1
|
Yavuz M, Erginer M, Kasavi C, Toksoy Oner E. Enhanced preservation of viability and species stratification in Lacticaseibacillus group using levan-fortified skim milk as a cryoprotectant during freeze-drying. Food Sci Biotechnol 2025; 34:1605-1616. [PMID: 40129716 PMCID: PMC11929659 DOI: 10.1007/s10068-024-01802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/15/2024] [Accepted: 12/12/2024] [Indexed: 03/26/2025] Open
Abstract
Ensuring the viability and accurate stratification of Lacticaseibacillus group (LCG) species after freeze-drying is essential for their effective use as probiotics. This study investigates the use of reconstituted skim milk (RSM) as a cryoprotectant base, supplemented with fructans such as inulin and diverse forms of levan from Halomonas smyrnensis, to maintain the viability of Lacticaseibacillus casei ATCC 334, Lacticaseibacillus paracasei ATCC 25302, and Lacticaseibacillus rhamnosus ATCC 53103. Cellular viability was enhanced with levan-based cryoprotectants, motivating the use of levan-based hydrogels (gHLs) for freeze-drying LCG species. Throughout freeze-drying, the species-specific molecular masses (m/z) were preserved irrespective of the cryoprotectant used, with markers 3445 and 6664 m/z identified as potential species-specific molecular mass indicators for Lc. paracasei and Lc. rhamnosus, respectively. This study is the first to utilize levan in various forms as a cryoprotective agent alongside RSM, highlighting its promise as an effective cryoprotectant for LCG and potentially other probiotics. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01802-x.
Collapse
Affiliation(s)
- Mustafa Yavuz
- Ministry of Agriculture and Forestry, Central Research Institute of Food and Feed Control, Bursa, Turkey
- Department of Bioengineering, IBSB- Industrial Biotechnology and Systems Biology, Marmara University, Istanbul, Turkey
| | - Merve Erginer
- Institute of Nanotechnology and Biotechnology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220 Istanbul, Turkey
| | - Ceyda Kasavi
- Department of Bioengineering, IBSB- Industrial Biotechnology and Systems Biology, Marmara University, Istanbul, Turkey
| | - Ebru Toksoy Oner
- Department of Bioengineering, IBSB- Industrial Biotechnology and Systems Biology, Marmara University, Istanbul, Turkey
- Department of Bioengineering, Industrial Biotechnology and Systems Biology, Marmara University, RTE Campus, Maltepe, Istanbul, Turkey
| |
Collapse
|
2
|
Kim SY, Park SY, Jin JE, Hong KS, Kim DJ, Kim YK, Shin HC, Cho SK, Kang DH. Comparing the VITEK 2 ANC card, species-specific PCR, and MALDI-TOF mass spectrometry methods for identification of lactic acid bacteria. J Food Sci 2022; 87:5099-5106. [PMID: 36201398 DOI: 10.1111/1750-3841.16343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
Lactic acid bacteria (LAB) are not only the most common probiotics in the food and feed industry but are also used as plant probiotics. Therefore, precise identification of LAB at the species level is required. In this study, we compared three different methods, the VITEK 2 ANC card, species-specific PCR, and MALDI-TOF MS, to identify six LAB (Lacticaseibacillus casei, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, Lentilactobacillus buchneri, and Limosilactobacillus fermentum) species previously assigned to the genus Lactobacillus that are used as biofertilizers. Twenty-two strains of six LAB species were analyzed using the VITEK 2 ANC card, species-specific PCR, and MALDI-TOF MS, and identification rates at the species level were 45.5%, 95.5%, and 95.5%, respectively. There were cross-reactions between L. casei and L. parpacasei, and one strain of L. casei could not be identified by these three methods. PCR assays and MALDI-TOF MS were applicable for LAB identification. PRACTICAL APPLICATION: LAB are the most common probiotics in the food and feed industry, so precise identification and classification of LAB at the species level are required. This study aimed at comparing three different methods for the effective identification of six LAB species: biochemical testing using VITEK 2 ANC card, species-specific PCR, and MALDI-TOF MS analysis.
Collapse
Affiliation(s)
- Sung-Youn Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea.,Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sol Yi Park
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Ji-Eun Jin
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Kyong-Suk Hong
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Dae-Jung Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Yong-Kyoung Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Hee-Chang Shin
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Soon-Kil Cho
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Health-Promoting Properties of Lacticaseibacillus paracasei: A Focus on Kefir Isolates and Exopolysaccharide-Producing Strains. Foods 2021; 10:foods10102239. [PMID: 34681288 PMCID: PMC8534925 DOI: 10.3390/foods10102239] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023] Open
Abstract
Among artisanal fermented beverages, kefir (fermented milk drink) and water kefir (fermented nondairy beverage) are of special interest because their grains can be considered natural reservoirs of safe and potentially probiotic strains. In the last years, several reports on Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) isolated from both artisanal fermented beverages were published focusing on their health-promoting properties. Although this is not the predominant species in kefir or water kefir, it may contribute to the health benefits associated to the consumption of the fermented beverage. Since the classification of L. paracasei has been a difficult task, the selection of an adequate method for identification, which is essential to avoid mislabeling in products, publications, and some publicly available DNA sequences, is discussed in the present work. The last findings in health promoting properties of L. paracasei and the bioactive compounds are described and compared to strains isolated from kefir, providing a special focus on exopolysaccharides as effector molecules. The knowledge of the state of the art of Lacticaseibacillus paracasei from kefir and water kefir can help to understand the contribution of these microorganisms to the health benefits of artisanal beverages as well as to discover new probiotic strains for applications in food industry.
Collapse
|
4
|
Cui Y, Qu X. Genetic mechanisms of prebiotic carbohydrate metabolism in lactic acid bacteria: Emphasis on Lacticaseibacillus casei and Lacticaseibacillus paracasei as flexible, diverse and outstanding prebiotic carbohydrate starters. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Huang CH, Chen CC, Liou JS, Lee AY, Blom J, Lin YC, Huang L, Watanabe K. Genome-based reclassification of Lactobacillus casei: emended classification and description of the species Lactobacillus zeae. Int J Syst Evol Microbiol 2020; 70:3755-3762. [DOI: 10.1099/ijsem.0.003969] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Taxonomic relationships between
Lactobacillus casei
,
Lactobacillus paracasei
and
Lactobacillus zeae
have long been debated. Results of previous analyses have shown that overall genome relatedness indices (such as average nucleotide identity and core nucleotide identity) between the type strains
L. casei
ATCC 393T and
L. zeae
ATCC 15820T were 94.6 and 95.3 %, respectively, which are borderline for species definition. However, the digital DNA‒DNA hybridization value was 57.3 %, which was clearly lower than the species delineation threshold of 70 %, and hence raised the possibility that
L. casei
could be reclassified into two species. To re-evaluate the taxonomic relationship of these taxa, multilocus sequence analysis (MLSA) based on the concatenated five housekeeping gene (dnaJ, dnaK, mutL, pheS and yycH) sequences, phylogenomic and core genome multilocus sequence typing analyses, gene presence and absence profiles using pan-genome analysis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling analysis, cellular fatty acid compositions, and phenotype analysis were carried out. The results of phenotypic characterization, MLSA, whole-genome sequence-based analyses and MALDI-TOF MS profiling justified an independent species designation for the
L. zeae
strains, and supported an emended the description of the name of
Lactobacillus zeae
(ex Kuznetsov 1956) Dicks et al. 1996, with ATCC 15820T (=DSM 20178T=BCRC 17942T) as the type strain.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
- General Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| | - Ai-Yun Lee
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, 35392, Germany
| | - Yu-Chun Lin
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, ROC
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| | - Koichi Watanabe
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
- Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10673, Taiwan, ROC
| |
Collapse
|
6
|
Ajam M, Adam O, Yeddi A, Kahlid M, Shokr M, Afonso L. Prosthetic Aortic Valve Endocarditis in a Patient With Birt-Hogg-Dube Syndrome due to Lactobacillus paracasei. Cardiol Res 2019; 10:245-248. [PMID: 31413783 PMCID: PMC6681850 DOI: 10.14740/cr901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023] Open
Abstract
Various causative organisms and predisposing factors were implicated in the pathogenic process behind prosthetic valve endocarditis. Lactobacillus paracasei, a classic constituent of probiotics, rarely causes infections in humans and was reported only in few case reports. The use of probiotics was hypothesized to be a risk factor for these infections; however, no causative relationship could be drawn. We describe a 75-year-old woman with history of Birt-Hogg-Dube syndrome and bioprosthetic aortic valve replacement who presented with worsening dyspnea was found to have Lactobacillus paracasei bacteremia and evidence of bacterial vegetations noted on transesophageal echocardiography (TEE) along with evidence of severe aortic insufficiency. Based on antibiotics sensitivity profile, she was treated with penicillin and gentamycin, which resulted in bacterial clearance on repeat blood cultures, and the patient was transferred to a different facility to undergo replacement of the prosthetic aortic valve. Although Lactobacillus paracasei is rarely involved in human infections, it should be suspected in patients with underlying structural heart/valvular disease, recent antibiotic exposure or recent probiotic use who are presenting with evidence of infective endocarditis. Combination antibiotics including beta lactams, aminoglycosides and clindamycin are suggested treatment of choice for this organism.
