1
|
Wang X, Ke X, Dong H, Liu Z, Zheng Y. High-efficiency bioconversion of phytosterol to bisnoralcohol by metabolically engineered Mycobacterium neoaurum in a micro-emulsion system. Biotechnol J 2024; 19:e2400387. [PMID: 39295572 DOI: 10.1002/biot.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024]
Abstract
21-Hydroxy-20-methylpregn-4-en-3-one (4-HBC, bisnoralcohol) is a crucial intermediate for the synthesis of steroidal drugs. Significant challenges including by-products formation and poor substrate solubility were still confronted in its main synthetic route by microbial conversion from phytosterol. Construction of a direct bioconversion pathway to 4-HBC and an efficient substrate emulsion system is therefore urgently required. In this study, three novel isoenzymes of 3-ketosteroid-Δ1-dehydrogenase (KstD) and 3-ketosteroid 9α-hydroxylase (KsH) in Mycobacterium neoaurum were excavated and identified as KstD4, KstD5, and KsHA3. A strain capable of fully directing the synthesis of 4-HBC was metabolically engineered via serial genetic deletion combined with enhanced expression of cholesterol oxidase (ChOx2) and enoyl-CoA hydratase (EchA19). Moreover, a micro-emulsion system combined with soybean oil and hydroxypropyl-β-cyclodextrin improved substrate solubility and bioavailability. In batch fermentation, molar yield of 96.7% with 39.5 g L-1 4-HBC was obtained from 50 g L-1 phytosterol. Our findings demonstrate the potential for industrial-scale biosynthesis of 4-HBC.
Collapse
Affiliation(s)
- Xinxin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hongduo Dong
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Wojtkiewicz AM, Oleksy G, Malinowska MA, Janeczko T. Enzymatic synthesis of a skin active ingredient - glochidone by 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans. J Steroid Biochem Mol Biol 2024; 241:106513. [PMID: 38521362 DOI: 10.1016/j.jsbmb.2024.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
In this study, we applied AcmB2, sourced from Sterolibacterium denitrificans, to catalyze the oxidative dehydrogenation of 3-ketolupeol (lupenone), a derivative of lupeol, triterpene obtained from birch bark. This enzymatic Δ1-dehydrogenation catalyzed by AcmB2 yielded glochidone, a bioactive compound frequently obtained from medicinal plants like Salvia trichoclada and Maytenus boria. Glochidone is known for its broad biological activities, including antibacterial, antifungal, anti-inflammatory, anticancer, antidiabetic as well as acetylcholinesterase inhibition. Our research demonstrates >99% conversion efficiency with 100% regioselectivity of the reaction. The effective conversion to glochidone employed an electron acceptor e.g., potassium hexacyanoferrate III, in mild, environmentally friendly conditions: 8-16% 2-hydroxypropyl-β-cyclodextrin, and 2-3% 2-methoxyethanol. AcmB2 reaction optimum was determined at pH 8.0 and 30 °C. Enzyme's biochemical attributes such as electron acceptor type, concentration and steroid substrate specificity were investigated. Among 4-, 5- and 6-ring steroid derivatives androst-4-en-3,17-dione and testosterone propionate were determined as the best substrates of AcmB2. Δ1-Dehydrogenation of substrates such as lupenone, diosgenone and 3-ketopetromyzonol was confirmed. We have assessed the antioxidant and rejuvenating characteristics of glochidone as an active component in formulations, considering its precursors, lupeol, and lupenone as well. Glochidone exhibited limited antioxidant and chelating capabilities compared to lupeol and reference compounds. However, it demonstrated robust rejuvenating properties, with a sirtuin induction level of 61.5 ± 1.87%, notably surpassing that of the reference substance, E-resveratrol (45.15 ± 0.09%). Additionally, glochidone displayed 26.5±0.67 and 19.41±0.76% inhibition of elastase and collagenase, respectively. The safety of all studied triterpenes was confirmed on skin reconstructed human Epidermis model. These findings provide valuable insights into the potential applications of glochidone in formulations aimed at addressing skin health concerns. This research presents the first example of an enzyme in the 3-ketosteroid dehydrogenase (KstD) family catalyzing the Δ1-dehydrogenation of a pentacyclic triterpene. We also explored structural differences between AcmB, AcmB2, and related KstDs pointing to G52 and P532 as potentially responsible for the unique substrate specificity of AcmB2. Our findings not only highlight the enzyme's capabilities but also present novel enzymatic pathways for bioactive compound synthesis.
Collapse
Affiliation(s)
- Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow PL30239, Poland.
| | - Gabriela Oleksy
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow PL30239, Poland
| | - Magdalena A Malinowska
- Organic Chemistry and Technology Department, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawa 24, Krakow 31-155, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław 50-375, Poland
| |
Collapse
|
3
|
Lata S, Mahatha AC, Mal S, Gupta UD, Kundu M, Basu J. Unravelling novel roles of the Mycobacterium tuberculosis transcription factor Rv0081 in regulation of the nucleoid-associated proteins Lsr2 and EspR, cholesterol utilization and subversion of lysosomal trafficking in macrophages. Mol Microbiol 2022; 117:1104-1120. [PMID: 35304930 DOI: 10.1111/mmi.14895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
The transcriptional network of Mycobacterium tuberculosis is designed to enable the organism to withstand host-associated stresses and to exploit the host milieu for its own survival and multiplication. Rv0081 (MT0088) is a transcriptional regulator whose interplay with other gene regulatory proteins and role in enabling M. tuberculosis to thrive within its host is incompletely understood. M. tuberculosis utilizes cholesterol within the granuloma. We show that deletion of Rv0081 compromises the ability of M. tuberculosis to utilize cholesterol as sole carbon source, to subvert lysosomal trafficking, and to form granulomas in vitro. Rv0081 downregulates expression of the nucleoid associated repressor Lsr2, leading to increased expression of the cholesterol catabolism-linked gene kshA and genes of the cholesterol importing operon, accounting for the requirement of Rv0081 in cholesterol utilization. Further, Rv0081 activates EspR which is required for secretion of ESX-1 substrates, which in turn are involved in subversion of lysosomal traffickingof M. tuberculosisand granuloma expansion. These results provide new insight into the role of Rv0081 under conditions which resemble the environment encountered by M. tuberculosis within its host. Rv0081 emergesas a central regulator of genes linked to various pathways which are crucial for the survival of the bacterium in vivo.
