1
|
Abedin I, Kamalakannan M, Mukherjee T, Singha H, Banerjee D, Kim HW, Kundu S. Eco-Spatial Modeling of Two Giant Flying Squirrels (Sciuridae: Petaurista): Navigating Climate Resilience and Conservation Roadmap in the Eastern Himalaya and Indo-Burma Biodiversity Hotspots. Life (Basel) 2025; 15:589. [PMID: 40283144 PMCID: PMC12028898 DOI: 10.3390/life15040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Global warming and anthropogenic threats are significant drivers of biodiversity loss, particularly impacting smaller mammalian species. Hence, this study assessed two overlooked giant flying squirrel species, Petaurista magnificus and Petaurista nobilis, distributed across the transboundary regions of the Eastern Himalayas and Indo-Burma biodiversity hotspots. Utilizing a maximum entropy (MaxEnt) species distribution model, this study delineated suitable habitats within the IUCN-defined extent of both Petaurista species based on two modeling approaches: the habitat-climate model (HCM) and the climate-only model (COM). The models identified suitable habitat coverage of only 3.92% (HCM) and 3.75% (COM) for P. magnificus and 14.17% (HCM) and 10.04% (COM) for P. nobilis. However, as the HCM integrates both environmental and habitat variables, providing a more holistic assessment, it revealed limited biological corridor connectivity within the IUCN-defined extent for both species. Furthermore, the future projections based on the HCM indicate habitat loss of up to 81.90% for P. magnificus and 89.88% for P. nobilis due to climate change, alongside severe fragmentation, leading to the disappearance of viable habitat patches. These remaining suitable patches are expected to shrink and become increasingly isolated in the future due to climate change. Furthermore, centroid shift analyses based on the HCM predict a northwestward shift for P. magnificus and a westward shift for P. nobilis under different climate scenarios. Hence, to address these conservation challenges, the study underscores the necessity for extensive field surveys, genetic assessments, habitat corridor evaluations, and the establishment of transboundary conservation frameworks to formulate an evidence-based species management strategy for both Petaurista species.
Collapse
Affiliation(s)
- Imon Abedin
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
| | | | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Hilloljyoti Singha
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
- Centre for Wildlife Research and Biodiversity Conservation, Bodoland University, Kokrajhar 783370, India
| | - Dhriti Banerjee
- Mammal and Osteology Section, Zoological Survey of India, Kolkata 700053, India
- Zoological Survey of India, Prani Vigyan Bhawan, Kolkata 700053, India
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Shantanu Kundu
- Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
2
|
Abedin I, Singha H, Singh S, Mukherjee T, Kim HW, Kundu S. Riverine Realities: Evaluating Climate Change Impacts on Habitat Dynamics of the Critically Endangered Gharial ( Gavialis gangeticus) in the Indian Landscape. Animals (Basel) 2025; 15:896. [PMID: 40150425 PMCID: PMC11939341 DOI: 10.3390/ani15060896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
The endemic and critically endangered gharial, Gavialis gangeticus, experienced a severe population decline in its range. However, conservation efforts, notably through the implementation of "Project Crocodile" in India, have led to a significant recovery of its population. The present study employs an ensemble Species Distribution Model (SDM) to delineate suitable habitats for G. gangeticus under current and future climatic scenarios to understand the impact of climate change. The model estimates that 46.85% of the area of occupancy is suitable under the present scenario, with this suitable area projected to increase by 145.16% in future climatic conditions. States such as Madhya Pradesh, Uttar Pradesh, and Assam are projected to experience an increase in habitat suitability, whereas Odisha and Rajasthan are anticipated to face declines. The study recommends conducting ground-truthing ecological assessments using advanced technologies and genetic analyses to validate the viability of newly identified habitats in the Lower Ganges, Mahanadi, and Brahmaputra River systems. These areas should be prioritized within the Protected Area network for potential translocation sites allocation. Collaborative efforts between the IUCN-SSC Crocodile Specialist Group and stakeholders are vital for prioritizing conservation and implementing site-specific interventions to protect the highly threatened gharial population in the wild.
