1
|
Püffel F, Kang V, Yap M, Shojaeifard M, Bacca M, Labonte D. Behavioural biomechanics: leaf-cutter ant cutting behaviour depends on leaf edge geometry. Proc Biol Sci 2025; 292:20242926. [PMID: 40262644 PMCID: PMC12014232 DOI: 10.1098/rspb.2024.2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 04/24/2025] Open
Abstract
Leaf-cutter ants cut fresh leaves to grow a symbiotic fungus as crop. During cutting, one mandible is typically anchored onto the leaf lamina while the other slices through it like a knife. When initiating cuts into the leaf edge, however, foragers sometimes deviate from this behaviour and instead use their mandibles symmetrically, akin to scissors. In vivo behavioural assays revealed that the preference for either of the two cutting strategies depended on leaf edge geometry and differed between natural leaf margins that were straight or serrated with notch-like folds: leaf-cutter ants displayed a strong preference for scissor-cutting when leaf edges were straight or had wide notches. This preference, however, reversed in favour of knife-cutting when notches were narrow. To investigate whether this behavioural difference had a mechanical origin, we mimicked knife-cutting in ex vivo cutting experiments: for wide notches, all but the sharpest mandibles failed to initiate cuts, or only did so at large forces, caused by substantial leaf buckling and bending. This increased force demand would substantially limit the ability of foragers to cut leaves, and so reduce the colony's access to food sources. Scissor-cutting may thus be an adaptation to the mechanical difficulties associated with bending and buckling of thin leaves.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London, UK
| | - Victor Kang
- Department of Bioengineering, Imperial College London, London, UK
| | - Mia Yap
- Department of Bioengineering, Imperial College London, London, UK
| | - Mohammad Shojaeifard
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mattia Bacca
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Labonte
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
2
|
Lehnert MS, Myers KO, Reiter KE. The Right Tool for the Job: A Review of Insect Mouthparts as a Tool Kit for Biomimetic Studies. Biomimetics (Basel) 2025; 10:196. [PMID: 40277595 DOI: 10.3390/biomimetics10040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Few traits exhibit a more diverse collection of exemplary structure-function relationships than the mouthparts of insects. The global dominance of insects is attributed to their diverse food sources, which are matched by an array of morphological and chemical adaptations: a 'tool kit' for biomimicry. This review provides an overview of insect mouthparts that have contributed to biomimetics, including information about morphology and functionality in relation to particular feeding mechanisms. Themes in the groups of insects employed for particular biomimetic studies, including their lineages and feeding strategies, are identified along with suggestions for future studies, which together underscore the importance and promise of the development of novel engineered devices inspired by the unique 'tools' of insect mouthparts.
Collapse
Affiliation(s)
- Matthew S Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
| | - Kendall O Myers
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
| | - Kristen E Reiter
- Biology Department, Cuyahoga Community College, Highland Hills, OH 44122, USA
| |
Collapse
|
3
|
Lopez VM, Polidori C, Ferreira RG. Hymenoptera and biomimetic surfaces: insights and innovations. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1333-1352. [PMID: 39530025 PMCID: PMC11552452 DOI: 10.3762/bjnano.15.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The extraordinary adaptations that Hymenoptera (sawflies, wasps, ants, and bees) exhibit on their body surfaces has long intrigued biologists. These adaptations, which enabled the immense success of these insects in a wide range of environments and habitats, include an amazing array of specialized structures facilitating attachment, penetration of substrates, production of sound, perception of volatiles, and delivery of venoms, among others. These morphological features offer valuable insights for biomimetic and bioinspired technological advancements. Here, we explore the biomimetic potential of hymenopteran body surfaces. We highlight recent advancements and outline potential strategic pathways, evaluating their current functions and applications while suggesting promising avenues for further investigations. By studying these fascinating and biologically diverse insects, researchers could develop innovative materials and devices that replicate the efficiency and functionality of insect body structures, driving progress in medical technology, robotics, environmental monitoring, and beyond.
Collapse
Affiliation(s)
| | - Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria 26, 20133, Milan, Italy
| | | |
Collapse
|
4
|
Cuff JP, Labonte D, Windsor FM. Understanding Trophic Interactions in a Warming World by Bridging Foraging Ecology and Biomechanics with Network Science. Integr Comp Biol 2024; 64:306-321. [PMID: 38872009 PMCID: PMC11406160 DOI: 10.1093/icb/icae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Climate change will disrupt biological processes at every scale. Ecosystem functions and services vital to ecological resilience are set to shift, with consequences for how we manage land, natural resources, and food systems. Increasing temperatures cause morphological shifts, with concomitant implications for biomechanical performance metrics crucial to trophic interactions. Biomechanical performance, such as maximum bite force or running speed, determines the breadth of resources accessible to consumers, the outcome of interspecific interactions, and thus the structure of ecological networks. Climate change-induced impacts to ecosystem services and resilience are therefore on the horizon, mediated by disruptions of biomechanical performance and, consequently, trophic interactions across whole ecosystems. Here, we argue that there is an urgent need to investigate the complex interactions between climate change, biomechanical traits, and foraging ecology to help predict changes to ecological networks and ecosystem functioning. We discuss how these seemingly disparate disciplines can be connected through network science. Using an ant-plant network as an example, we illustrate how different data types could be integrated to investigate the interaction between warming, bite force, and trophic interactions, and discuss what such an integration will achieve. It is our hope that this integrative framework will help to identify a viable means to elucidate previously intractable impacts of climate change, with effective predictive potential to guide management and mitigation.