Collapse
Affiliation(s)
- Suruchi Lata
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Amar Chandra Mahatha
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Soumya Mal
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Umesh D Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| |
Collapse
|
4
|
Wójcik P, Glanowski M, Wojtkiewicz AM, Rohman A, Szaleniec M. Universal capability of 3-ketosteroid Δ 1-dehydrogenases to catalyze Δ 1-dehydrogenation of C17-substituted steroids. Microb Cell Fact 2021; 20:119. [PMID: 34162386 PMCID: PMC8220720 DOI: 10.1186/s12934-021-01611-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 3-Ketosteroid Δ1-dehydrogenases (KSTDs) are the enzymes involved in microbial cholesterol degradation and modification of steroids. They catalyze dehydrogenation between C1 and C2 atoms in ring A of the polycyclic structure of 3-ketosteroids. KSTDs substrate spectrum is broad, even though most of them prefer steroids with small substituents at the C17 atom. The investigation of the KSTD's substrate specificity is hindered by the poor solubility of the hydrophobic steroids in aqueous solutions. In this paper, we used 2-hydroxpropyl-β-cyclodextrin (HBC) as a solubilizing agent in a study of the KSTDs steady-state kinetics and demonstrated that substrate bioavailability has a pivotal impact on enzyme specificity. RESULTS Molecular dynamics simulations on KSTD1 from Rhodococcus erythropolis indicated no difference in ΔGbind between the native substrate, androst-4-en-3,17-dione (AD; - 8.02 kcal/mol), and more complex steroids such as cholest-4-en-3-one (- 8.40 kcal/mol) or diosgenone (- 6.17 kcal/mol). No structural obstacle for binding of the extended substrates was also observed. Following this observation, our kinetic studies conducted in the presence of HBC confirmed KSTD1 activity towards both types of steroids. We have compared the substrate specificity of KSTD1 to the other enzyme known for its activity with cholest-4-en-3-one, KSTD from Sterolibacterium denitrificans (AcmB). The addition of solubilizing agent caused AcmB to exhibit a higher affinity to cholest-4-en-3-one (Ping-Pong bi bi KmA = 23.7 μM) than to AD (KmA = 529.2 μM), a supposedly native substrate of the enzyme. Moreover, we have isolated AcmB isoenzyme (AcmB2) and showed that conversion of AD and cholest-4-en-3-one proceeds at a similar rate. We demonstrated also that the apparent specificity constant of AcmB for cholest-4-en-3-one (kcat/KmA = 9.25∙106 M-1 s-1) is almost 20 times higher than measured for KSTD1 (kcat/KmA = 4.71∙105 M-1 s-1). CONCLUSIONS We confirmed the existence of AcmB preference for a substrate with an undegraded isooctyl chain. However, we showed that KSTD1 which was reported to be inactive with such substrates can catalyze the reaction if the solubility problem is addressed.
Collapse
Affiliation(s)
- Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
- Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya, 60115, Indonesia
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland.
| |
Collapse
|
5
|
Kopylov AT, Malsagova KA, Stepanov AA, Kaysheva AL. Diversity of Plant Sterols Metabolism: The Impact on Human Health, Sport, and Accumulation of Contaminating Sterols. Nutrients 2021; 13:nu13051623. [PMID: 34066075 PMCID: PMC8150896 DOI: 10.3390/nu13051623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
The way of plant sterols transformation and their benefits for humans is still a question under the massive continuing revision. In fact, there are no receptors for binding with sterols in mammalians. However, possible biotransformation to steroids that can be catalyzed by gastro-intestinal microflora, microbial cells in prebiotics or cytochromes system were repeatedly reported. Some products of sterols metabolization are capable to imitate resident human steroids and compete with them for the binding with corresponding receptors, thus affecting endocrine balance and entire physiology condition. There are also tremendous reports about the natural origination of mammalian steroid hormones in plants and corresponding receptors for their binding. Some investigations and reports warn about anabolic effect of sterols, however, there are many researchers who are reluctant to believe in and have strong opposing arguments. We encounter plant sterols everywhere: in food, in pharmacy, in cosmetics, but still know little about their diverse properties and, hence, their exact impact on our life. Most of our knowledge is limited to their cholesterol-lowering influence and protective effect against cardiovascular disease. However, the world of plant sterols is significantly wider if we consider the thousands of publications released over the past 10 years.
Collapse
|
6
|
Rohman A, Dijkstra BW. Application of microbial 3-ketosteroid Δ 1-dehydrogenases in biotechnology. Biotechnol Adv 2021; 49:107751. [PMID: 33823268 DOI: 10.1016/j.biotechadv.2021.107751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
3-Ketosteroid Δ1-dehydrogenase catalyzes the 1(2)-dehydrogenation of 3-ketosteroid substrates using flavin adenine dinucleotide as a cofactor. The enzyme plays a crucial role in microbial steroid degradation, both under aerobic and anaerobic conditions, by initiating the opening of the steroid nucleus. Indeed, many microorganisms are known to possess one or more 3-ketosteroid Δ1-dehydrogenases. In the pharmaceutical industry, 3-ketosteroid Δ1-dehydrogenase activity is exploited to produce Δ1-3-ketosteroids, a class of steroids that display various biological activities. Many of them are used as active pharmaceutical ingredients in drug products, or as key precursors to produce pharmaceutically important steroids. Since 3-ketosteroid Δ1-dehydrogenase activity requires electron acceptors, among other considerations, Δ1-3-ketosteroid production has been industrially implemented using whole-cell fermentation with growing or metabolically active resting cells, in which the electron acceptors are available, rather than using the isolated enzyme. In this review we discuss biotechnological applications of microbial 3-ketosteroid Δ1-dehydrogenases, covering commonly used steroid-1(2)-dehydrogenating microorganisms, the bioprocess for preparing Δ1-3-ketosteroids, genetic engineering of 3-ketosteroid Δ1-dehydrogenases and related genes for constructing new, productive industrial strains, and microbial fermentation strategies for enhancing the product yield. Furthermore, we also highlight the recent development in the use of isolated 3-ketosteroid Δ1-dehydrogenases combined with a FAD cofactor regeneration system. Finally, in a somewhat different context, we summarize the role of 3-ketosteroid Δ1-dehydrogenase in cholesterol degradation by Mycobacterium tuberculosis and other mycobacteria. Because the enzyme is essential for the pathogenicity of these organisms, it may be a potential target for drug development to combat mycobacterial infections.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
7
|
Sun H, Yang J, He K, Wang YP, Song H. Enhancing production of 9α-hydroxy-androst-4-ene-3,17-dione (9-OHAD) from phytosterols by metabolic pathway engineering of mycobacteria. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Shtratnikova VY, Sсhelkunov MI, Fokina VV, Bragin EY, Shutov AA, Donova MV. Different genome-wide transcriptome responses of Nocardioides simplex VKM Ac-2033D to phytosterol and cortisone 21-acetate. BMC Biotechnol 2021; 21:7. [PMID: 33441120 PMCID: PMC7807495 DOI: 10.1186/s12896-021-00668-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial degradation/transformation of steroids is widely investigated to create biotechnologically relevant strains for industrial application. The strain of Nocardioides simplex VKM Ac-2033D is well known mainly for its superior 3-ketosteroid Δ1-dehydrogenase activity towards various 3-oxosteroids and other important reactions of sterol degradation. However, its biocatalytic capacities and the molecular fundamentals of its activity towards natural sterols and synthetic steroids were not fully understood. In this study, a comparative investigation of the genome-wide transcriptome profiling of the N. simplex VKM Ac-2033D grown on phytosterol, or in the presence of cortisone 21-acetate was performed with RNA-seq. RESULTS Although the gene patterns induced by phytosterol generally resemble the gene sets involved in phytosterol degradation pathways in mycolic acid rich actinobacteria such as Mycolicibacterium, Mycobacterium and Rhodococcus species, the differences in gene organization and previously unreported genes with high expression level were revealed. Transcription of the genes related to KstR- and KstR2-regulons was mainly enhanced in response to phytosterol, and the role in steroid catabolism is predicted for some dozens of the genes in N. simplex. New transcription factors binding motifs and new candidate transcription regulators of steroid catabolism were predicted in N. simplex. Unlike phytosterol, cortisone 21-acetate does not provide induction of the genes with predicted KstR and KstR2 sites. Superior 3-ketosteroid-Δ1-dehydrogenase activity of N. simplex VKM Ac-2033D is due to the kstDs redundancy in the genome, with the highest expression level of the gene KR76_27125 orthologous to kstD2, in response to cortisone 21-acetate. The substrate spectrum of N. simplex 3-ketosteroid-Δ1-dehydrogenase was expanded in this study with progesterone and its 17α-hydroxylated and 11α,17α-dihydroxylated derivatives, that effectively were 1(2)-dehydrogenated in vivo by the whole cells of the N. simplex VKM Ac-2033D. CONCLUSION The results contribute to the knowledge of biocatalytic features and diversity of steroid modification capabilities of actinobacteria, defining targets for further bioengineering manipulations with the purpose of expansion of their biotechnological applications.