Collapse
Affiliation(s)
- Imon Abedin
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
| | - Hilloljyoti Singha
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
- Centre for Wildlife Research and Biodiversity Conservation, Bodoland University, Kokrajhar 783370, India
| | - Shailendra Singh
- Turtle Survival Alliance Foundation India (TSAFI), Lucknow 226021, India
| | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Shantanu Kundu
- Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Abedin I, Kamalakannan M, Mukherjee T, Choudhury A, Singha H, Abedin J, Banerjee D, Kim HW, Kundu S. Fading into Obscurity: Impact of Climate Change on Suitable Habitats for Two Lesser-Known Giant Flying Squirrels (Sciuridae: Petaurista) in Northeastern India. BIOLOGY 2025; 14:242. [PMID: 40136499 PMCID: PMC11940093 DOI: 10.3390/biology14030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
In recent years, global warming has become a major driver of biodiversity loss, significantly impacting various vertebrate species, including mammals. Consequently, numerous smaller species face extinction risks due to anthropogenic factors as well as inadequate assessments and conservation planning. Thus, this study focuses on two recently described endemic giant flying squirrel species under the Petaurista genus-Petaurista mishmiensis and Petaurista mechukaensis-found in Arunachal Pradesh, India. Using an ensemble species distribution model (SDM), this research delineates suitable habitats for these lesser-known species and evaluates the effects of climate change and habitat fragmentation on these areas. This analysis aims to inform a comprehensive management plan for their conservation. The ensemble model identified suitable habitat patches for the two species, extending beyond their current IUCN-designated ranges in Arunachal Pradesh. Under present conditions, P. mishmiensis has the largest predicted suitable area (9213 sq. km), followed by P. mechukaensis (6754 sq. km). However, future projections reveal alarming habitat losses ranging from 13.45% to 55.86% across the study area. This study also highlights severe habitat fragmentation throughout the state as viable patches for P. mishmiensis are drastically reduced in size, resulting in many being completely lost and the remaining areas being closer together. However, the P. mechukaensis experiences significant disintegration, resulting in numerous smaller, more dispersed patches within Arunachal Pradesh. Hence, to address these challenges, this study recommends several actions such as genetic assessments to confirm evolutionary relationships, evaluations of corridor connectivity, and comprehensive field studies. Furthermore, establishing joint forest conservation committees involving local communities, forest personnel, defense forces, naturalists, and scientists are also encouraged. Ultimately, this research provides critical insights for guiding future field studies across Arunachal Pradesh's vast landscapes and supports the development of detailed species management plans to protect these endemic flying squirrels.
Collapse
Affiliation(s)
- Imon Abedin
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
| | | | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India
| | | | - Hilloljyoti Singha
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
- Centre for Wildlife Research and Biodiversity Conservation, Bodoland University, Kokrajhar 783370, India
| | - Joynal Abedin
- Dibru-Saikhowa Conservation Society, Tinsukia 786147, India
| | - Dhriti Banerjee
- Mammal and Osteology Section, Zoological Survey of India, Kolkata 700053, India
- Zoological Survey of India, Prani Vigyan Bhawan, Kolkata 700053, India
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Shantanu Kundu
- Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Dash S, Maity R. Association between hydroclimatic factors and vegetation health: Impact of climate change in the past and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178605. [PMID: 39869968 DOI: 10.1016/j.scitotenv.2025.178605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/02/2025] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
This study investigates the potential impact of future climate scenarios designated by different shared socioeconomic pathways (SSPs) on vegetation health. Considering the entire Indian mainland as the study region, which exhibits a diverse range of climate and vegetation regimes, we analysed long-term past (1981-2020) and future (2021-2100) changes in vegetation greenness across seven vegetation types and four seasons. In order to gain insight into the intricate interrelationships between vegetation and hydroclimatic factors (soil moisture, precipitation, solar radiation, and temperature), a Standardized Vegetation Index (SVI) is used as a proxy for vegetation health, and a bivariate copula-based probabilistic model is developed incorporating a Combined Climate Index (CCI) derived through Supervised Principal Component Analysis (SPCA) and the SVI. Our results indicate that the water-limited areas are more sensitive to precipitation and soil moisture, whereas energy-limited areas are primarily influenced by temperature and solar radiation. Consequently, an overall increase in the vegetation greenness is observed over the past decades in most of water-limited regions, and almost no change or slight decline in greenness over the northeastern regions, where precipitation is abundant but it is an energy-limited region due to high convective activity. Future projections (2021-2100) indicate an overall increase in greenness during monsoons. However, browning (loss of greenness) is anticipated to intensify over time, especially in the northeast. This study demonstrates the model's efficacy in capturing the complex vegetation-climate relationship, highlighting its potential for application across diverse geographical regions and providing insights into the implications of climate change.
