1
|
Woldringh CL. Compaction and Segregation of DNA in Escherichia coli. Life (Basel) 2024; 14:660. [PMID: 38929644 PMCID: PMC11205073 DOI: 10.3390/life14060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Theoretical and experimental approaches have been applied to study the polymer physics underlying the compaction of DNA in the bacterial nucleoid. Knowledge of the compaction mechanism is necessary to obtain a mechanistic understanding of the segregation process of replicating chromosome arms (replichores) during the cell cycle. The first part of this review discusses light microscope observations demonstrating that the nucleoid has a lower refractive index and thus, a lower density than the cytoplasm. A polymer physics explanation for this phenomenon was given by a theory discussed at length in this review. By assuming a phase separation between the nucleoid and the cytoplasm and by imposing equal osmotic pressure and chemical potential between the two phases, a minimal energy situation is obtained, in which soluble proteins are depleted from the nucleoid, thus explaining its lower density. This theory is compared to recent views on DNA compaction that are based on the exclusion of polyribosomes from the nucleoid or on the transcriptional activity of the cell. These new views prompt the question of whether they can still explain the lower refractive index or density of the nucleoid. In the second part of this review, we discuss the question of how DNA segregation occurs in Escherichia coli in the absence of the so-called active ParABS system, which is present in the majority of bacteria. How is the entanglement of nascent chromosome arms generated at the origin in the parental DNA network of the E. coli nucleoid prevented? Microscopic observations of the position of fluorescently-labeled genetic loci have indicated that the four nascent chromosome arms synthesized in the initial replication bubble segregate to opposite halves of the sister nucleoids. This implies that extensive intermingling of daughter strands does not occur. Based on the hypothesis that leading and lagging replichores synthesized in the replication bubble fold into microdomains that do not intermingle, a passive four-excluding-arms model for segregation is proposed. This model suggests that the key for segregation already exists in the structure of the replication bubble at the very start of DNA replication; it explains the different patterns of chromosome arms as well as the segregation distances between replicated loci, as experimentally observed.
Collapse
Affiliation(s)
- Conrad L Woldringh
- Faculty of Science, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
2
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Woldringh CL. The Bacterial Nucleoid: From Electron Microscopy to Polymer Physics—A Personal Recollection. Life (Basel) 2023; 13:life13040895. [PMID: 37109423 PMCID: PMC10143432 DOI: 10.3390/life13040895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
In the 1960s, electron microscopy did not provide a clear answer regarding the compact or dispersed organization of the bacterial nucleoid. This was due to the necessary preparation steps of fixation and dehydration (for embedding) and freezing (for freeze-fracturing). Nevertheless, it was possible to measure the lengths of nucleoids in thin sections of slow-growing Escherichia coli cells, showing their gradual increase along with cell elongation. Later, through application of the so-called agar filtration method for electron microscopy, we were able to perform accurate measurements of cell size and shape. The introduction of confocal and fluorescence light microscopy enabled measurements of size and position of the bacterial nucleoid in living cells, inducing the concepts of “nucleoid occlusion” for localizing cell division and of “transertion” for the final step of nucleoid segregation. The question of why the DNA does not spread throughout the cytoplasm was approached by applying polymer-physical concepts of interactions between DNA and proteins. This gave a mechanistic insight in the depletion of proteins from the nucleoid, in accordance with its low refractive index observed by phase-contrast microscopy. Although in most bacterial species, the widely conserved proteins of the ParABS-system play a role in directing the segregation of newly replicated DNA strands, the basis for the separation and opposing movement of the chromosome arms was proposed to lie in preventing intermingling of nascent daughter strands already in the early replication bubble. E. coli, lacking the ParABS system, may be suitable for investigating this basic mechanism of DNA strand separation and segregation.
Collapse
Affiliation(s)
- Conrad L Woldringh
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Abstract
Prokaryotes, by definition, do not segregate their genetic material from the cytoplasm. Thus, there is no barrier preventing direct interactions between chromosomal DNA and the plasma membrane. The possibility of such interactions in bacteria was proposed long ago and supported by early electron microscopy and cell fractionation studies. However, the identification and characterization of chromosome-membrane interactions have been slow in coming. Recently, this subject has seen more progress, driven by advances in imaging techniques and in the exploration of diverse cellular processes. A number of loci have been identified in specific bacteria that depend on interactions with the membrane for their function. In addition, there is growing support for a general mechanism of DNA-membrane contacts based on transertion-concurrent transcription, translation, and insertion of membrane proteins. This review summarizes the history and recent results of chromosome-membrane associations and discusses the known and theorized consequences of these interactions in the bacterial cell.