Collapse
Affiliation(s)
- Victoria Yu Shtratnikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, h. 1, b. 40, Moscow, Russian Federation 119991
| | - Mikhail I. Sсhelkunov
- Skolkovo Institute of Science and Technology, Nobelya str., 3, Moscow, Russian Federation 121205
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per., h. 19, b. 1, Moscow, Russian Federation 127994
| | - Victoria V. Fokina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| | - Eugeny Y. Bragin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
| | - Andrey A. Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| | - Marina V. Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| |
Collapse
|
9
|
Luo JM, Cui HL, Jia HC, Li F, Cheng HJ, Shen YB, Wang M. Identification, Biological Characteristics, and Active Site Residues of 3-Ketosteroid Δ 1-Dehydrogenase Homologues from Arthrobacter simplex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9496-9512. [PMID: 32786835 DOI: 10.1021/acs.jafc.0c03360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenase (KsdD) is the key enzyme responsible for Δ1-dehydrogenation, which is one of the most valuable reactions for steroid catabolism. Arthrobacter simplex has been widely used in the industry due to its superior bioconversion efficiency, but KsdD information is not yet fully clear. Here, five KsdD homologues were identified in A. simplex CGMCC 14539. Bioinformatic analysis indicated their distinct properties and structures. Each KsdD was functionally confirmed by transcriptional response, overexpression, and heterologous expression. The substantial difference in substrate profiles might be related to the enzyme loop structure. Two promising enzymes (KsdD3 and KsdD5) were purified and characterized, exhibiting strong organic solvent tolerance and clear preference for 4-ene-3-oxosteroids. KsdD5 seemed to be more versatile due to good activity on substrates with or without a substituent at C11 and high optimal temperature and also possessed unique residues. It is the first time that KsdDs have been comprehensively disclosed in the A. simplex industrial strain.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin 300071, P. R. China
| | - Hui-Lin Cui
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Chen Jia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Fang Li
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Hong-Jin Cheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 P.O. Box, No. 29, Street No. 13, Tianjin Economic-Technological Development Area (TEDA), Tianjin 30057, P. R. China
| |
Collapse
|
10
|
The Analysis of Estrogen-Degrading and Functional Metabolism Genes in Rhodococcus equi DSSKP-R-001. Int J Genomics 2020; 2020:9369182. [PMID: 32908857 PMCID: PMC7471831 DOI: 10.1155/2020/9369182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Estrogen contamination is recognized as one of the most serious environmental problems, causing widespread concern worldwide. Environmental estrogens are mainly derived from human and vertebrate excretion, drugs, and agricultural activities. The use of microorganisms is currently the most economical and effective method for biodegradation of environmental estrogens. Rhodococcus equi DSSKP-R-001 (R-001) has strong estrogen-degrading capabilities. Our study indicated that R-001 can use different types of estrogen as its sole carbon source for growth and metabolism, with final degradation rates above 90%. Transcriptome analysis showed that 720 (E1), 983 (E2), and 845 (EE2) genes were significantly upregulated in the estrogen-treated group compared with the control group, and 270 differentially expressed genes (DEGs) were upregulated across all treatment groups. These DEGs included ABC transporters; estrogen-degrading genes, including those that perform initial oxidation and dehydrogenation reactions and those that further degrade the resulting substrates into small molecules; and metabolism genes that complete the intracellular transformation and utilization of estrogen metabolites through biological processes such as amino acid metabolism, lipid metabolism, carbohydrate metabolism, and the tricarboxylic acid cycle. In summary, the biodegradation of estrogens is coordinated by a metabolic network of estrogen-degrading enzymes, transporters, metabolic enzymes, and other coenzymes. In this study, the metabolic mechanisms by which Rhodococcus equi R-001 degrades various estrogens were analyzed for the first time. A new pollutant metabolism system is outlined, providing a starting point for the construction of engineered estrogen-degrading bacteria.
Collapse
|
11
|
Savinova TS, Dovbnya DV, Khomutov SM, Kazantsev AV, Huy LD, Lukashev NV, Donova MV. Conversion of Soybean Phytosterol into Androsta-4,9(11)-diene-3,17-dione. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Kreit J. Aerobic catabolism of sterols by microorganisms: key enzymes that open the 3-ketosteroid nucleus. FEMS Microbiol Lett 2020; 366:5544764. [PMID: 31390014 DOI: 10.1093/femsle/fnz173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/06/2019] [Indexed: 01/15/2023] Open
Abstract
Aerobic degradation of the sterol tetracyclic nucleus by microorganisms comprises the catabolism of A/B-rings, followed by that of C/D-rings. B-ring rupture at the C9,10-position is a key step involving 3-ketosteroid Δ1-dehydrogenase (KstD) and 3-ketosteroid 9α-hydroxylase (KstH). Their activities lead to the aromatization of C4,5-en-containing A-ring causing the rupture of B-ring. C4,5α-hydrogenated 3-ketosteroid could be produced by the growing microorganism containing a 5α-reductase. In this case, the microorganism synthesizes, in addition to KstD and KstH, a 3-ketosteroid Δ4-(5α)-dehydrogenase (Kst4D) in order to produce the A-ring aromatization, and consequently B-ring rupture. KstD and Kst4D are FAD-dependent oxidoreductases. KstH is composed of a reductase and a monooxygenase. This last component is the catalytic unit; it contains a Rieske-[2Fe-2S] center with a non-haem mononuclear iron in the active site. Published data regarding these enzymes are reviewed.