Collapse
Affiliation(s)
- Subhasmita Dash
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rajib Maity
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
5
|
Abedin I, Singha H, Kang HE, Kim HW, Kundu S. Forecasting Suitable Habitats of the Clouded Leopard ( Neofelis nebulosa) in Asia: Insights into the Present and Future Climate Projections Within and Beyond Extant Boundaries. BIOLOGY 2024; 13:902. [PMID: 39596857 PMCID: PMC11592018 DOI: 10.3390/biology13110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Terrestrial carnivores, such as the clouded leopard (Neofelis nebulosa), are 'vulnerable' and experiencing significant population declines in mainland Asia. Considering the assessed threats, the IUCN has repetitively revised the range of this felid and now characterized it into four distinct categories (extant, possibly extant, possibly extinct, and extinct). Although several ecological works have been accomplished on this enigmatic carnivore, the overall view of its habitat suitability, fragmentation, and corridor connectivity in both present and historical ranges is lacking. Thus, achieving this ecological information under present and future climate scenarios is crucial. The model identified merely 44,033 sq. km falling within the extant range (representing 31.66%) and 20,034 sq. km (8.13%) in the possibly extant range. Fascinatingly, within the historical ranges, an additional 15,264 sq. km (6.58%) has been identified as suitable habitat in the possibly extinct range and 14,022 sq. km (2.38%) in the extinct range. Notably, a total of 25,614 sq. km of suitable habitat is found within designated protected areas across the entire range. Nevertheless, climate change is expected to drive habitat loss of up to 41% (overall IUCN range) for N. nebulosa in both present and historical extent, with habitat patches becoming increasingly fragmented. This is reflected in a projected decline in the number of viable habitat patches (NP) by up to 23.29% in the future. This study also identified 18 transboundary biological corridors for N. nebulosa, with Southeast Asian countries expected to experience the most significant declines in corridor connectivity. In contrast, the South Asian countries (Bhutan, Nepal, and India) are projected to maintain relatively higher connectivity in the future. Nevertheless, a substantial decline in overall mean corridor connectivity is projected in the near future due to the impacts of climate change. This study underscores the urgent need for a coordinated and multifaceted conservation strategy for N. nebulosa, focusing on mitigating habitat loss and fragmentation. Practical measures must be implemented to protect the species' shrinking range, considering its declining corridor networks and heightened vulnerability to inbreeding depression. Moreover, the assessment of habitat suitability both within and beyond the extant range, alongside corridor connectivity measures, provides valuable insights into potential translocation and reintroduction sites for this species. These findings provide a critical foundation for developing a strategic conservation plan tailored to the specific needs of this felid species across South and Southeast Asia, ensuring enhanced climate resilience and mitigating associated threats.
Collapse
Affiliation(s)
- Imon Abedin
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
| | | | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Shantanu Kundu
- Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Abedin I, Mukherjee T, Abedin J, Kim HW, Kundu S. Habitat Loss in the IUCN Extent: Climate Change-Induced Threat on the Red Goral ( Naemorhedus baileyi) in the Temperate Mountains of South Asia. BIOLOGY 2024; 13:667. [PMID: 39336094 PMCID: PMC11428959 DOI: 10.3390/biology13090667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Climate change has severely impacted many species, causing rapid declines or extinctions within their essential ecological niches. This deterioration is expected to worsen, particularly in remote high-altitude regions like the Himalayas, which are home to diverse flora and fauna, including many mountainous ungulates. Unfortunately, many of these species lack adaptive strategies to cope with novel climatic conditions. The Red Goral (Naemorhedus baileyi) is a cliff-dwelling species classified as "Vulnerable" by the IUCN due to its small population and restricted range extent. This species has the most restricted range of all goral species, residing in the temperate mountains of northeastern India, northern Myanmar, and China. Given its restricted range and small population, this species is highly threatened by climate change and habitat disruptions, making habitat mapping and modeling crucial for effective conservation. This study employs an ensemble approach (BRT, GLM, MARS, and MaxEnt) in species distribution modeling to assess the distribution, habitat suitability, and connectivity of this species, addressing critical gaps in its understanding. The findings reveal deeply concerning trends, as the model identified only 21,363 km2 (13.01%) of the total IUCN extent as suitable habitat under current conditions. This limited extent is alarming, as it leaves the species with very little refuge