Collapse
Affiliation(s)
- Mustafa Ajam
- Department of Internal Medicine, Detroit Medical Center/Wayne State University, Detroit, MI, USA
| | - Omeralfaroug Adam
- Department of Internal Medicine, Detroit Medical Center/Wayne State University, Detroit, MI, USA
| | - Ahmed Yeddi
- Department of Internal Medicine, Detroit Medical Center/Wayne State University, Detroit, MI, USA
| | - Mowyad Kahlid
- Department of Internal Medicine, Detroit Medical Center/Wayne State University, Detroit, MI, USA
| | - Mohamed Shokr
- Division of Cardiology, Department of Internal Medicine, Detroit Medical Center/Wayne State University, Detroit, MI, USA
| | - Luis Afonso
- Division of Cardiology, Department of Internal Medicine, Detroit Medical Center/Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP. The Lactobacillus casei Group: History and Health Related Applications. Front Microbiol 2018; 9:2107. [PMID: 30298055 PMCID: PMC6160870 DOI: 10.3389/fmicb.2018.02107] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023] Open
Abstract
The Lactobacillus casei group (LCG), composed of the closely related Lactobacillus casei, Lactobacillus paracasei, and Lactobacillus rhamnosus are some of the most widely researched and applied probiotic species of lactobacilli. The three species have been extensively studied, classified and reclassified due to their health promoting properties. Differentiation is often difficult by conventional phenotypic and genotypic methods and therefore new methods are being continually developed to distinguish the three closely related species. The group remain of interest as probiotics, and their use is widespread in industry. Much research has focused in recent years on their application for health promotion in treatment or prevention of a number of diseases and disorders. The LCG have the potential to be used prophylactically or therapeutically in diseases associated with a disturbance to the gut microbiota. The group have been extensively researched with regard to stress responses, which are crucial for their survival and therefore application as probiotics.
Collapse
Affiliation(s)
- Daragh Hill
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Ivan Sugrue
- Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Conor Tobin
- Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | | |
Collapse
|
8
|
Vedantam G, Kochanowsky J, Lindsey J, Mallozzi M, Roxas JL, Adamson C, Anwar F, Clark A, Claus-Walker R, Mansoor A, McQuade R, Monasky RC, Ramamurthy S, Roxas B, Viswanathan VK. An Engineered Synthetic Biologic Protects Against Clostridium difficile Infection. Front Microbiol 2018; 9:2080. [PMID: 30233548 PMCID: PMC6134020 DOI: 10.3389/fmicb.2018.02080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Morbidity and mortality attributed to Clostridium difficile infection (CDI) have increased over the past 20 years. Currently, antibiotics are the only US FDA-approved treatment for primary C. difficile infection, and these are, ironically, associated with disease relapse and the threat of burgeoning drug resistance. We previously showed that non-toxin virulence factors play key roles in CDI, and that colonization factors are critical for disease. Specifically, a C. difficile adhesin, Surface Layer Protein A (SlpA) is a major contributor to host cell attachment. In this work, we engineered Syn-LAB 2.0 and Syn-LAB 2.1, two synthetic biologic agents derived from lactic acid bacteria, to stably and constitutively express a host-cell binding fragment of the C. difficile adhesin SlpA on their cell-surface. Both agents harbor conditional suicide plasmids expressing a codon-optimized chimera of the lactic acid bacterium's cell-wall anchoring surface-protein domain, fused to the conserved, highly adherent, host-cell-binding domain of C. difficile SlpA. Both agents also incorporate engineered biocontrol, obviating the need for any antibiotic selection. Syn-LAB 2.0 and Syn-LAB 2.1 possess positive biophysical and in vivo properties compared with their parental antecedents in that they robustly and constitutively display the SlpA chimera on their cell surface, potentiate human intestinal epithelial barrier function in vitro, are safe, tolerable and palatable to Golden Syrian hamsters and neonatal piglets at high daily doses, and are detectable in animal feces within 24 h of dosing, confirming robust colonization. In combination, the engineered strains also delay (in fixed doses) or prevent (when continuously administered) death of infected hamsters upon challenge with high doses of virulent C. difficile. Finally, fixed-dose Syn-LAB ameliorates diarrhea in a non-lethal model of neonatal piglet enteritis. Taken together, our findings suggest that the two synthetic biologics may be effectively employed as non-antibiotic interventions for CDI.
Collapse
Affiliation(s)
- Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Joshua Kochanowsky
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Michael Mallozzi
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Chelsea Adamson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Andrew Clark
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rachel Claus-Walker
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Asad Mansoor
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rebecca McQuade
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Ross Calvin Monasky
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Shylaja Ramamurthy
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Bryan Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Huang CH, Liou JS, Lee AY, Tseng M, Miyashita M, Huang L, Watanabe K. Polyphasic characterization of a novel species in the Lactobacillus casei group from cow manure of Taiwan: Description of L. chiayiensis sp. nov. Syst Appl Microbiol 2018; 41:270-278. [DOI: 10.1016/j.syapm.2018.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
10
|
Mohammadi N, Ehsani MR, Bakhoda H. Development of caffeine-encapsulated alginate-based matrix combined with different natural biopolymers, and evaluation of release in simulated mouth conditions. FLAVOUR FRAG J 2018. [DOI: 10.1002/ffj.3452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nima Mohammadi
- Department of Food Science and Technology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Mohammad Reza Ehsani
- Department of Food Science and Technology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Hossein Bakhoda
- Department of Agricultural Mechanization, Science and Research Branch; Islamic Azad University; Tehran Iran
| |
Collapse
|
11
|
Huang CH, Huang L. Rapid species- and subspecies-specific level classification and identification of Lactobacillus casei group members using MALDI Biotyper combined with ClinProTools. J Dairy Sci 2018; 101:979-991. [DOI: 10.3168/jds.2017-13642] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
|
12
|
Bottari B, Felis GE, Salvetti E, Castioni A, Campedelli I, Torriani S, Bernini V, Gatti M. Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay. MICROBIOLOGY-SGM 2017; 163:950-960. [PMID: 28721852 DOI: 10.1099/mic.0.000497] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lactobacillus casei,Lactobacillus paracasei and Lactobacillusrhamnosus form a closely related taxonomic group (the L. casei group) within the facultatively heterofermentative lactobacilli. Strains of these species have been used for a long time as probiotics in a wide range of products, and they represent the dominant species of nonstarter lactic acid bacteria in ripened cheeses, where they contribute to flavour development. The close genetic relationship among those species, as well as the similarity of biochemical properties of the strains, hinders the development of an adequate selective method to identify these bacteria. Despite this being a hot topic, as demonstrated by the large amount of literature about it, the results of different proposed identification methods are often ambiguous and unsatisfactory. The aim of this study was to develop a more robust species-specific identification assay for differentiating the species of the L. casei group. A taxonomy-driven comparative genomic analysis was carried out to select the potential target genes whose similarity could better reflect genome-wide diversity. The gene mutL appeared to be the most promising one and, therefore, a novel species-specific multiplex PCR assay was developed to rapidly and effectively distinguish L. casei, L. paracasei and L. rhamnosus strains. The analysis of a collection of 76 wild dairy isolates, previously identified as members of the L. casei group combining the results of multiple approaches, revealed that the novel designed primers, especially in combination with already existing ones, were able to improve the discrimination power at the species level and reveal previously undiscovered intraspecific biodiversity.