Collapse
Affiliation(s)
- Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
5
|
Benza VG, Bassetti B, Dorfman KD, Scolari VF, Bromek K, Cicuta P, Lagomarsino MC. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:076602. [PMID: 22790781 DOI: 10.1088/0034-4885/75/7/076602] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.
Collapse
Affiliation(s)
- Vincenzo G Benza
- Dipartimento di Fisica e Matematica, Università dell'Insubria, Como, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion. J Bacteriol 2009; 191:4180-5. [PMID: 19395497 DOI: 10.1128/jb.01707-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Escherichia coli the genome must be compacted approximately 1,000-fold to be contained in a cellular structure termed the nucleoid. It is proposed that the structure of the nucleoid is determined by a balance of multiple compaction forces and one major expansion force. The latter is mediated by transertion, a coupling of transcription, translation, and translocation of nascent membrane proteins and/or exported proteins. In supporting this notion, it has been shown consistently that inhibition of transertion by the translation inhibitor chloramphenicol results in nucleoid condensation due to the compaction forces that remain active in the cell. Our previous study showed that during optimal growth, RNA polymerase is concentrated into transcription foci or "factories," analogous to the eukaryotic nucleolus, indicating that transcription and RNA polymerase distribution affect the nucleoid structure. However, the interpretation of the role of transcription in the structure of the nucleoid is complicated by the fact that transcription is implicated in both compacting forces and the expansion force. In this work, we used a new approach to further examine the effect of transcription, specifically from rRNA operons, on the structure of the nucleoid, when the major expansion force was eliminated. Our results showed that transcription is necessary for the chloramphenicol-induced nucleoid compaction. Further, an active transcription from multiple rRNA operons in chromosome is critical for the compaction of nucleoid induced by inhibition of translation. All together, our data demonstrated that transcription of rRNA operons is a key mechanism affecting genome compaction and nucleoid structure.
Collapse
|
7
|
Molina F, Sánchez-Romero MA, Jiménez-Sánchez A. Dynamic organization of replication forks into factories in Escherichia coli. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Abstract
Escherichia coli cells depleted of the conserved GTPase, ObgE, show early chromosome-partitioning defects and accumulate replicated chromosomes in which the terminus regions are colocalized. Cells lacking ObgE continue to initiate replication, with a normal ratio of the origin to terminus. Localization of the SeqA DNA binding protein, normally seen as punctate foci, however, was disturbed. Depletion of ObgE also results in cell filamentation, with polyploid DNA content. Depletion of ObgE did not cause lethality, and cells recovered fully after expression of ObgE was restored. We propose a model in which ObgE is required to license chromosome segregation and subsequent cell cycle events.
Collapse
Affiliation(s)
- James J Foti
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | |
Collapse
|
9
|
Keijser BJF, Ter Beek A, Rauwerda H, Schuren F, Montijn R, van der Spek H, Brul S. Analysis of temporal gene expression during Bacillus subtilis spore germination and outgrowth. J Bacteriol 2007; 189:3624-34. [PMID: 17322312 PMCID: PMC1855883 DOI: 10.1128/jb.01736-06] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms dormant spores upon nutrient depletion. Under favorable environmental conditions, the spore breaks its dormancy and resumes growth in a process called spore germination and outgrowth. To elucidate the physiological processes that occur during the transition of the dormant spore to an actively growing vegetative cell, we studied this process in a time-dependent manner by a combination of microscopy, analysis of extracellular metabolites, and a genome-wide analysis of transcription. The results indicate the presence of abundant levels of late sporulation transcripts in dormant spores. In addition, the results suggest the existence of a complex and well-regulated spore outgrowth program, involving the temporal expression of at least 30% of the B. subtilis genome.