Collapse
Affiliation(s)
- Joseph Kreit
- Mohammed V University, Laboratory of Biology of Human Pathologies, Department of Biology, Faculty of Sciences, Ibn-Batouta Avenue, P.O. Box 1014, Rabat, Morocco
| |
Collapse
|
13
|
Olivera ER, Luengo JM. Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes (Basel) 2019; 10:E512. [PMID: 31284586 PMCID: PMC6678751 DOI: 10.3390/genes10070512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Steroids are perhydro-1,2-cyclopentanophenanthrene derivatives that are almost exclusively synthesised by eukaryotic organisms. Since the start of the Anthropocene, the presence of these molecules, as well as related synthetic compounds (ethinylestradiol, dexamethasone, and others), has increased in different habitats due to farm and municipal effluents and discharge from the pharmaceutical industry. In addition, the highly hydrophobic nature of these molecules, as well as the absence of functional groups, makes them highly resistant to biodegradation. However, some environmental bacteria are able to modify or mineralise these compounds. Although steroid-metabolising bacteria have been isolated since the beginning of the 20th century, the genetics and catabolic pathways used have only been characterised in model organisms in the last few decades. Here, the metabolic alternatives used by different bacteria to metabolise steroids (e.g., cholesterol, bile acids, testosterone, and other steroid hormones), as well as the organisation and conservation of the genes involved, are reviewed.
Collapse
Affiliation(s)
- Elías R Olivera
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain.
| | - José M Luengo
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain
| |
Collapse
|
14
|
Rohman A, Dijkstra BW. The role and mechanism of microbial 3-ketosteroid Δ 1-dehydrogenases in steroid breakdown. J Steroid Biochem Mol Biol 2019; 191:105366. [PMID: 30991094 DOI: 10.1016/j.jsbmb.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenases are FAD-dependent enzymes that catalyze the introduction of a double bond between the C1 and C2 atoms of the A-ring of 3-ketosteroid substrates. These enzymes are found in a large variety of microorganisms, especially in bacteria belonging to the phylum Actinobacteria. They play a critical role in the early steps of the degradation of the steroid core. 3-Ketosteroid Δ1-dehydrogenases are of particular interest for the etiology of some infectious diseases, for the production of starting materials for the pharmaceutical industry, and for environmental bioremediation applications. Here we summarize and discuss the biochemical and enzymological properties of these enzymes, their microbial sources, and their natural diversity. The three-dimensional structure of a 3-ketosteroid Δ1-dehydrogenase in connection with the enzyme mechanism is highlighted.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; The Laboratory of Proteomics, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; The Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Bauke W Dijkstra
- The Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
15
|
Bragin EY, Shtratnikova VY, Schelkunov MI, Dovbnya DV, Donova MV. Genome-wide response on phytosterol in 9-hydroxyandrostenedione-producing strain of Mycobacterium sp. VKM Ac-1817D. BMC Biotechnol 2019; 19:39. [PMID: 31238923 PMCID: PMC6593523 DOI: 10.1186/s12896-019-0533-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Background Aerobic side chain degradation of phytosterols by actinobacteria is the basis for the industrial production of androstane steroids which are the starting materials for the synthesis of steroid hormones. A native strain of Mycobacterium sp. VKM Ac-1817D effectively produces 9α-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) from phytosterol, but also is capable of slow steroid core degradation. However, the set of the genes with products that are involved in phytosterol oxidation, their organisation and regulation remain poorly understood. Results High-throughput sequencing of the global transcriptomes of the Mycobacterium sp. VKM Ac-1817D cultures grown with or without phytosterol was carried out. In the presence of phytosterol, the expression of 260 genes including those related to steroid catabolism pathways significantly increased. Two of the five genes encoding the oxygenase unit of 3-ketosteroid-9α-hydroxylase (kshA) were highly up-regulated in response to phytosterol (55- and 25-fold, respectively) as well as one of the two genes encoding its reductase subunit (kshB) (40-fold). Only one of the five putative genes encoding 3-ketosteroid-∆1-dehydrogenase (KstD_1) was up-regulated in the presence of phytosterol (61-fold), but several substitutions in the conservative positions of its product were revealed. Among the genes over-expressed in the presence of phytosterol, several dozen genes did not possess binding sites for the known regulatory factors of steroid catabolism. In the promoter regions of these genes, a regularly occurring palindromic motif was revealed. The orthologue of TetR-family transcription regulator gene Rv0767c of M. tuberculosis was identified in Mycobacterium sp. VKM Ac-1817D as G155_05115. Conclusions High expression levels of the genes related to the sterol side chain degradation and steroid 9α-hydroxylation in combination with possible defects in KstD_1 may contribute to effective 9α-hydroxyandrost-4-ene-3,17-dione accumulation from phytosterol provided by this biotechnologically relevant strain. The TetR-family transcription regulator gene G155_05115 presumably associated with the regulation of steroid catabolism. The results are of significance for the improvement of biocatalytic features of the microbial strains for the steroid industry. Electronic supplementary material The online version of this article (10.1186/s12896-019-0533-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eugeny Y Bragin
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290. .,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290.
| | - Victoria Y Shtratnikova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye gory, 1, building 40, Moscow, Russian Federation, 119992
| | - Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Nobelya, 3, Moscow, Russian Federation, 121205.,Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny, 19, build. 1, Moscow, Russian Federation, 127051
| | - Dmitry V Dovbnya
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290.,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290
| | - Marina V Donova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290.,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290
| |
Collapse
|
16
|
Mao S, Wang JW, Liu F, Zhu Z, Gao D, Guo Q, Xu P, Ma Z, Hou Y, Cheng X, Sun D, Lu F, Qin HM. Engineering of 3-ketosteroid-∆ 1-dehydrogenase based site-directed saturation mutagenesis for efficient biotransformation of steroidal substrates. Microb Cell Fact 2018; 17:141. [PMID: 30200975 PMCID: PMC6130075 DOI: 10.1186/s12934-018-0981-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
Background Biosynthesis of steroidal drugs is of great benefit in pharmaceutical manufacturing as the process involves efficient enzymatic catalysis at ambient temperature and atmospheric pressure compared to chemical synthesis. 3-ketosteroid-∆1-dehydrogenase from Arthrobacter simplex (KsdD3) catalyzes 1,2-desaturation of steroidal substrates with FAD as a cofactor. Results Recombinant KsdD3 exhibited organic solvent tolerance. W117, F296, W299, et al., which were located in substrate-binding cavity, were predicted to form hydrophobic interaction with the substrate. Structure-based site-directed saturation mutagenesis of KsdD3 was performed with W299 mutants, which resulted in improved catalytic activities toward various steroidal substrates. W299A showed the highest increase in catalytic efficiency (kcat/Km) compared with the wild-type enzyme. Homology modelling revealed that the mutants enlarged the active site cavity and relieved the steric interference facilitating recognition of C17 hydroxyl/carbonyl steroidal substrates. Steered molecular dynamics simulations revealed that W299A/G decreased the potential energy barrier of association of substrates and dissociation of the corresponding products. The biotransformation of AD with enzymatic catalysis and resting cells harbouring KsdD3 WT/mutants revealed that W299A catalyzed the maximum ADD yields of 71 and 95% by enzymatic catalysis and resting cell conversion respectively, compared with the wild type (38 and 75%, respectively). Conclusions The successful rational design of functional KsdD3 greatly advanced our understanding of KsdD family enzymes. Structure-based site-directed saturation mutagenesis and biochemical data were used to design KsdD3 mutants with a higher catalytic activity and broader selectivity. ![]() Electronic supplementary material The online version of this article (10.1186/s12934-018-0981-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuhong Mao
- State Key Laboratory of Food Nutrition and Safety, Tianjin, People's Republic of China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, People's Republic of China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jian-Wen Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin, People's Republic of China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, People's Republic of China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zhangliang Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Dengke Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Qianqian Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Panpan Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zheng Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Yali Hou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Xiaotao Cheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Dengyue Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin, People's Republic of China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, People's Republic of China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, People's Republic of China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China. .,National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, People's Republic of China.