Collapse
Affiliation(s)
- Jordan P Cuff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
5
|
Antarvedi Goda B, Ma Z, Fregonese S, Bacca M. Cutting soft matter: scaling relations controlled by toughness, friction, and wear. SOFT MATTER 2024. [PMID: 39028024 DOI: 10.1039/d4sm00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cutting mechanics of soft solids is gaining rapid attention thanks to its promising benefits in material characterization and other applications. However, a full understanding of the physical phenomena is still missing, and several questions remain outstanding. E.g.: How can we directly and reliably measure toughness from cutting experiments? What is the role of blade sharpness? In this paper, we explore the simple problem of wire cutting, where blade sharpness is only defined by the wire radius. Through finite element analysis, we obtain a simple scaling relation between the wire radius and the steady-state cutting force per unit sample thickness. The cutting force is independent of the wire radius if the latter is below a transition length, while larger radii produce a linear force-radius correlation. The minimum cutting force, for small radii, is given by cleavage toughness, i.e., the surface energy required to break covalent bonds in the crack plane. The force-radius slope is instead given by the wear shear strength in the material. Via cutting experiments on polyacrylamide gels, we find that the magnitude of shear strength is close to the work of fracture of the material, i.e., the critical strain energy density required to break a pristine sample in uniaxial tension. The work of fracture characterizes the toughening contribution from the fracture process zone (FPZ), which adds to cleavage toughness. Our study provides two important messages, that answer the above questions: toughness can be estimated from wire-cutting experiments from the intercept of the force-radius linear correlation, as previously explored. However, as we discovered, this only estimates cleavage toughness. Additionally, the force-radius slope is correlated with the work of fracture, giving an estimation of the dissipative contributions from the FPZ.
Collapse
Affiliation(s)
- Bharath Antarvedi Goda
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Zhenwei Ma
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Stefano Fregonese
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Mattia Bacca
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
6
|
Dhawale N, Labonte D, Holt NC. The effect of muscle ultrastructure on the force, displacement and work capacity of skeletal muscle. J R Soc Interface 2024; 21:20230658. [PMID: 38774960 DOI: 10.1098/rsif.2023.0658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/28/2024] [Indexed: 07/31/2024] Open
Abstract
Skeletal muscle powers animal movement through interactions between the contractile proteins, actin and myosin. Structural variation contributes greatly to the variation in mechanical performance observed across muscles. In vertebrates, gross structural variation occurs in the form of changes in the muscle cross-sectional area : fibre length ratio. This results in a trade-off between force and displacement capacity, leaving work capacity unaltered. Consequently, the maximum work per unit volume-the work density-is considered constant. Invertebrate muscle also varies in muscle ultrastructure, i.e. actin and myosin filament lengths. Increasing actin and myosin filament lengths increases force capacity, but the effect on muscle fibre displacement, and thus work, capacity is unclear. We use a sliding-filament muscle model to predict the effect of actin and myosin filament lengths on these mechanical parameters for both idealized sarcomeres with fixed actin : myosin length ratios, and for real sarcomeres with known filament lengths. Increasing actin and myosin filament lengths increases stress without reducing strain capacity. A muscle with longer actin and myosin filaments can generate larger force over the same displacement and has a higher work density, so seemingly bypassing an established trade-off. However, real sarcomeres deviate from the idealized length ratio suggesting unidentified constraints or selective pressures.
Collapse
Affiliation(s)
- Nihav Dhawale
- Department of Evolution, Ecology and Organismal Biology, UC Riverside , Riverside, CA, USA
| | - David Labonte
- Department of Bioengineering, Imperial College London , London, UK
| | - Natalie C Holt
- Department of Evolution, Ecology and Organismal Biology, UC Riverside , Riverside, CA, USA
| |
Collapse
|
7
|
Wegst UGK, Cloetens P, Betz O. Desert locusts ( Schistocerca gregaria) feed with self-sharpening, scissor-like mandibles. Interface Focus 2024; 14:20230069. [PMID: 38618238 PMCID: PMC11008957 DOI: 10.1098/rsfs.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
The mandibles of the desert locust Schistocerca gregaria (Forsskål, 1775) are digger-shovel-shaped mouthparts that are part of the locust's exoskeleton formed by the insect cuticle. The cuticle is a polymer-fibre composite, which supports, encases and protects the entire body. Mandibles experience heavy loading and wear due to direct contact with hard and abrasive food, just like teeth, their mineralized analogues in vertebrates. With dual-energy X-ray tomography, we image well-defined regions of zinc (Zn)-enriched cuticle at the mandible cutting edges and quantify the Zn concentrations in these regions. Zn is known to increase stiffness, hardness and wear resistance of the otherwise purely polymeric insect cuticle. In S. gregaria, the position of the Zn-enriched cutting-edge regions relative to one another suggests that the mandibles form a scissor-like cutting tool, which sharpens itself as the mouthparts shear past one another during feeding. Comparing the architecture of these purely polymeric mandibles with the mineralized incisors of rodents, we find fundamental design differences in cutting-tool structure and performance. Locusts' scissors and rodents' carving knives perform different functions, because they act on food that differs significantly in properties and shape: softer, sheet-like material in the case of locusts and harder bulk material in the case of rodents.