Collapse
Affiliation(s)
- Bart J F Keijser
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
10
|
Sun Q, Margolin W. Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly. J Bacteriol 2004; 186:3951-9. [PMID: 15175309 PMCID: PMC419936 DOI: 10.1128/jb.186.12.3951-3959.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, assembly of the FtsZ ring (Z ring) at the cell division site is negatively regulated by the nucleoid in a phenomenon called nucleoid occlusion (NO). Previous studies have indicated that chromosome packing plays a role in NO, as mukB mutants grown in rich medium often exhibit FtsZ rings on top of diffuse, unsegregated nucleoids. To address the potential role of overall nucleoid structure on NO, we investigated the effects of disrupting chromosome structure on Z-ring positioning. We found that NO was mostly normal in cells with inactivated DNA gyrase or in mukB-null mutants lacking topA, although some suppression of NO was evident in the latter case. Previous reports suggesting that transcription, translation, and membrane insertion of proteins ("transertion") influence nucleoid structure prompted us to investigate whether disruption of these activities had effects on NO. Blocking transcription caused nucleoids to become diffuse, and FtsZ relocalized to multiple bands on top of these nucleoids, biased towards midcell. This suggested that these diffuse nucleoids were defective in NO. Blocking translation with chloramphenicol caused characteristic nucleoid compaction, but FtsZ rarely assembled on top of these centrally positioned nucleoids. This suggested that NO remained active upon translation inhibition. Blocking protein secretion by thermoinduction of a secA(Ts) strain caused a chromosome segregation defect similar to that in parC mutants, and NO was active. Although indirect effects are certainly possible with these experiments, the above data suggest that optimum NO activity may require specific organization and structure of the nucleoid.
Collapse
Affiliation(s)
- Qin Sun
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
11
|
Manasherob R, Zaritsky A, Metzler Y, Ben-Dov E, Itsko M, Fishov I. Compaction of the Escherichia coli nucleoid caused by Cyt1Aa. MICROBIOLOGY-SGM 2004; 149:3553-3564. [PMID: 14663087 DOI: 10.1099/mic.0.26271-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Compaction of the Escherichia coli nucleoid in the cell's centre was associated with the loss of colony-forming ability; these effects were caused by induction of Cyt1Aa, the cytotoxic 27 kDa protein from Bacillus thuringiensis subsp. israelensis. Cyt1Aa-affected compaction of the nucleoids was delayed but eventually more intense than compaction caused by chloramphenicol. The possibility that small, compact nucleoids in Cyt1Aa-expressing cells resulted in DNA replication run-out and segregation following cell division was ruled out by measuring relative nucleoid length. Treatments with membrane-perforating substances other than Cyt1Aa did not cause such compaction of the nucleoids, but rather the nucleoids overexpanded to occupy nearly all of the cell volume. These findings support the suggestion that, in addition to its perforating ability, Cyt1Aa causes specific disruption of nucleoid associations with the cytoplasmic membrane. In situ immunofluorescence labelling with Alexa did not demonstrate a great amount of Cyt1Aa associated with the membrane. Clear separation between Alexa-labelled Cyt1Aa and 4',6-diamidino-2-phenylindole (DAPI)-stained DNA indicates that the nucleoid does not bind Cyt1Aa. Around 2 h after induction, nucleoids in Cyt1Aa-expressing cells started to decompact and expanded to fill the whole cell volume, most likely due to partial cell lysis without massive peptidoglycan destruction.
Collapse
Affiliation(s)
- Robert Manasherob
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | - Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | - Yifah Metzler
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | - Eitan Ben-Dov
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | - Mark Itsko
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| |
Collapse
|
12
|
Abstract
In actively growing bacterial cells, the DNA exerts stress on the membrane, in addition to the turgor caused by osmotic pressure. This stress is applied through coupled transcription/translation and insertion of membrane proteins (so-called "transertion" process). In bacillary bacteria, the strength of this interaction varies along cell length with a minimum at its midpoint, and hence can locate the cell's equator for the assembly of the FtsZ-ring.
Collapse
Affiliation(s)
- Avinoam Rabinovitch
- Departments of Physics, Ben-Gurion University of the Negev, P.O. Box. 653, 84105 Be'er-Sheva, Israel.
| | | | | |
Collapse
|
13
|
Zaritsky A, Woldringh CL. Localizing cell division in sphericalEscherichia coliby nucleoid occlusion. FEMS Microbiol Lett 2003; 226:209-14. [PMID: 14553913 DOI: 10.1016/s0378-1097(03)00580-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The spatial relationship between FtsZ localization and nucleoid segregation was followed in Escherichia coli thyA cells, made spheroidal by brief exposure to mecillinam and after manipulating chromosome replication time using changes ('steps') in thymine concentration [Zaritsky et al., Microbiology 145 (1999) 1015-1022]. In such cells, fluorescent FtsZ-GFP arcs did not overlap the DAPI-stained nucleoids. It is concluded that FtsZ rings are deposited between segregating nucleoids, consistent with the nucleoid occlusion model [Woldringh et al., J. Bacteriol. 176 (1994) 6030-6038].