| | - Hui-Min Qin
- State Key Laboratory of Food Nutrition and Safety, Tianjin, People's Republic of China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, People's Republic of China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, People's Republic of China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China. .,National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
17
|
Zhang R, Liu X, Wang Y, Han Y, Sun J, Shi J, Zhang B. Identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons. Microb Cell Fact 2018; 17:77. [PMID: 29776364 PMCID: PMC5960168 DOI: 10.1186/s12934-018-0916-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/03/2018] [Indexed: 12/18/2022] Open
Abstract
Background 3-Ketosteroid-Δ1-dehydrogenase (KstD) is a key enzyme in the metabolic pathway for chemical modifications of steroid hormones. Only a few KstDs have thus far been characterized biochemically and applied for the production of steroidal pharmaceutical intermediates. Three KstDs, KstD1, KstD2, and KstD3, were identified in Mycobacterium neoaurum DSM 1381, and they shared up to 99, 85 and 97% amino acid identity with previously reported KstDs, respectively. In this paper, KstDs from M. neoaurum DSM 1381 were investigated and exemplified their potential application for industrial steroid transformation. Results The recombinant KstD2 from Bacillus subtilis exhibited higher enzymatic activity when 4-androstene-3,17-dione (AD) and 22-hydroxy-23, 24-bisnorchol-4-ene-3-one (4HP) were used as the substrates, and resulted in specific activities of 22.40 and 19.19 U mg−1, respectively. However, the specific activities of recombinant KstD2 from Escherichia coli, recombinant KstD1 from B. subtilis and E. coli, and recombinant KstD3, also fed with AD and 4HP, had significantly lower specific activities. We achieved up to 99% bioconversion rate of 1,4-androstadiene-3,17-dione (ADD) from 8 g L−1 AD after 15 h of fermentation using E. coli transformant BL21-kstD2. And in vivo transcriptional analysis revealed that the expression of kstD1 in M. neoaurum DSM 1381 increased by 60.5-fold with phytosterols as the substrate, while the mRNA levels of kstD2 and kstD3 were bearly affected by the phytosterols. Therefore, we attempted to create a 4HP producing strain without kstD1, which could covert 20 g L−1 phytosterols to 14.18 g L−1 4HP. Conclusions In vitro assay employing the recombinant enzymes revealed that KstD2 was the most promising candidate for biocatalysis in biotransformation of AD. However, in vivo analysis showed that the cellular regulation of kstD1 was much more active than those of the other kstDs in response to the presence of phytosterols. Based on the findings above, we successfully constructed E. coli transformant BL21-kstD2 for ADD production from AD and M. neoaurum DSM 1381 ΔkstD1 strain for 4HP production using phytosterols as the substrate. Electronic supplementary material The online version of this article (10.1186/s12934-018-0916-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruijie Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
| | - Yushi Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
| | - Yuchang Han
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, 201210, Shanghai, China.
| |
Collapse
|
18
|
Fernández-Cabezón L, Galán B, García JL. New Insights on Steroid Biotechnology. Front Microbiol 2018; 9:958. [PMID: 29867863 PMCID: PMC5962712 DOI: 10.3389/fmicb.2018.00958] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Nowadays steroid manufacturing occupies a prominent place in the pharmaceutical industry with an annual global market over $10 billion. The synthesis of steroidal active pharmaceutical ingredients (APIs) such as sex hormones (estrogens, androgens, and progestogens) and corticosteroids is currently performed by a combination of microbiological and chemical processes. Several mycobacterial strains capable of naturally metabolizing sterols (e.g., cholesterol, phytosterols) are used as biocatalysts to transform phytosterols into steroidal intermediates (synthons), which are subsequently used as key precursors to produce steroidal APIs in chemical processes. These synthons can also be modified by other microbial strains capable of introducing regio- and/or stereospecific modifications (functionalization) into steroidal molecules. Most of the industrial microbial strains currently available have been improved through traditional technologies based on physicochemical mutagenesis and selection processes. Surprisingly, Synthetic Biology and Systems Biology approaches have hardly been applied for this purpose. This review attempts to highlight the most relevant research on Steroid Biotechnology carried out in last decades, focusing specially on those works based on recombinant DNA technologies, as well as outlining trends and future perspectives. In addition, the need to construct new microbial cell factories (MCF) to design more robust and bio-sustainable bioprocesses with the ultimate aim of producing steroids à la carte is discussed.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
19
|
Fernández-Cabezón L, Galán B, García JL. Unravelling a new catabolic pathway of C-19 steroids in Mycobacterium smegmatis. Environ Microbiol 2018; 20:1815-1827. [PMID: 29611894 DOI: 10.1111/1462-2920.14114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
In this work, we have characterized the C-19+ gene cluster (MSMEG_2851 to MSMEG_2901) of Mycobacterium smegmatis. By in silico analysis, we have identified the genes encoding enzymes involved in the modification of the A/B steroid rings during the catabolism of C-19 steroids in certain M. smegmatis mutants mapped in the PadR-like regulator (MSMEG_2868), that constitutively express the C-19+ gene cluster. By using gene complementation assays, resting-cell biotransformations and deletion mutants, we have characterized the most critical genes of the cluster, that is, kstD2, kstD3, kshA2, kshB2, hsaA2, hsaC2 and hsaD2. These results have allowed us to propose a new catabolic route named C-19+ pathway for the mineralization of C-19 steroids in M. smegmatis. Our data suggest that the deletion of the C-19+ gene cluster may be useful to engineer more robust and efficient M. smegmatis strains to produce C-19 steroids from sterols. Moreover, the new KshA2, KshB2, KstD2 and KstD3 isoenzymes may be useful to design new microbial cell factories for the 9α-hydroxylation and/or Δ1-dehydrogenation of 3-ketosteroids.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
20
|
|
21
|
Biodegradation of 7-Ketocholesterol by Rhodococcus erythropolis MTCC 3951: Process optimization and enzymatic insights. Chem Phys Lipids 2017; 207:253-259. [DOI: 10.1016/j.chemphyslip.2017.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 01/22/2023]
|
22
|