Collapse
Affiliation(s)
- Ulrike G. K. Wegst
- Department of Physics, Northeastern University, 360 Huntingdon Avenue, Boston, MA, USA
| | - Peter Cloetens
- ESRF, the European Synchrotron, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Oliver Betz
- Institute of Evolution and Ecology, Evolutionary Biology of Invertebrates, University of Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Imirzian N, Püffel F, Roces F, Labonte D. Large deformation diffeomorphic mapping of 3D shape variation reveals two distinct mandible and head capsule morphs in Atta vollenweideri leaf-cutter worker ants. Ecol Evol 2024; 14:e11236. [PMID: 38633523 PMCID: PMC11021802 DOI: 10.1002/ece3.11236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Ants are crucial ecosystem engineers, and their ecological success is facilitated by a division of labour among sterile "workers". In some ant lineages, workers have undergone further morphological differentiation, resulting in differences in body size, shape, or both. Distinguishing between changes in size and shape is not trivial. Traditional approaches based on allometry reduce complex 3D shapes into simple linear, areal, or volume metrics; modern approaches using geometric morphometrics typically rely on landmarks, introducing observer bias and a trade-off between effort and accuracy. Here, we use a landmark-free method based on large deformation diffeomorphic metric mapping (LDDMM) to assess the co-variation of size and 3D shape in the mandibles and head capsules of Atta vollenweideri leaf-cutter ants, a species exhibiting extreme worker size-variation. Body mass varied by more than two orders of magnitude, but a shape atlas created via LDDMM on μ-CT-derived 3D mesh files revealed only two distinct head capsule and mandibles shapes-one for the minims (body mass < 1 mg) and one for all other workers. We discuss the functional significance of the identified 3D shape variation, and its implications for the evolution of extreme polymorphism in Atta.
Collapse
Affiliation(s)
| | | | - Flavio Roces
- Department of Behavioural Physiology and SociobiologyBiocenter, University of WürzburgWürzburgGermany
| | - David Labonte
- Department of BioengineeringImperial College LondonLondonUK
| |
Collapse
|
9
|
Laird MF, Ross CF, Kang V, Konow N. Introduction: food processing and nutritional assimilation in animals. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220559. [PMID: 37839455 PMCID: PMC10577032 DOI: 10.1098/rstb.2022.0559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
How animals process and absorb nutrients from their food is a fundamental question in biology. Despite the continuity and interaction between intraoral food processing and post-oesophageal nutritional extraction, these topics have largely been studied separately. At present, we lack a synthesis of how pre- and post-oesophageal mechanisms of food processing shape the ability of various taxa to effectively assimilate nutrients from their diet. The aim of this special issue is to catalyse a unification of these distinct approaches as a functional continuum. We highlight questions that derive from this synthesis, as well as technical advances to address these questions. At present, there is also a skew toward vertebrates in studies of feeding form-function mechanics; by including perspectives from researchers working on both vertebrates and invertebrates, we hope to stimulate integrative and comparative research on food processing and nutritional assimilation. Below, we discuss how the papers in this issue contribute to these goals in three areas: championing a functional-comparative approach, quantifying performance and emphasizing the effects of life history, and food substrate and extrinsic factors in current and future studies of oral food processing and nutritional assimilation. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Myra F. Laird
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104-6243, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Victor Kang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| |
Collapse
|
10
|
Richter A, Economo EP. The feeding apparatus of ants: an overview of structure and function. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220556. [PMID: 37839452 PMCID: PMC10577024 DOI: 10.1098/rstb.2022.0556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/25/2023] [Indexed: 10/17/2023] Open
Abstract
Ants are a dominant family of eusocial terrestrial insects with a diversity of ecologies, lifestyles and morphologies. Ant diet preferences range from strict carnivory through omnivory to almost complete herbivory in species feeding on seeds or exudates of plant-sucking insects. While several studies have investigated ant feeding performance on different substrates, comparatively little is known about the functional morphology of the structures involved in food uptake or their diversification across the ants. To take stock of our current knowledge, we give an overview of how adult ants ingest food, followed by a morphological description of the mouthparts, preoral space and cephalic sucking pump. The mandibles are the most prominent mouthparts and have received considerable attention in the literature, so we focus on the maxillae and labium here. We present current hypotheses for the movement patterns of these parts and discuss morphological differences among ants that may be related to their ecological diversity. Finally, we give short comparisons of the ant condition with some other insects and vertebrates, as well as an outlook summarizing gaps in our knowledge. This sets the stage for future studies elucidating the connections between ant feeding mechanisms and mouthpart evolution. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Adrian Richter
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|