Collapse
Affiliation(s)
- Benedetta Bottari
- Department of Food and Drug Science, University of Parma, Viale delle Scienze 49/A, 43124 Parma, Italy.,Multidisciplinary Interdepartmental Dairy Center - MILC, University of Parma, Parma, Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Elisa Salvetti
- School of Microbiology and APC Microbiome Institute, University College Cork, Western Road, Cork, Ireland
| | - Anna Castioni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.,Present address: Panificio Zorzi S.r.l., Loc. Brà 1, 37020 Brentino Belluno, Verona, Italy
| | - Ilenia Campedelli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Valentina Bernini
- Department of Food and Drug Science, University of Parma, Viale delle Scienze 49/A, 43124 Parma, Italy
| | - Monica Gatti
- Department of Food and Drug Science, University of Parma, Viale delle Scienze 49/A, 43124 Parma, Italy.,Multidisciplinary Interdepartmental Dairy Center - MILC, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Stefanovic E, Kilcawley KN, Rea MC, Fitzgerald GF, McAuliffe O. Genetic, enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavour diversification. J Appl Microbiol 2017; 122:1245-1261. [PMID: 28199757 DOI: 10.1111/jam.13420] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 01/22/2023]
Abstract
AIMS The Lactobacillus casei group represents a widely explored group of lactic acid bacteria, characterized by a high level of biodiversity. In this study, the genetic and phenotypic diversity of a collection of more than 300 isolates of the Lact. casei group and their potential to produce volatile metabolites important for flavour development in dairy products, was examined. METHODS AND RESULTS Following confirmation of species by 16S rRNA PCR, the diversity of the isolates was determined by pulsed-field gel electrophoresis. The activities of enzymes involved in the proteolytic cascade were assessed and significant differences among the strains were observed. Ten strains were chosen based on the results of their enzymes activities and they were analysed for their ability to produce volatiles in media with increased concentrations of a representative aromatic, branched chain and sulphur amino acid. Volatiles were assessed using gas chromatography coupled with mass spectrometry. Strain-dependent differences in the range and type of volatiles produced were evident. CONCLUSIONS Strains of the Lact. casei group are characterized by genetic and metabolic diversity which supports variability in volatile production. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a screening approach for the knowledge-based selection of strains potentially enabling flavour diversification in fermented dairy products.
Collapse
Affiliation(s)
- E Stefanovic
- Department of Food Bioscience, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - K N Kilcawley
- Department of Food Bioscience, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - M C Rea
- Department of Food Bioscience, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - G F Fitzgerald
- School of Microbiology, University College Cork, Cork, Ireland
| | - O McAuliffe
- Department of Food Bioscience, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
14
|
Stefanovic E, Fitzgerald G, McAuliffe O. Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol 2017; 61:33-49. [DOI: 10.1016/j.fm.2016.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 01/21/2023]
|
15
|
Garcia EF, Luciano WA, Xavier DE, da Costa WCA, de Sousa Oliveira K, Franco OL, de Morais Júnior MA, Lucena BTL, Picão RC, Magnani M, Saarela M, de Souza EL. Identification of Lactic Acid Bacteria in Fruit Pulp Processing Byproducts and Potential Probiotic Properties of Selected Lactobacillus Strains. Front Microbiol 2016; 7:1371. [PMID: 27625647 PMCID: PMC5003889 DOI: 10.3389/fmicb.2016.01371] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/18/2016] [Indexed: 12/17/2022] Open
Abstract
This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains.
Collapse
Affiliation(s)
- Estefânia F Garcia
- Laboratório de Microbiologia de Alimentos, Departamento de Nutrição, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Winnie A Luciano
- Laboratório de Microbiologia de Alimentos, Departamento de Nutrição, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Danilo E Xavier
- Laboratório de Microbiologia de Alimentos, Departamento de Nutrição, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Whyara C A da Costa
- Laboratório de Processos Microbianos em Alimentos, Departamento de Engenharia de Alimentos, Universidade Federal da Paraíba João Pessoa, Brazil
| | | | - Octávio L Franco
- Laboratório de Genômica e Proteômica, Universidade Católica de Brasília Brasília, Brazil
| | - Marcos A de Morais Júnior
- Grupo Interdepartamental de Pesquisa em Engenharia Metabólica, Departamento de Genética, Universidade Federal de Pernambuco Recife, Brazil
| | - Brígida T L Lucena
- Grupo Interdepartamental de Pesquisa em Engenharia Metabólica, Departamento de Genética, Universidade Federal de Pernambuco Recife, Brazil
| | - Renata C Picão
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Marciane Magnani
- Laboratório de Processos Microbianos em Alimentos, Departamento de Engenharia de Alimentos, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Maria Saarela
- VTT Technical Research Centre of Finland Espoo, Finland
| | - Evandro L de Souza
- Laboratório de Microbiologia de Alimentos, Departamento de Nutrição, Universidade Federal da Paraíba João Pessoa, Brazil
| |
Collapse
|
16
|
Vukotić G, Strahinić I, Begović J, Lukić J, Kojić M, Fira D. Survey on proteolytic activity and diversity of proteinase genes in mesophilic lactobacilli. Microbiology (Reading) 2016. [DOI: 10.1134/s002626171601015x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Hosseini Nezhad M, Hussain MA, Britz ML. Stress responses in probiotic Lactobacillus casei. Crit Rev Food Sci Nutr 2016; 55:740-9. [PMID: 24915363 DOI: 10.1080/10408398.2012.675601] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics.
Collapse
|
18
|
Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei. Appl Environ Microbiol 2015; 82:95-105. [PMID: 26475105 DOI: 10.1128/aem.02723-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/11/2015] [Indexed: 01/21/2023] Open
Abstract
Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts.