Guevara G, Heras LFDL, Perera J, Llorens JMN. Functional characterization of 3-ketosteroid 9α-hydroxylases in Rhodococcus ruber strain chol-4. J Steroid Biochem Mol Biol 2017. [PMID: 28642093 DOI: 10.1016/j.jsbmb.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The 3-Ketosteroid-9α-Hydroxylase, also known as KshAB [androsta-1,4-diene-3,17-dione, NADH:oxygen oxidoreductase (9α-hydroxylating); EC 1.14.13.142)], is a key enzyme in the general scheme of the bacterial steroid catabolism in combination with a 3-ketosteroid-Δ1-dehydrogenase activity (KstD), being both responsible of the steroid nucleus (rings A/B) breakage. KshAB initiates the opening of the steroid ring by the 9α-hydroxylation of the C9 carbon of 4-ene-3-oxosteroids (e.g. AD) or 1,4-diene-3-oxosteroids (e.g. ADD), transforming them into 9α-hydroxy-4-androsten-3,17-dione (9OHAD) or 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD), respectively. The redundancy of these enzymes in the actinobacterial genomes results in a serious difficulty for metabolic engineering this catabolic pathway to obtain intermediates of industrial interest. In this work, we have identified three homologous kshA genes and one kshB gen in different genomic regions of R. ruber strain Chol-4. We present a set of data that helps to understand their specific roles in this strain, including: i) description of the KshAB enzymes ii) construction and characterization of ΔkshB and single, double and triple ΔkshA mutants in R. ruber iii) growth studies of the above strains on different substrates and iv) genetic complementation and biotransformation assays with those strains. Our results show that KshA2 isoform is needed for the degradation of steroid substrates with short side chain, while KshA3 works on those molecules with longer side chains. KshA1 is a more versatile enzyme related to the cholic acid catabolism, although it also collaborates with KshA2 or KshA3 activities in the catabolism of steroids. Accordingly to what it is described for other Rhodococcus strains, our results also suggest that the side chain degradation is KshAB-independent.
Collapse
Affiliation(s)
- Govinda Guevara
- Department of Biochemistry and Molecular Biology I, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Julián Perera
- Department of Biochemistry and Molecular Biology I, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Juana María Navarro Llorens
- Department of Biochemistry and Molecular Biology I, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
23
|
Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani. Appl Microbiol Biotechnol 2017; 101:6765-6777. [DOI: 10.1007/s00253-017-8400-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
|
24
|
Wang X, Feng J, Zhang D, Wu Q, Zhu D, Ma Y. Characterization of new recombinant 3-ketosteroid-Δ1-dehydrogenases for the biotransformation of steroids. Appl Microbiol Biotechnol 2017. [DOI: 10.1007/s00253-017-8378-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum. World J Microbiol Biotechnol 2017. [DOI: 10.1007/s11274-017-2310-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Guevara G, Fernández de Las Heras L, Perera J, Navarro Llorens JM. Functional differentiation of 3-ketosteroid Δ 1-dehydrogenase isozymes in Rhodococcus ruber strain Chol-4. Microb Cell Fact 2017; 16:42. [PMID: 28288625 PMCID: PMC5348764 DOI: 10.1186/s12934-017-0657-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
Background The Rhodococcus ruber strain Chol-4 genome contains at least three putative 3-ketosteroid Δ1-dehydrogenase ORFs (kstD1, kstD2 and kstD3) that code for flavoenzymes involved in the steroid ring degradation. The aim of this work is the functional characterization of these enzymes prior to the developing of different biotechnological applications. Results The three R. ruber KstD enzymes have different substrate profiles. KstD1 shows preference for 9OHAD and testosterone, followed by progesterone, deoxy corticosterone AD and, finally, 4-BNC, corticosterone and 19OHAD. KstD2 shows maximum preference for progesterone followed by 5α-Tes, DOC, AD testosterone, 4-BNC and lastly 19OHAD, corticosterone and 9OHAD. KstD3 preference is for saturated steroid substrates (5α-Tes) followed by progesterone and DOC. A preliminary attempt to model the catalytic pocket of the KstD proteins revealed some structural differences probably related to their catalytic differences. The expression of kstD genes has been studied by RT-PCR and RT-qPCR. All the kstD genes are transcribed under all the conditions assayed, although an additional induction in cholesterol and AD could be observed for kstD1 and in cholesterol for kstD3. Co-transcription of some correlative genes could be stated. The transcription initiation signals have been searched, both in silico and in vivo. Putative promoters in the intergenic regions upstream the kstD1, kstD2 and kstD3 genes were identified and probed in an apramycin-promoter-test vector, leading to the functional evidence of those R. ruber kstD promoters. Conclusions At least three putative 3-ketosteroid Δ1-dehydrogenase ORFs (kstD1, kstD2 and kstD3) have been identified and functionally confirmed in R. ruber strain Chol-4. KstD1 and KstD2 display a wide range of substrate preferences regarding to well-known intermediaries of the cholesterol degradation pathway (9OHAD and AD) and other steroid compounds. KstD3 shows a narrower substrate range with a preference for saturated substrates. KstDs differences in their catalytic properties was somehow related to structural differences revealed by a preliminary structural modelling. Transcription of R. ruber kstD genes is driven from specific promoters. The three genes are constitutively transcribed, although an additional induction is observed in kstD1 and kstD3. These enzymes have a wide versatility and allow a fine tuning-up of the KstD cellular activity. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0657-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Govinda Guevara
- Department of Biochemistry and Molecular Biology I, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Laura Fernández de Las Heras
- Faculty of Science and Engineering, Microbial Physiology-Gron Inst Biomolecular Sciences & Biotechnology, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Julián Perera
- Department of Biochemistry and Molecular Biology I, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Juana María Navarro Llorens
- Department of Biochemistry and Molecular Biology I, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
27
|
Xiong LB, Liu HH, Xu LQ, Wei DZ, Wang FQ. Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to 9α-Hydroxy-4-androstene-3,17-dione in Mycobacterium neoaurum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:626-631. [PMID: 28035826 DOI: 10.1021/acs.jafc.6b05314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
9α-Hydroxy-4-androstene-3,17-dione (9-OHAD) is a valuable steroid pharmaceutical intermediate which can be produced by the conversion of soybean phytosterols in mycobacteria. However, the unsatisfactory productivity and conversion efficiency of engineered mycobacterial strains hinder their industrial applications. Here, a sigma factor D (sigD) was investigated due to its dramatic downregulation during the conversion of phytosterols to 9-OHAD. It was determined as a negative regulator in the metabolism of phytosterols, and the deletion of sigD in a 9-OHAD-producing strain significantly enhanced the titer of 9-OHAD by 18.9%. Furthermore, a high yielding strain was constructed by the combined modifications of sigD and choM2, a key gene in the phytosterol metabolism pathway. After the modifications, the productivity of 9-OHAD reached 0.071 g/L/h (10.27 g/L from 20 g/L phytosterol), which was 22.5% higher than the original productivity of 0.058 g/L/h (8.37 g/L from 20 g/L phytosterol) in the industrial resting cell biotransformation system.