Collapse
Affiliation(s)
- Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, Israel.
| | | |
Collapse
|
14
|
Abstract
Recent studies have made great strides toward our understanding of the mechanisms of microbial chromosome segregation and partitioning. This review first describes the mechanisms that function to segregate newly replicated chromosomes, generating daughter molecules that are viable substrates for partitioning. Then experiments that address the mechanisms of bulk chromosome movement are summarized. Recent evidence indicates that a stationary DNA replication factory may be responsible for supplying the force necessary to move newly duplicated DNA toward the cell poles. Some factors contributing to the directionality of chromosome movement probably include centromere-like-binding proteins, DNA condensation proteins, and DNA translocation proteins.
Collapse
Affiliation(s)
- Geoffrey C Draper
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 90095-1569, USA
| | | |
Collapse
|
15
|
Woldringh CL. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol 2002; 45:17-29. [PMID: 12100545 DOI: 10.1046/j.1365-2958.2002.02993.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many recent reviews in the field of bacterial chromosome segregation propose that newly replicated DNA is actively separated by the functioning of specific proteins. This view is primarily based on an interpretation of the position of fluorescently labelled DNA regions and proteins in analogy to the active segregation mechanism in eukaryotic cells, i.e. to mitosis. So far, physical aspects of DNA organization such as the diffusional movement of DNA supercoil segments and their interaction with soluble proteins, leading to a phase separation between cytoplasm and nucleoid, have received relatively little attention. Here, a quite different view is described taking into account DNA-protein interactions, the large variation in the cellular position of fluorescent foci and the compaction and fusion of segregated nucleoids upon inhibition of RNA or protein synthesis. It is proposed that the random diffusion of DNA supercoil segments is transiently constrained by the process of co- transcriptional translation and translocation (transertion) of membrane proteins. After initiation of DNA replication, a bias in the positioning of transertion areas creates a bidirectionality in chromosome segregation that becomes self-enhanced when neighbouring genes on the same daughter chromosome are expressed. This transertion-mediated segregation model is applicable to multifork replication during rapid growth and to multiple chromosomes and plasmids that occur in many bacteria.
Collapse
Affiliation(s)
- Conrad L Woldringh
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Abstract
The DNA of growing cells of Escherichia coli occurs in one or a few lobular bodies known as nucleoids. Upon exposure to chloramphenicol, the nucleoids assume compact, rounded forms ("cm-nucleoids") that have been described as ring- or sphere-shaped. Multiple views of single cells or spheroplasts, however, support a different, curved toroid shape for cm-nucleoids. The multiple views were obtained either by DNA fluorescence imaging as the cells or spheroplasts reoriented in liquid medium or by optical sectioning using phase-contrast or fluorescence imaging of immobilized cells. The curved toroid shape is consistent with electron microscope images of thin sections of chloramphenicol-treated cells. The relationship of this structure to active and inactive nucleoids and to the smaller toroidal forms made by in vitro DNA condensation is discussed.
Collapse
Affiliation(s)
- Steven B Zimmerman
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 329, Bethesda, MD 20892-0560, USA.
| |
Collapse
|
17
|
Kobayashi G, Moriya S, Wada C. Deficiency of essential GTP-binding protein ObgE in Escherichia coli inhibits chromosome partition. Mol Microbiol 2001; 41:1037-51. [PMID: 11555285 DOI: 10.1046/j.1365-2958.2001.02574.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GTP-binding proteins are involved in cell proliferation, development, signal transduction, protein elongation, etc. and construct the GTPase superfamily, whose structures and sequence motifs (G-1 to G-5) are highly conserved from prokaryote to eukaryote. Obg of Bacillus subtilis and Obg homologues of other bacteria belong to the GTPase superfamily and have been suggested as being essential for cell growth, development and monitoring of intracellular levels of GTP. We identified the Obg homologue in Escherichia coli, a protein previously known as YhbZ, which we have renamed ObgE. Double cross-over experiments showed that the obgE gene is essential for growth in E. coli. From characterization of the obgE temperature-sensitive mutant, we found that DNA replication was not inhibited, that the nucleoids did not partition and instead remained in the middle of cell, and that the cells elongated. Overproduction of ObgE also resulted in aberrant chromosome segregation. These data suggested that ObgE is involved directly or indirectly in E. coli chromosome partitioning. Characterization studies showed that ObgE is abundant in normal cells, partially associated with the membrane and does not associate with ribosomes such as in Obg of B. subtilis. We purified ObgE protein from a cell extract of E. coli, and the purified ObgE had GTPase activity and DNA-binding ability.