Collapse
|
19
|
Koirala R, Taverniti V, Balzaretti S, Ricci G, Fortina MG, Guglielmetti S. Melting curve analysis of a groEL PCR fragment for the rapid genotyping of strains belonging to the Lactobacillus casei group of species. Microbiol Res 2015; 173:50-8. [PMID: 25801971 DOI: 10.1016/j.micres.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/13/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Lactobacillus casei group (Lcs) consists of three phylogenetically closely related species (L. casei, L. paracasei, and L. rhamnosus), which are widely used in the dairy and probiotic industrial sectors. Strategies to easily and rapidly characterize Lcs are therefore of interest. To this aim, we developed a method according to a technique known as high resolution melting analysis (HRMa), which was applied to a 150 bp groEL gene fragment. The analysis was performed on 53 Lcs strains and 29 strains representatives of species that are commonly present in dairy and probiotic products and can be most probably co-isolated with Lcs strains. DNA amplification was obtained only from Lcs strains, demonstrating the specificity of the groEL primers designed in this study. The HRMa clustered Lcs strains in three groups that exactly corresponded to the species of the L. casei group. A following HRMa separated the 39 L. paracasei strains in two well distinct intraspecific groups, indicating the possible existence of at least two distinct genotypes inside the species. Nonetheless, the phenotypic characterization demonstrated that the genotypes do not correspond to the two L. paracasei subspecies, namely paracasei and tolerans. In conclusion, the melting curve analysis developed in this study is demonstrably a simple, labor-saving, and rapid strategy obtain the genotyping of a bacterial isolate and simultaneously potentially confirm its affiliation to the L. casei group of species. The application of this method to a larger collection of strains may validate the possibility to use the proposed HRMa protocol for the taxonomic discrimination of L. casei group of species. In general, this study suggests that HRMa can be a suitable technique for the genetic typization of Lactobacillus strains.
Collapse
Affiliation(s)
- Ranjan Koirala
- Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal; Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Silvia Balzaretti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Giovanni Ricci
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Maria Grazia Fortina
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy.
| |
Collapse
|
20
|
Iacumin L, Ginaldi F, Manzano M, Anastasi V, Reale A, Zotta T, Rossi F, Coppola R, Comi G. High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group and comparison with species-specific PCRs and multiplex PCR. Food Microbiol 2014; 46:357-367. [PMID: 25475306 DOI: 10.1016/j.fm.2014.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 11/30/2022]
Abstract
The correct identification and characterisation of bacteria is essential for several reasons: the classification of lactic acid bacteria (LAB) has changed significantly over the years, and it is important to distinguish and define them correctly, according to the current nomenclature, avoiding problems in the interpretation of literature, as well as mislabelling when probiotic are used in food products. In this study, species-specific PCR and HRM (high-resolution melting) analysis were developed to identify strains belonging to the Lactobacillus casei group and to classify them into L. casei, Lactobacillus paracasei and Lactobacillus rhamnosus. HRM analysis confirmed to be a potent, simple, fast and economic tool for microbial identification. In particular, 201 strains, collected from International collections and attributed to the L. casei group, were examined using these techniques and the results were compared with consolidated molecular methods, already published. Seven of the tested strains don't belong to the L. casei group. Among the remaining 194 strains, 6 showed inconsistent results, leaving identification undetermined. All the applied techniques were congruent for the identification of the vast majority of the tested strains (188). Notably, for 46 of the strains, the identification differed from the previous attribution.
Collapse
Affiliation(s)
- Lucilla Iacumin
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, Udine, Italy.
| | - Federica Ginaldi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, Udine, Italy
| | - Marisa Manzano
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, Udine, Italy
| | - Veronica Anastasi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, Udine, Italy
| | - Anna Reale
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy
| | - Teresa Zotta
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy
| | - Franca Rossi
- Dipartimento di Agricoltura, Ambiente e Alimenti Università degli Studi del Molise, Campobasso, Italy
| | - Raffaele Coppola
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy; Dipartimento di Agricoltura, Ambiente e Alimenti Università degli Studi del Molise, Campobasso, Italy
| | - Giuseppe Comi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
21
|
Use of highly variable gene (yycH) as DNA marker to resolve interspecific relationships within the Lactobacillus casei group and a target for developing novel species-specific PCR primers. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2278-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Toh H, Oshima K, Nakano A, Takahata M, Murakami M, Takaki T, Nishiyama H, Igimi S, Hattori M, Morita H. Genomic adaptation of the Lactobacillus casei group. PLoS One 2013; 8:e75073. [PMID: 24116025 PMCID: PMC3792948 DOI: 10.1371/journal.pone.0075073] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 08/10/2013] [Indexed: 11/23/2022] Open
Abstract
Lactobacillus casei, L. paracasei, and L. rhamnosus form a closely related taxonomic group (Lactobacillus casei group) within the facultatively heterofermentative lactobacilli. Here, we report the complete genome sequences of L. paracasei JCM 8130 and L. casei ATCC 393, and the draft genome sequence of L. paracasei COM0101, all of which were isolated from daily products. Furthermore, we re-annotated the genome of L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG), which we have previously reported. We confirmed that ATCC 393 is distinct from other strains previously described as L. paracasei. The core genome of 10 completely sequenced strains of the L. casei group comprised 1,682 protein-coding genes. Although extensive genome-wide synteny was found among the L. casei group, the genomes of ATCC 53103, JCM 8130, and ATCC 393 contained genomic islands compared with L. paracasei ATCC 334. Several genomic islands, including carbohydrate utilization gene clusters, were found at the same loci in the chromosomes of the L. casei group. The spaCBA pilus gene cluster, which was first identified in GG, was also found in other strains of the L. casei group, but several L. paracasei strains including COM0101 contained truncated spaC gene. ATCC 53103 encoded a higher number of proteins involved in carbohydrate utilization compared with intestinal lactobacilli, and extracellular adhesion proteins, several of which are absent in other strains of the L. casei group. In addition to previously fully sequenced L. rhamnosus and L. paracasei strains, the complete genome sequences of L. casei will provide valuable insights into the evolution of the L. casei group.
Collapse
Affiliation(s)
- Hidehiro Toh
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kenshiro Oshima
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Akiyo Nakano
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Muneaki Takahata
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Masaru Murakami
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | | | | | - Shizunobu Igimi
- Division of Biomedical Food Research, National Institute of Health Sciences, Kamiyoga, Setagaya, Tokyo, Japan
| | - Masahira Hattori
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hidetoshi Morita
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
23
|
Nyanzi R, Jooste PJ, Cameron M, Witthuhn C. Comparison ofrpoAandpheSGene Sequencing to 16S rRNA Gene Sequencing in Identification and Phylogenetic Analysis of LAB from Probiotic Food Products and Supplements. FOOD BIOTECHNOL 2013. [DOI: 10.1080/08905436.2013.838783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
16S rRNA PCR-Denaturing Gradient Gel Electrophoresis of Oral Lactobacillus casei Group and Their Phenotypic Appearances. ISRN MICROBIOLOGY 2013; 2013:342082. [PMID: 24191230 PMCID: PMC3794536 DOI: 10.1155/2013/342082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/25/2013] [Indexed: 11/17/2022]
Abstract
This study aimed to develop a 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) to identify the species level of Lactobacillus casei group and to investigate their characteristics of acid production and inhibitory effect. PCR-DGGE has been developed based on the 16S rRNA gene, and a set of HDA-1-GC and HDA-2, designed at V2-V3 region, and another set of CARP-1-GC and CARP-2, designed at V1 region, have been used. The bacterial strains included L. casei ATCC 393, L. paracasei CCUG 32212, L. rhamnosus ATCC 7469, L. zeae CCUG 35515, and 46 clinical strains of L. casei/paracasei/rhamnosus. Inhibitory effect against Streptococcus mutans and acid production were examined. Results revealed that each type species strain and identified clinical isolate showed its own unique DGGE pattern using CARP1-GC and CARP2 primers. HDA1-GC and HDA2 primers could distinguish the strains of L. paracasei from L. casei. It was found that inhibitory effect of L. paracasei was stronger than L. casei and L. rhamnosus. The acid production of L. paracasei was lower than L. casei and L. rhamnosus. In conclusion, the technique has been proven to be able to differentiate between closely related species in L. casei group and thus provide reliable information of their phenotypic appearances.
