Bengaluru, Karnataka, India.
| |
Collapse
|
16
|
Zheng Y, Bonfili L, Wei T, Eleuteri AM. Understanding the Gut-Brain Axis and Its Therapeutic Implications for Neurodegenerative Disorders. Nutrients 2023; 15:4631. [PMID: 37960284 PMCID: PMC10648099 DOI: 10.3390/nu15214631] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The gut-brain axis (GBA) is a complex bidirectional communication network connecting the gut and brain. It involves neural, immune, and endocrine communication pathways between the gastrointestinal (GI) tract and the central nervous system (CNS). Perturbations of the GBA have been reported in many neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), among others, suggesting a possible role in disease pathogenesis. The gut microbiota is a pivotal component of the GBA, and alterations in its composition, known as gut dysbiosis, have been associated with GBA dysfunction and neurodegeneration. The gut microbiota might influence the homeostasis of the CNS by modulating the immune system and, more directly, regulating the production of molecules and metabolites that influence the nervous and endocrine systems, making it a potential therapeutic target. Preclinical trials manipulating microbial composition through dietary intervention, probiotic and prebiotic supplementation, and fecal microbial transplantation (FMT) have provided promising outcomes. However, its clear mechanism is not well understood, and the results are not always consistent. Here, we provide an overview of the major components and communication pathways of the GBA, as well as therapeutic approaches targeting the GBA to ameliorate NDDs.
Collapse
Affiliation(s)
- Yadong Zheng
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
| | - Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
| |
Collapse
|
17
|
Heeren FAN, Darcey VL, Deemer SE, Menon S, Tobias D, Cardel MI. Breaking down silos: the multifaceted nature of obesity and the future of weight management. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220215. [PMID: 37482785 PMCID: PMC10363700 DOI: 10.1098/rstb.2022.0215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/04/2023] [Indexed: 07/25/2023] Open
Abstract
The continued global increase in the prevalence of obesity prompted a meeting at the Royal Society of London investigating causal mechanisms of the disease, 'Causes of obesity: theories, conjectures, and evidence' in October 2022. Evidence presented indicates areas of obesity science where there have been advancements, including an increased understanding of biological and physiological processes of weight gain and maintenance, yet it is clear there is still debate on the relative contribution of plausible causes of the modern obesity epidemic. Consensus was reached that obesity is not a reflection of diminished willpower, but rather the confluence of multiple, complex factors. As such, addressing obesity requires multifactorial prevention and treatment strategies. The accumulated evidence suggests that a continued focus primarily on individual-level contributors will be suboptimal in promoting weight management at the population level. Here, we consider individual biological and physiological processes within the broader context of sociodemographic and sociocultural exposures as well as environmental changes to optimize research priorities and public health efforts. This requires a consideration of a systems-level approach that efficiently addresses both systemic and group-specific environmental determinants, including psychosocial factors, that often serve as a barrier to otherwise efficacious prevention and treatment options. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Faith Anne N. Heeren
- Department of Health Outcomes & Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL 32611-7011, USA
| | - Valerie L. Darcey
- Laboratory of Biological Modeling, Integrative Physiology Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Sarah E. Deemer
- Integrative Metabolism & Disease Prevention Research Group, Department of Kinesiology, Health Promotion & Recreation, University of North Texas, Denton, TX 76203, USA
| | - Sarada Menon
- Department of Health Outcomes & Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL 32611-7011, USA
| | - Deirdre Tobias
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
- Nutrition Department, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Michelle I. Cardel
- Department of Health Outcomes & Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL 32611-7011, USA
- WW International Inc, New York, New York 10010, USA
| |
Collapse
|