Collapse
Affiliation(s)
- G Kobayashi
- The Institute for Virus Research, Kyoto University, Shogoin-Kawaracho, Sakyo-Ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
18
|
Grover NB, Woldringh CL. Dimensional regulation of cell-cycle events in Escherichia coli during steady-state growth. MICROBIOLOGY (READING, ENGLAND) 2001; 147:171-81. [PMID: 11160811 DOI: 10.1099/00221287-147-1-171] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two opposing models have been put forward in the literature to describe the changes in the shape of individual Escherichia coli cells in steady-state growth that take place during the cell cycle: the Length model, which maintains that the regulating dimension is cell length, and the Volume model, which asserts it to be cell volume. In addition, the former model envisages cell diameter as decreasing with length up to constriction whereas the latter sees it as being constrained by the rigid cell wall. These two models differ in the correlations they predict between the various cellular dimensions (diameter, length, volume) not only across the entire population of bacteria but also, and especially, within subpopulations that define specific cell-cycle events (division, for example, or onset of constriction); the coefficients of variation at these specific events are also expected to be very different. Observations from cells prepared for electron microscopy (air-dried) and for phase-contrast microscopy (hydrated) appeared qualitatively largely in accordance with the predictions of the Length model. To obtain a more quantitative comparison, simulations were carried out of populations defined by each of the models; again, the results favoured the Length model. Finally, in age-selected cells using membrane elution, the diameter-length and diameter-volume correlations were in complete agreement with the Length model, as were the coefficients of variation. It is concluded that, at least with respect to cell-cycle events such as onset of constriction and cell division, length rather than volume is the controlling dimension.
Collapse
Affiliation(s)
- N B Grover
- Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, Hebrew University, Faculty of Medicine, PO Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
19
|
Abstract
It is widely held that the profound differences in cellular architecture between prokaryotes and eukaryotes, in particular the housing of eukaryotic chromosomes within a nuclear membrane, also extends to the properties of their chromosomes. When chromosomal multiplicity, ploidy, linearity, transcriptional silencing, partitioning, and packaging are considered, no consistent association is found between any of these properties and the presence or absence of a nuclear membrane. Some of the perceived differences can be attributed to cytological limitations imposed by the small size of bacterial nucleoids and the arbitrary choice of representative organisms for comparison. We suggest that the criterion of nucleosome-based packaging of chromosomal DNA may be more useful than the prokaryote/eukaryote dichotomy for inferring the broadest phylogenetic relationships among organisms.
Collapse
Affiliation(s)
- A J Bendich
- Departments of Botany and Genetics, University of Washington, Seattle, Washington 98195-5325, USA
| | | |
Collapse
|
20
|
Binenbaum Z, Parola AH, Zaritsky A, Fishov I. Transcription- and translation-dependent changes in membrane dynamics in bacteria: testing the transertion model for domain formation. Mol Microbiol 1999; 32:1173-82. [PMID: 10383759 DOI: 10.1046/j.1365-2958.1999.01426.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell cycle events have been proposed to be triggered by the formation of membrane domains in the process of coupled transcription, translation and insertion ('transertion') of nascent membrane and exported proteins. Disruption of domain structure should lead to changes in membrane dynamics. Membrane viscosity of Escherichia coli and Bacillus subtilis decreased after inhibition of protein synthesis by chloramphenicol or puromycin, or of RNA initiation by rifampicin, but not after inhibition of RNA elongation by streptolydigin or amino acid starvation of a stringent strain. The decrease caused by inhibitors of protein synthesis was prevented by streptolydigin if added simultaneously, but was not reversed if added later. The drug-induced decrease in membrane viscosity is energy dependent: it did not happen in KCN-treated cells. All treatments decreasing membrane viscosity also induced nucleoid compaction and fusion. Inhibition of macromolecular synthesis without membrane perturbation caused nucleoids to expand. Changes in membrane dynamics were also displayed during a nutritional shift-down transition that causes imbalance in macromolecular syntheses. The results are consistent with the transertion model, predicting dissipation of membrane domains by termination of protein synthesis or detachment of polysomes from DNA; domain structure is conserved if the transertion process is 'frozen'.
Collapse
Affiliation(s)
- Z Binenbaum
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, USA
| | | | | | | |
Collapse
|