Collapse
|
25
|
Smokvina T, Wels M, Polka J, Chervaux C, Brisse S, Boekhorst J, van Hylckama Vlieg JET, Siezen RJ. Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity. PLoS One 2013; 8:e68731. [PMID: 23894338 PMCID: PMC3716772 DOI: 10.1371/journal.pone.0068731] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/31/2013] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its "pan-genome". We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800-3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon) are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25-53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis, in order to link the distribution pattern of a specific phenotype to the presence/absence of specific sets of genes.
Collapse
|
26
|
Douillard FP, Kant R, Ritari J, Paulin L, Palva A, de Vos WM. Comparative genome analysis of Lactobacillus casei strains isolated from Actimel and Yakult products reveals marked similarities and points to a common origin. Microb Biotechnol 2013; 6:576-87. [PMID: 23815335 PMCID: PMC3918159 DOI: 10.1111/1751-7915.12062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 02/06/2023] Open
Abstract
The members of the Lactobacillus genus are widely used in the food and feed industry and show a remarkable ecological adaptability. Several Lactobacillus strains have been marketed as probiotics as they possess health-promoting properties for the host. In the present study, we used two complementary next-generation sequencing technologies to deduce the genome sequences of two Lactobacillus casei strains LcA and LcY, which were isolated from the products Actimel and Yakult, commercialized as probiotics. The LcA and LcY draft genomes have, respectively, an estimated size of 3067 and 3082 Mb and a G+C content of 46.3%. Both strains are close to identical to each other and differ by no more than minor chromosomal re-arrangements, substitutions, insertions and deletions, as evident from the verified presence of one insertion-deletion (InDel) and only 29 single-nucleotide polymorphisms (SNPs). In terms of coding capacity, LcA and LcY are predicted to encode a comparable exoproteome, indicating that LcA and LcY are likely to establish similar interactions with human intestinal cells. Moreover, both L. casei LcA and LcY harboured a 59.6 kb plasmid that shared high similarities with plasmids found in other L. casei strains, such as W56 and BD-II. Further analysis revealed that the L. casei plasmids constitute a good evolution marker within the L. casei species. The plasmids of the LcA and LcY strains are almost identical, as testified by the presence of only three verified SNPs, and share a 3.5 kb region encoding a remnant of a lactose PTS system that is absent from the plasmids of W56 and BD-II but conserved in another smaller L. casei plasmid (pLC2W). Our observations imply that the results obtained in animal and human experiments performed with the Actimel and Yakult strains can be compared with each other as these strains share a very recent common ancestor. Funding Information The present work was supported by the Center of Excellence in Microbial Food Safety Research (Academy of Finland, Grant 141140), Grant ERC 250172 – Microbes Inside from the European Research Council and Grants 137389 and 141130 from the Academy of Finland. F.P.D. was funded by a postdoctoral research fellowship (Academy of Finland, Grant 252123).
Collapse
|
27
|
Sato H, Torimura M, Kitahara M, Ohkuma M, Hotta Y, Tamura H. Characterization of the Lactobacillus casei group based on the profiling of ribosomal proteins coded in S10-spc-alpha operons as observed by MALDI-TOF MS. Syst Appl Microbiol 2012; 35:447-54. [PMID: 23099260 DOI: 10.1016/j.syapm.2012.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/11/2012] [Accepted: 08/15/2012] [Indexed: 12/30/2022]
Abstract
The taxonomy of the members of the Lactobacillus casei group is complicated because of their phylogenetic similarity and controversial nomenclatural status. In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of ribosomal proteins coded in the S10-spc-alpha operon, termed S10-GERMS, was applied in order to classify 33 sample strains belonging to the L. casei group. A total of 14 types of ribosomal protein genes coded in the operon were first sequenced from four type strains of the L. casei group (L. casei JCM 1134(T), L. paracasei subsp. paracasei JCM 8130(T), L. paracasei subsp. tolerans JCM 1171(T), and L. rhamnosus JCM 1136(T)) together with L. casei JCM 11302, which is the former type strain of 'L. zeae'. The theoretical masses of the 14 types of ribosomal proteins used as biomarkers were classified into five types and compiled into a ribosomal protein database. The observed ribosomal proteins of each strain, identified by MALDI-TOF MS, were categorized into types based on their masses, summarized as ribosomal protein profiles, and they were used to construct a phylogenetic tree. The 33 sample strains, together with seven genome-sequenced strains, could be classified into four major clusters, which coincided precisely with the taxa of the (sub)species within the L. casei group. Three "ancient" strains, identified as L. acidophilus and L. casei, were correctly re-identified as L. paracasei subsp. paracasei by S10-GERMS. S10-GERMS would thus appear to be a powerful tool for phylogenetic characterization, with considerable potential for management of culture collections.
Collapse
Affiliation(s)
- Hiroaki Sato
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Angelakis E, Million M, Henry M, Raoult D. Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry. J Food Sci 2012; 76:M568-72. [PMID: 22417598 DOI: 10.1111/j.1750-3841.2011.02369.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Probiotic food is manufactured by adding probiotic strains simultaneously with starter cultures in fermentation tanks. Here, we investigate the accuracy and feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for bacterial identification at the species level in probiotic food and yoghurts. Probiotic food and yoghurts were cultured in Columbia and Lactobacillus specific agar and tested by quantitative real-time PCR (qPCR) for the detection and quantification of Lactobacillus sp. Bacterial identification was performed by MALDI-TOF analysis and by amplification and sequencing of tuf and 16S rDNA genes. We tested 13 probiotic food and yoghurts and we identified by qPCR that they presented 10(6) to 10(7) copies of Lactobacillus spp. DNA/g. All products contained very large numbers of living bacteria varying from 10(6) to 10(9) colony forming units/g. These bacteria were identified as Lactobacillus casei, Lactococcus lactis, Bifidobacterium animalis, Lactobacillus delbrueckii, and Streptococcus thermophilus. MALDI-TOF MS presented 92% specificity compared to the molecular assays. In one product we found L. lactis, instead of Bifidus spp. which was mentioned on the label and for another L. delbrueckii and S. thermophilus instead of Bifidus spp. MALDI-TOF MS allows a rapid and accurate bacterial identification at the species level in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified. Practical Application: MALDI-TOF MS is rapid and specific for the identification of bacteria in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified.
Collapse
Affiliation(s)
- Emmanouil Angelakis
- CNRS UMR 6020, IFR 48, Faculté de Médecine, Univ. de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | | | |
Collapse
|
29
|
Differentiation of lactic acid bacteria based on RFLP analysis of the tuf gene. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
30
|
Banwo K, Sanni A, Tan H, Tian Y. Phenotypic and Genotypic Characterization of Lactic Acid Bacteria Isolated from Some Nigerian Traditional Fermented Foods. FOOD BIOTECHNOL 2012. [DOI: 10.1080/08905436.2012.670831] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Identification and determination of relatedness of lactobacilli using different DNA amplification methods. CHEMICAL PAPERS 2012. [DOI: 10.2478/s11696-012-0206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractSeveral DNA amplification-based methods were used for identification and evaluation of the relation between lactobacilli isolated from breastfed full-term infant faeces (31 strains), dairy products (5 strains) and silage (1 strain). Twenty-seven strains isolated from infant faeces were identified as Lactobacillus rhamnosus (9), Lactobacillus gasseri (6), Lactobacillus paracasei (4), Lactobacillus fermentum (4), Lactobacillus salivarius (2), Lactobacillus plantarum (1), and Lactobacillus helveticus (1) using 10 species-specific polymerase chain reactions (PCRs), multiplex PCR for the Lactobacillus casei group, and sequencing of 16S rDNA. Four strains were not identified. Six strains isolated from dairy products and silage were identified as Lactobacillus rhamnosus. A repetitive extragenic palindromic polymerase chain reaction (rep-PCR) with primer (GTG)5 and a randomly amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) with primer M13 were used for confirmation of species identification. Fingerprints were used for evaluation of the relatedness of lactobacilli. Differences between strains from infant faeces, dairy products, and silage were not detected.