Collapse
Affiliation(s)
- Liang-Bin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology , Shanghai, China
| | - Hao-Hao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology , Shanghai, China
| | - Li-Qin Xu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology , Shanghai, China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology , Shanghai, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology , Shanghai, China
| |
Collapse
|
28
|
Galán B, Uhía I, García-Fernández E, Martínez I, Bahíllo E, de la Fuente JL, Barredo JL, Fernández-Cabezón L, García JL. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microb Biotechnol 2016; 10:138-150. [PMID: 27804278 PMCID: PMC5270728 DOI: 10.1111/1751-7915.12429] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/05/2023] Open
Abstract
A number of pharmaceutical steroid synthons are currently produced through the microbial side-chain cleavage of natural sterols as an alternative to multi-step chemical synthesis. Industrially, these synthons have been usually produced through fermentative processes using environmental isolated microorganisms or their conventional mutants. Mycobacterium smegmatis mc2 155 is a model organism for tuberculosis studies which uses cholesterol as the sole carbon and energy source for growth, as other mycobacterial strains. Nevertheless, this property has not been exploited for the industrial production of steroidic synthons. Taking advantage of our knowledge on the cholesterol degradation pathway of M. smegmatis mc2 155 we have demonstrated that the MSMEG_6039 (kshB1) and MSMEG_5941 (kstD1) genes encoding a reductase component of the 3-ketosteroid 9α-hydroxylase (KshAB) and a ketosteroid Δ1 -dehydrogenase (KstD), respectively, are indispensable enzymes for the central metabolism of cholesterol. Therefore, we have constructed a MSMEG_6039 (kshB1) gene deletion mutant of M. smegmatis MS6039 that transforms efficiently natural sterols (e.g. cholesterol and phytosterols) into 1,4-androstadiene-3,17-dione. In addition, we have demonstrated that a double deletion mutant M. smegmatis MS6039-5941 [ΔMSMEG_6039 (ΔkshB1) and ΔMSMEG_5941 (ΔkstD1)] transforms natural sterols into 4-androstene-3,17-dione with high yields. These findings suggest that the catabolism of cholesterol in M. smegmatis mc2 155 is easy to handle and equally efficient for sterol transformation than other industrial strains, paving the way for valuating this strain as a suitable industrial cell factory to develop à la carte metabolic engineering strategies for the industrial production of pharmaceutical steroids.
Collapse
Affiliation(s)
- Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Iria Uhía
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain.,MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Esther García-Fernández
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Igor Martínez
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Esther Bahíllo
- Department of Biotechnology, Gadea Biopharma, Parque Tecnológico de León, Nicostrato Vela s/n, 24009, León, Spain
| | - Juan L de la Fuente
- Department of Biotechnology, Gadea Biopharma, Parque Tecnológico de León, Nicostrato Vela s/n, 24009, León, Spain
| | - José L Barredo
- Department of Biotechnology, Gadea Biopharma, Parque Tecnológico de León, Nicostrato Vela s/n, 24009, León, Spain
| | - Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
29
|
Zhang X, Wu D, Yang T, Xu M, Rao Z. Over-expression of Mycobacterium neoaurum 3-ketosteroid-Δ1-dehydrogenase in Corynebacterium crenatum for efficient bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
30
|
Liu Y, Cao F, Xiong H, Shen Y, Wang M. Application of 2,4-Dinitrophenylhydrazine (DNPH) in High-Throughput Screening for Microorganism Mutants Accumulating 9α-Hydroxyandrost-4-ene-3,17-dione (9α-OH-AD). PLoS One 2016; 11:e0163836. [PMID: 27706217 PMCID: PMC5051707 DOI: 10.1371/journal.pone.0163836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023] Open
Abstract
To develop a quick method for the preliminarily screening of mutant strains that can accumulate 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD), a high-throughput screening method was presented by applying the principle that 2,4-dinitrophenylhydrazine (DNPH) can react with ketones to produce precipitation. The optimal color assay conditions were the substrate androst-4-ene-3,17-dione (AD) concentration at 2.0 g/L, the ratio of AD to DNPH solution at 1:4, and the sulfuric acid and ethanol solution percentages in DNPH solution at 2% and 35%, respectively. This method was used to preliminarily screen the mutants of Rhodococcus rhodochrous DSM43269, from which the three ones obtained could produce more 9α-OH-AD. This DNPH color assay method not only broadens screening methods and increases screening efficiency in microbial mutation breeding but also establishes a good foundation for obtaining strains for industrial application.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Fei Cao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Hui Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, People's Republic of China
- * E-mail:
| |
Collapse
|
31
|
Liu Y, Shen Y, Qiao Y, Su L, Li C, Wang M. The effect of 3-ketosteroid-Δ1-dehydrogenase isoenzymes on the transformation of AD to 9α-OH-AD by Rhodococcus rhodochrous DSM43269. ACTA ACUST UNITED AC 2016; 43:1303-11. [DOI: 10.1007/s10295-016-1804-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
Abstract
Abstract
Rhodococcus rhodochrous DSM43269 is well known for its 3-ketosteroid-9α-hydroxylases. However, the function of its 3-ketosteroid-Δ1-dehydrogenases (KSDD) remains unknown. This study compared the involvement of ksdds in the strain’s androst-4-ene-3,17-dione (AD) transformation via gene deletion. The conversion was performed using AD as substrate or directly with 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD). The single deletion of ksdd1 or ksdd3 did not appear to result in the accumulation of 9α-OH-AD, whereas the single mutant △ksdd2 could preserve this compound to some extent. To further compare the role of ksdds in this strain, double mutants were constructed. All ksdd2 mutants combined with ksdd1 and/or ksdd3 resulted in the accumulation of 9α-OH-AD, among which the double mutant △ksdd2,3 behaved similarly to the single mutant △ksdd2 in this process. The mutant that lacked both ksdd1 and ksdd3 was still displayed, with no effect on the degradation of 9α-OH-AD. The triple mutant △ksdd1,2,3 was then constructed and exhibited the same capability as △ksdd1,2, accumulating more 9α-OH-AD than △ksdd2,3 and △ksdd2. The transcription of KSDD1 and KSDD2 increased, whereas that of KSDD3 seemed to exhibit no change, despite the use of the inducer AD or 9α-OH-AD. Thus, only ksdd1 and ksdd2 were involved in the transformation of AD to 9α-OH-AD. ksdd2 had the main role, ksdd1 had a minor effect on 9α-OH-AD degradation, and ksdd3 did not exhibit any action in this course.