to thrive. Furthermore, this situation is compounded by the fact that only around 22.29% of this identified suitable habitat falls within protected areas (PAs), further constraining the species' ability to survive in a protected landscape. The future projections paint even degraded scenarios, with a predicted decline of over 34% and excessive fragmentation in suitable habitat extent. In addition, the present study identifies precipitation seasonality and elevation as the primary contributing predictors to the distribution of this species. Furthermore, the study identifies nine designated transboundary PAs within the IUCN extent of the Red Goral and the connectivity among them to highlight the crucial role in supporting the species' survival over time. Moreover, the Dibang Wildlife Sanctuary (DWLS) and Hkakaborazi National Park are revealed as the PAs with the largest extent of suitable habitat in the present scenario. Furthermore, the highest mean connectivity was found between DWLS and Mehao Wildlife Sanctuary (0.0583), while the lowest connectivity was observed between Kamlang Wildlife Sanctuary and Namdapha National Park (0.0172). The study also suggests strategic management planning that is a vital foundation for future research and conservation initiatives, aiming to ensure the long-term survival of the species in its natural habitat.
Collapse
Affiliation(s)
- Imon Abedin
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India; (I.A.); (T.M.)
| | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India; (I.A.); (T.M.)
| | - Joynal Abedin
- Dibru-Saikhowa Conservation Society, Tinsukia 786147, India;
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Shantanu Kundu
- Institute of Fisheries Science, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Svenning JC, McGeoch MA, Normand S, Ordonez A, Riede F. Navigating ecological novelty towards planetary stewardship: challenges and opportunities in biodiversity dynamics in a transforming biosphere. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230008. [PMID: 38583480 PMCID: PMC10999270 DOI: 10.1098/rstb.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Human-induced global changes, including anthropogenic climate change, biotic globalization, trophic downgrading and pervasive land-use intensification, are transforming Earth's biosphere, placing biodiversity and ecosystems at the forefront of unprecedented challenges. The Anthropocene, characterized by the importance of Homo sapiens in shaping the Earth system, necessitates a re-evaluation of our understanding and stewardship of ecosystems. This theme issue delves into the multifaceted challenges posed by the ongoing ecological planetary transformation and explores potential solutions across four key subthemes. Firstly, it investigates the functioning and stewardship of emerging novel ecosystems, emphasizing the urgent need to comprehend the dynamics of ecosystems under uncharted conditions. The second subtheme focuses on biodiversity projections under global change, recognizing the necessity of predicting ecological shifts in the Anthropocene. Importantly, the inherent uncertainties and the complexity of ecological responses to environmental stressors pose challenges for societal responses and for accurate projections of ecological change. The RAD framework (resist-accept-direct) is highlighted as a flexible yet nuanced decision-making tool that recognizes the need for adaptive approaches, providing insights for directing and adapting to Anthropocene dynamics while minimizing negative impacts. The imperative to extend our temporal perspective beyond 2100 is emphasized, given the irreversible changes already set in motion. Advancing methods to study ecosystem dynamics under rising biosphere novelty is the subject of the third subtheme. The fourth subtheme emphasizes the importance of integrating human perspectives into understanding, forecasting and managing novel ecosystems. Cultural diversity and biological diversity are intertwined, and the evolving relationship between humans and ecosystems offers lessons for future stewardship. Achieving planetary stewardship in the Anthropocene demands collaboration across scales and integration of ecological and societal perspectives, scalable approaches fit to changing, novel ecological conditions, as well as cultural innovation. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
- Center for Sustainable Landscapes under Global Change (SustainScapes), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| | - Melodie A. McGeoch
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - Signe Normand
- Center for Sustainable Landscapes under Global Change (SustainScapes), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
- Center for Landscape Research in Sustainable Agricultural Futures (Land-CRAFT), Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| | - Alejandro Ordonez
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
- Center for Sustainable Landscapes under Global Change (SustainScapes), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| | - Felix Riede
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
- Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270 Højbjerg, Denmark
| |
Collapse
|