Collapse
|
32
|
Nagpal R, Kaur A. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli. Ecol Food Nutr 2011; 50:63-8. [PMID: 21888588 DOI: 10.1080/03670244.2011.539161] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study, five Lactobacillus strains were evaluated for their viability in presence of different prebiotics viz. inulin, oligofructose, lactulose, raftilose, and honey. The viability of lactobacilli was observed before and after 5 weeks of refrigerated storage. The doubling time varied from 5.2 hrs to 9.6 hrs. The lowest doubling time was for Lactobacillus plantarum M5 followed by L. plantarum Ch1 with inulin. Viability of lactobacilli was greatest with inulin. The growth and viability in presence of prebiotics were found to be strain-specific. Hence, it could be concluded that the addition of prebiotics have a significant effect on probiotics, and hence, a combination of suitable Lactobacillus strain(s) with a specific prebiotic could be a viable probiotic-based functional food approach in administering the beneficial bacteria in-vivo.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Department of Biotechnology, JMIT Institute of Engineering and Technology, Radaur, Haryana, India.
| | | |
Collapse
|
33
|
Hamon E, Horvatovich P, Bisch M, Bringel F, Marchioni E, Aoudé-Werner D, Ennahar S. Investigation of Biomarkers of Bile Tolerance in Lactobacillus casei Using Comparative Proteomics. J Proteome Res 2011; 11:109-18. [DOI: 10.1021/pr200828t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Erwann Hamon
- Equipe de Chimie Analytique des Molécules Bio-Actives, IPHC-DSA, Université de Strasbourg, CNRS, 67400, Illkirch-Graffenstaden, France
- Aérial, Parc d’Innovation, 67400 Illkirch-Graffenstaden, France
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Centre for Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Magali Bisch
- Equipe de Chimie Analytique des Molécules Bio-Actives, IPHC-DSA, Université de Strasbourg, CNRS, 67400, Illkirch-Graffenstaden, France
| | - Françoise Bringel
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, CNRS, 67083 Strasbourg, France
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bio-Actives, IPHC-DSA, Université de Strasbourg, CNRS, 67400, Illkirch-Graffenstaden, France
| | | | - Saïd Ennahar
- Equipe de Chimie Analytique des Molécules Bio-Actives, IPHC-DSA, Université de Strasbourg, CNRS, 67400, Illkirch-Graffenstaden, France
| |
Collapse
|
34
|
Sekwati-Monang B, Gänzle MG. Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. Int J Food Microbiol 2011; 150:115-21. [PMID: 21862164 DOI: 10.1016/j.ijfoodmicro.2011.07.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/11/2011] [Accepted: 07/20/2011] [Indexed: 11/17/2022]
Abstract
Ting is a fermented sorghum product of Botswana which is used to prepare porridges of different consistencies. This study aimed to characterise ting with respect to fermentation microbiota and metabolite composition, and to develop starter cultures for ting fermentation. The pH values of 10 ting samples from Botswana ranged between 3.5 and 4.0 and cell counts ranged between 1.2×10(8) and 1.2×10(10)cfu/g lactic acid bacteria. Yeast cell counts were below 10(5)cfu/g in all samples and Enterobacteriaceae were less than 10 cfu/g. The microbiota of samples consisted of 2-4 dominant strains and strains were identified based on the sequence of their 16S rRNA genes as Lactobacillus reuteri, Lactobacillus fermentum, Lactobacillus harbinensis, Lactobacillus plantarum, Lactobacillus parabuchneri, Lactobacillus casei and Lactobacillus coryniformis. Binary strain combinations were employed as starter cultures to produce ting. Major fermentation products were lactate, acetate and ethanol, additionally, 1,2 propanediol and 1,3 propanediol were produced by some strains. All strains were capable of producing ting, which was accompanied by a decrease in pH from 6.3 to 4 within 8h. Traditionally processed ting requires 2 to 3 days to attain a pH below 4; the starter cultures thus reduced the fermentation time to 8h.
Collapse
Affiliation(s)
- Bonno Sekwati-Monang
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
35
|
Parolo C, Do T, Henssge U, Alves L, de Santana Giongo F, Corção G, Maltz M, Beighton D. Genetic diversity of Lactobacillus paracasei isolated from in situ human oral biofilms. J Appl Microbiol 2011; 111:105-13. [DOI: 10.1111/j.1365-2672.2011.05041.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Samelis J, Kakouri A, Pappa EC, Matijasić BB, Georgalaki MD, Tsakalidou E, Rogelj A. Microbial stability and safety of traditional Greek Graviera cheese: characterization of the lactic acid bacterial flora and culture-independent detection of bacteriocin genes in the ripened cheeses and their microbial consortia. J Food Prot 2010; 73:1294-303. [PMID: 20615342 DOI: 10.4315/0362-028x-73.7.1294] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The microflora of four batches of traditional Greek Graviera cheese was studied at 5 weeks of ripening, and 200 lactic acid bacteria (LAB) isolates were phenotypically characterized and screened for antilisterial bacteriocins. The cheeses were also analyzed for organic acids by high-performance liquid chromatography and for the potential presence of 25 known LAB bacteriocin genes directly in cheese and their microbial consortia by PCR. All batches were safe according to the European Union regulatory criteria for Listeria monocytogenes, Salmonella, enterobacteria, and coagulase-positive staphylococci. The cheese flora was dominated by nonstarter Lactobacillus casei/paracasei (67.5%) and Lactobacillus plantarum (16.3%) strains, whereas few Streptococcus thermophilus (3.8%), Lactococcus lactis subsp. lactis (0.6%), and Leuconostoc (1.9%) organisms were present. Enterococcus faecium (9.4%) and Enterococcus durans (0.6%) were isolated among the dominant LAB from two batches; however, enterococci were present in all batches at 10- to 100-fold lower populations than mesophilic lactobacilli. Sixteen E. faecium isolates produced antilisterial enterocins. In accordance, enterocin B gene was detectable in all cheeses and enterocin P gene was present in one cheese, whereas the consortia of all cheeses contained at least two of the enterocin A, B, P, 31, L50A, and L50B genes. Plantaricin A gene was also amplified from all cheeses. Mean concentrations of lactic, acetic, citric, and propionic acids in the ripened cheeses exceeded 1.5% in total, of which approximately 0.9% was lactate. Thus, organic acid contents constitute an important hurdle factor for inhibiting growth of pathogens in traditional Graviera cheese products, with LAB bacteriocins, mainly enterocins, potentially contributing to increased cheese safety.
Collapse
Affiliation(s)
- John Samelis
- National Agricultural Research Foundation, Dairy Research Institute, Katsikas, Ioannina, Greece.
| | | | | | | | | | | | | |
Collapse
|
37
|
Importance of lactobacilli in food and feed biotechnology. Res Microbiol 2010; 161:480-7. [DOI: 10.1016/j.resmic.2010.03.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 11/21/2022]
|
38
|
Coulibaly I, Dubois-Dauphin R, Destain J, Fauconnier ML, Lognay G, Thonart P. The resistance to freeze-drying and to storage was determined as the cellular ability to recover its survival rate and acidification activity. Int J Microbiol 2010; 2010:625239. [PMID: 20634929 PMCID: PMC2903946 DOI: 10.1155/2010/625239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 04/07/2010] [Indexed: 11/26/2022] Open
Abstract
The protective effects of the fatty acid composition and membrane action of the acidification activity of two strains of Lactobacillus kept at 20 degrees C were studied. The addition of sorbitol, monosodium glutamate and glycerol during storage is causing the decline of acidification and increased concentrations of unsaturated fatty acids observed in both strains. The addition of sorbitol and monosodium glutamate does not alter the fatty acid composition, whatever the strain, but increases the resistance to freeze-drying of L. plantarum CWBI-B1419 and improves survival during storage. The addition of these preservatives and decreased activity of acidification improves the ratio unsaturated. These results indicate that the survival during storage and freeze-drying resistance are closely related to the composition of membrane fatty acids. This behaviour can be interpreted as an adaptation of L. plantarum B1419-CWBI supplemented by cryoprotectant additives such as sorbitol or monosodium glutamate sorbitol and monosodium glutamate as an additive. L. plantarum CWBI-B1419 presents a greater adaptation to culture conditions than L. paracasei ssp. paracasei LMG9192(T).
Collapse
Affiliation(s)
- Ibourahema Coulibaly
- Wallon Center for Industrial Biology, Bio-Industry Unit, Gembloux Agricultural University, Passage des déportés 2, 5030 Gembloux, Belgium
| | - Robin Dubois-Dauphin
- Wallon Center for Industrial Biology, Bio-Industry Unit, Gembloux Agricultural University, Passage des déportés 2, 5030 Gembloux, Belgium
| | - Jacqueline Destain
- Wallon Center for Industrial Biology, Bio-Industry Unit, Gembloux Agricultural University, Passage des déportés 2, 5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Analytical Chemistry Unit, Gembloux Agricultural University, Passages des déportés 2, 5030 Gembloux, Belgium
| | - Georges Lognay
- Plant Biology Unit, Gembloux Agricultural University, Passages des déportés 2, 5030 Gembloux, Belgium
| | - Philippe Thonart
- Wallon Center for Industrial Biology, Bio-Industry Unit, Gembloux Agricultural University, Passage des déportés 2, 5030 Gembloux, Belgium
- Wallon Center for Industrial Biology, Microbial Technology Unit, University of Liège, Sart-Tilman B40, 4000 Liège, Belgium
| |
Collapse
|
39
|
Svec P, Kukletová M, Sedlácek I. Comparative evaluation of automated ribotyping and RAPD-PCR for typing of Lactobacillus spp. occurring in dental caries. Antonie van Leeuwenhoek 2010; 98:85-92. [PMID: 20361257 DOI: 10.1007/s10482-010-9432-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 03/22/2010] [Indexed: 11/28/2022]
Abstract
A group of 67 Lactobacillus spp. strains containing Lactobacillus casei/paracasei, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus rhamnosus and Lactobacillus salivarius species isolated from early childhood caries and identified to the species level in a previous study (Svec et al., Folia Microbiol 54:53-58, 2009) was characterized by automated ribotyping performed by the RiboPrinter microbial characterization system and by randomly amplified polymorphic DNA fingerprinting (RAPD-PCR) with M13 primer to evaluate these techniques for characterization of lactobacilli associated with dental caries. Ribotyping revealed 55 riboprints among the analysed group. The automatic identification process performed by the RiboPrinter system identified 18 strains to the species level, however cluster analysis divided obtained ribotype patterns into individual clusters mostly corresponding to the species assignment of particular strains. RAPD-PCR fingerprints revealed by the individual Lactobacillus spp. showed higher variability than the ribotype patterns and the fingerprint profiles generated by the analysed species were distributed among one to four clusters. In conclusion, ribotyping is shown to be more convenient for the identification purposes while RAPD-PCR fingerprinting results indicate this method is a better tool for typing of Lactobacillus spp. strains occurring in dental caries.
Collapse
Affiliation(s)
- Pavel Svec
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Tvrdého 14, 602 00 Brno, Czech Republic.
| | | | | |
Collapse
|
40
|
Svec P, Sedlácek I, Zácková L, Nováková D, Kukletová M. Lactobacillus spp. associated with early childhood caries. Folia Microbiol (Praha) 2009; 54:53-8. [PMID: 19330545 DOI: 10.1007/s12223-009-0008-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/16/2008] [Indexed: 11/27/2022]
Abstract
A group of 69 lactobacilli was isolated from caries lesions and root canals of early childhood caries (ECC) affected children treated in the Department of Pedodontics (Children's Teaching Hospital, Brno, Czech Republic). Biochemical and physiological properties of all strains were characterized by API 50 CH kit and conventional tube tests. The rep-PCR fingerprinting with the (GTG)(5) primer was used for genotypic grouping of the isolates. The (GTG)(5)-PCR fingerprinting grouped all analyzed strains into a few clusters in nearly full agreement with phenotype identification results and clarified the taxonomic position of 13 biochemically unidentified strains. In total, 20 strains of Lactobacillus fermentum, 17 L. rhamnosus, 14 L. casei/paracasei, 7 L. gasseri, 7 L. salivarius and 4 L. plantarum were identified. Mixtures of two or even three Lactobacillus spp. were isolated from a few root canal content samples. Results obtained by biotyping and (GTG)(5)-PCR were generally comparable except for L. gasseri strains that were not biochemically identified. The (GTG)(5)-PCR fingerprinting was shown to be quicker, easier to perform and more reliable than biotyping. Our results imply this molecular method as a good tool for screening and identification of Lactobacillus spp. inhabiting dental plaque.
Collapse
Affiliation(s)
- P Svec
- Institute of Experimental Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
41
|
Singh S, Goswami P, Singh R, Heller KJ. Application of molecular identification tools for Lactobacillus, with a focus on discrimination between closely related species: A review. Lebensm Wiss Technol 2009. [DOI: 10.1016/j.lwt.2008.05.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Moreno-Arribas MV, Carmen Polo M. Occurrence of lactic acid bacteria and biogenic amines in biologically aged wines. Food Microbiol 2008; 25:875-81. [DOI: 10.1016/j.fm.2008.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 04/22/2008] [Accepted: 05/18/2008] [Indexed: 11/24/2022]
|
43
|
The type strain of Lactobacillus casei is ATCC 393, ATCC 334 cannot serve as the type because it represents a different taxon, the name Lactobacillus paracasei and its subspecies names are not rejected and the revival of the name 'Lactobacillus zeae' contravenes Rules 51b (1) and (2) of the International Code of Nomenclature of Bacteria. Opinion 82. Int J Syst Evol Microbiol 2008; 58:1764-5. [DOI: 10.1099/ijs.0.2008/005330-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Van Hoorde K, Verstraete T, Vandamme P, Huys G. Diversity of lactic acid bacteria in two Flemish artisan raw milk Gouda-type cheeses. Food Microbiol 2008; 25:929-35. [PMID: 18721684 DOI: 10.1016/j.fm.2008.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to study the diversity of lactic acid bacteria (LAB) in two Flemish artisan raw milk Gouda-type cheeses. In parallel, conventional culturing was performed. Isolates were identified using (GTG)(5)-PCR and sequence analysis of 16S rRNA and pheS genes. Discriminant analysis revealed some differences in overall LAB diversity between the two batches and between the two cheeses. Within each batch, the diversity of 8- and 12-week-old cheeses was relatively similar. Conventional isolation mainly revealed the presence of Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus and Pediococcus pentosaceus. PCR-DGGE revealed the presence of three species of which no isolates were recovered, i.e. Enterococcus faecalis, Lactobacillus parabuchneri and Lactobacillus gallinarum. Conversely, not all isolated bacteria were detected by PCR-DGGE. We recommend the integrated use of culture-dependent and -independent approaches to maximally encompass the taxonomic spectrum of LAB occurring in Gouda-type and other cheeses.
Collapse
Affiliation(s)
- Koenraad Van Hoorde
- Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | |
Collapse
|
45
|
Abstract
Lactobacilli are a major part of the microflora of the gut and of many fermented dairy products, and are found in a variety of environments. Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, and Lactobacillus zeae form a closely related taxonomic group within the facultatively heterofermentative lactobacilli. The classification and nomenclature of these bacteria are controversial. In this study, relationships between these species were investigated using type strains and dairy industry isolates examined with DNA-based techniques and conventional carbohydrate use tests. Carbohydrate use patterns gave poor discrimination of some species, but DNA PCR using specific primers targeted to sequences of the 16S rRNA gene discriminated 4 types consistent with the currently recognized species. Pulsed-field agarose gel electrophoresis of chromosomal NotI restriction fragments identified 18 different band patterns from 21 independent Lactobacillus isolates and confirmed the identity of L. casei strains from 2 culture collections (CSCC 5203 and ASCC 290), both representing the type strain of L. casei. Some isolates were reclassified as L. rhamnosus, suggesting that the prevalence of L. rhamnosus as a natural component of the microflora of dairy foods and dairy environments has previously been underestimated. These methods can provide a practical basis for discrimination of the species and identification of individual industrial strains.
Collapse
Affiliation(s)
- A R Desai
- School of Molecular Sciences, Victoria University, PO Box 14428, Melbourne City Mail Centre, Victoria 8001, Australia
| | | | | |
Collapse
|
46
|
Savić D, Joković N, Topisirović L. Multivariate statistical methods for discrimination of lactobacilli based on their FTIR spectra. ACTA ACUST UNITED AC 2008. [DOI: 10.1051/dst:2008003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Taxonomic and strain-specific identification of the probiotic strain Lactobacillus rhamnosus 35 within the Lactobacillus casei group. Appl Environ Microbiol 2008; 74:2679-89. [PMID: 18326671 DOI: 10.1128/aem.02286-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35.
Collapse
|
48
|
Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Vancanneyt M, Swings J. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2008; 57:2777-2789. [PMID: 18048724 DOI: 10.1099/ijs.0.64711-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to evaluate the use of the phenylalanyl-tRNA synthase alpha subunit (pheS) and the RNA polymerase alpha subunit (rpoA) partial gene sequences for species identification of members of the genus Lactobacillus. Two hundred and one strains representing the 98 species and 17 subspecies were examined. The pheS gene sequence analysis provided an interspecies gap, which in most cases exceeded 10 % divergence, and an intraspecies variation of up to 3 %. The rpoA gene sequences revealed a somewhat lower resolution, with an interspecies gap normally exceeding 5 % and an intraspecies variation of up to 2 %. The combined use of pheS and rpoA gene sequences offers a reliable identification system for nearly all species of the genus Lactobacillus. The pheS and rpoA gene sequences provide a powerful tool for the detection of potential novel Lactobacillus species and synonymous taxa. In conclusion, the pheS and rpoA gene sequences can be used as alternative genomic markers to 16S rRNA gene sequences and have a higher discriminatory power for reliable identification of species of the genus Lactobacillus.
Collapse
Affiliation(s)
- Sabri M Naser
- Department of Biology and Biotechnology, Faculty of Sciences, An-Najah National University, Nablus, Palestine
| | - Peter Dawyndt
- Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure links 653, Ghent 9000, Belgium.,Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Bart Hoste
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Dirk Gevers
- Bioinformatics and Evolutionary Genomics, Ghent University/VIB, Technologiepark 927, Ghent 9052, Belgium.,Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | | | - Ilse Cleenwerck
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Marc Vancanneyt
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Jean Swings
- BCCMTM/LMG Bacteria Collection, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium.,Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| |
Collapse
|
49
|
Vankerckhoven V, Moreillon P, Piu S, Giddey M, Huys G, Vancanneyt M, Goossens H, Entenza JM. Infectivity of Lactobacillus rhamnosus and Lactobacillus paracasei isolates in a rat model of experimental endocarditis. J Med Microbiol 2007; 56:1017-1024. [PMID: 17644707 DOI: 10.1099/jmm.0.46929-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The potential pathogenicity of selected (potentially) probiotic and clinical isolates of Lactobacillus rhamnosus and Lactobacillus paracasei was investigated in a rat model of experimental endocarditis. In addition, adhesion properties of the lactobacilli for fibrinogen, fibronectin, collagen and laminin, as well as the killing activity of the platelet-microbicidal proteins fibrinopeptide A (FP-A) and connective tissue activating peptide 3 (CTAP-3), were assessed. The 90 % infective dose (ID(90)) of the L. rhamnosus endocarditis isolates varied between 10(6) and 10(7) c.f.u., whereas four of the six (potentially) probiotic L. rhamnosus isolates showed an ID(90) that was at least 10-fold higher (10(8) c.f.u.) (P<0.001). In contrast, the two other probiotic L. rhamnosus isolates exhibited an ID(90) (10(6) and 10(7) c.f.u.) comparable to the ID(90) of the clinical isolates of this species investigated (P>0.05). Importantly, these two probiotic isolates shared the same fluorescent amplified fragment length polymorphism cluster type as the clinical isolate showing the lowest ID(90) (10(6) c.f.u.). L. paracasei tended to have a lower infectivity than L. rhamnosus (ID(90) of 10(7) to > or =10(8) c.f.u.). All isolates had comparable bacterial counts in cardiac vegetations (P>0.05). Except for one L. paracasei strain adhering to all substrates, all tested lactobacilli adhered only weakly or not at all. The platelet peptide FP-A did not show any microbicidal activity against the tested lactobacilli, whereas CTAP-3 killed the majority of the isolates. In general, these results indicate that probiotic lactobacilli display a lower infectivity in experimental endocarditis compared with true endocarditis pathogens. However, the difference in infectivity between L. rhamnosus endocarditis and (potentially) probiotic isolates could not be explained by differences in adherence or platelet microbicidal protein susceptibility. Other disease-promoting factors may exist in these organisms and warrant further investigation.
Collapse
Affiliation(s)
| | - Philippe Moreillon
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Stéphane Piu
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Marlyse Giddey
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Geert Huys
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Marc Vancanneyt
- BCCM/LMG Bacteria Collection, Ghent University, Ghent, Belgium
| | - Herman Goossens
- LUMC, Department of Medical Microbiology, Leiden, The Netherlands
- Laboratory of Medical Microbiology, University of Antwerp, Belgium
| | - José M Entenza
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| |
Collapse
|
50
|
Cogan TM, Beresford TP, Steele J, Broadbent J, Shah NP, Ustunol Z. Invited Review: Advances in Starter Cultures and Cultured Foods. J Dairy Sci 2007; 90:4005-21. [PMID: 17699017 DOI: 10.3168/jds.2006-765] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
With 2005 retail sales close to $4.8 million, cultured dairy products are driving the growth of dairy foods consumption. Starter cultures are of great industrial significance in that they play a vital role in the manufacturing, flavor, and texture development of fermented dairy foods. Furthermore, additional interest in starter bacteria has been generated because of the data accumulating on the potential health benefits of these organisms. Today, starter cultures for fermented foods are developed mainly by design rather than by the traditional screening methods and trial and error. Advances in genetics and molecular biology have provided opportunities for genomic studies of these economically significant organisms and engineering of cultures that focuses on rational improvement of the industrially useful strain. Furthermore, much research has been published on the health benefits associated with ingesting cultured dairy foods and probiotics, particularly their role in modulating immune function. The aim of this review is to describe some of the major scientific advances made in starter and non-starter lactic acid bacteria during the past 10 yr, including genomic studies on dairy starter cultures, engineering of culture attributes, advances in phage control, developments in methods to enumerate lactic acid bacteria and probiotics in dairy foods, and the potential role of cultured dairy foods in modulation of immune function.
Collapse
Affiliation(s)
- T M Cogan
- Moorepark Food Reseach Centre, Teagasc, Fermoy, Ireland
| | | | | | | | | | | |
Collapse
|