Collapse
Affiliation(s)
- Yang Liu
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| | - Yanbing Shen
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| | - Yuqian Qiao
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| | - Liqiu Su
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| | - Can Li
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| | - Min Wang
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
| |
Collapse
|
32
|
Li Q, Ge F, Tan Y, Zhang G, Li W. Genome-Wide Transcriptome Profiling of Mycobacterium smegmatis MC² 155 Cultivated in Minimal Media Supplemented with Cholesterol, Androstenedione or Glycerol. Int J Mol Sci 2016; 17:E689. [PMID: 27164097 PMCID: PMC4881515 DOI: 10.3390/ijms17050689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/12/2016] [Accepted: 04/28/2016] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium smegmatis strain MC² 155 is an attractive model organism for the study of M. tuberculosis and other mycobacterial pathogens, as it can grow well using cholesterol as a carbon resource. However, its global transcriptomic response remains largely unrevealed. In this study, M. smegmatis MC² 155 cultivated in androstenedione, cholesterol and glycerol supplemented media were collected separately for a RNA-Sequencing study. The results showed that 6004, 6681 and 6348 genes were expressed in androstenedione, cholesterol and glycerol supplemented media, and 5891 genes were expressed in all three conditions, with 237 specially expressed in cholesterol added medium. A total of 1852 and 454 genes were significantly up-regulated by cholesterol compared with the other two supplements. Only occasional changes were observed in basic carbon and nitrogen metabolism, while almost all of the genes involved in cholesterol catabolism and mammalian cell entry (MCE) were up-regulated by cholesterol, but not by androstenedione. Eleven and 16 gene clusters were induced by cholesterol when compared with glycerol or androstenedione, respectively. This study provides a comprehensive analysis of the cholesterol responsive transcriptome of M. smegmatis. Our results indicated that cholesterol induced many more genes and increased the expression of the majority of genes involved in cholesterol degradation and MCE in M. smegmatis, while androstenedione did not have the same effect.
Collapse
Affiliation(s)
- Qun Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Fanglan Ge
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Yunya Tan
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Guangxiang Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Wei Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| |
Collapse
|
33
|
Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Sci Rep 2016; 6:21928. [PMID: 26898409 PMCID: PMC4761994 DOI: 10.1038/srep21928] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 11/12/2022] Open
Abstract
The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively.
Collapse
|
34
|
Xu XW, Gao XQ, Feng JX, Wang XD, Wei DZ. Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp. Lett Appl Microbiol 2015; 61:63-8. [PMID: 25868395 DOI: 10.1111/lam.12428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/27/2015] [Accepted: 04/04/2015] [Indexed: 01/18/2023]
Abstract
UNLABELLED One of the steroid intermediates, 4-androstene-3, 17-dione (AD), in the biotransformation of phytosterols is valuable for the production of steroid medicaments. However, its degradation during the conversion process is one of the main obstacles to obtain high yields. In this study, the effect of temperature on nucleus degradation during microbial biotransformation of phytosterol was investigated. The results indicated that microbial degradation of phytosterol followed the AD-ADD-'9-OH-ADD' pathway, and that two important reactions involved in nucleus degradation, conversions of AD to ADD and ADD to 9-OH-ADD, were inhibited at 37°C. With a change in the culture temperature from 30 to 37°C, nucleus degradation was reduced from 39·9% to 17·6%, due to inhibition of the putative KstD and Ksh. These results suggested a simple way to decrease the nucleus degradation in phytosterol biotransformation and a new perspective on the possibilities of modifying the metabolism of strains used in industrial applications. SIGNIFICANCE AND IMPACT OF THE STUDY Nucleus degradation of products is one of the main problems encountered during phytosterol biotransformation. To solve this problem, the effect of temperature on nucleus degradation was investigated in the industrial production of steroid intermediates. The results are also helpful to the genetic modification of sterol-producing strains.
Collapse
Affiliation(s)
- X W Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - X Q Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - J X Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - X D Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - D Z Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
35
|
Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum. J Ind Microbiol Biotechnol 2015; 42:507-13. [PMID: 25572208 DOI: 10.1007/s10295-014-1577-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Mycobacterium neoaurum TCCC 11028 (MNR) and M. neoaurum TCCC 11028 M3 (MNR M3) significantly differ in the ratio of androst-1,4-diene-3,17-dione (ADD) to androst-4-ene-3,17-dione (AD) produced. The large fluctuations are related to the dehydrogenation activity of 3-ketosteroid-Δ(1)-dehydrogenase (KsdD). Analysis of the primary structure of KsdD showed that the Ser-138 of KsdD-MNR changed to Leu-138 of KsdD-MNR M3 because of C413T in the ksdD gene. This phenomenon directly affected KsdD activity. The effect of the primary structure of KsdD on dehydrogenation activity was confirmed through exogenous expression. Whole-cell transformation initially revealed that KsdD-MNR showed a higher dehydrogenation activity than KsdD-MNR M3. Then, ksdD gene replacement strain was constructed by homologous recombination. The results of steroid transformation experiments showed that the ability of the MNR M3ΔksdD::ksdD-MNR strain to produce ADD was improved and it returned to the similar level of the MNR strain. This result indicated that the ADD/AD ratio of the two M. neoaurum strains was influenced by the difference in ksdD. The mechanism by which residue mutations alter enzyme activity may be connected with the crystal structure of KsdD from Rhodococcus erythropolis SQ1. As a key amino acid residue in the active center position, Ser-138 played an important role in maintaining the active center in the hydrophobic environment of KsdD. This study may serve as a basis for future studies on the structural analysis and catalytic mechanism of dehydrogenase.
Collapse
|
36
|
Venkataraman H, te Poele EM, Rosłoniec KZ, Vermeulen N, Commandeur JNM, van der Geize R, Dijkhuizen L. Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme. Appl Microbiol Biotechnol 2014; 99:4713-21. [DOI: 10.1007/s00253-014-6281-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/19/2014] [Accepted: 11/29/2014] [Indexed: 12/01/2022]
|
37
|
Yeh CH, Kuo YS, Chang CM, Liu WH, Sheu ML, Meng M. Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid and 1,4-androstadiene-3,17-dione. Microb Cell Fact 2014; 13:130. [PMID: 25201011 PMCID: PMC4176589 DOI: 10.1186/s12934-014-0130-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/23/2014] [Indexed: 11/26/2022] Open
Abstract
The gene encoding the putative reductase component (KshB) of 3-ketosteroid 9α-hydroxylase was cloned from Rhodococcus equi USA-18, a cholesterol oxidase-producing strain formerly named Arthrobacter simplex USA-18, by PCR according to consensus amino acid motifs of several bacterial KshB subunits. Deletion of the gene in R. equi USA-18 by a PCR-targeted gene disruption method resulted in a mutant strain that could accumulate up to 0.58 mg/ml 1,4-androstadiene-3,17-dione (ADD) in the culture medium when 0.2% cholesterol was used as the carbon source, indicating the involvement of the deleted enzyme in 9α-hydroxylation of steroids. In addition, this mutant also accumulated 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (Δ1,4-BNC). Because both ADD and Δ1,4-BNC are important intermediates for the synthesis of steroid drugs, this mutant derived from R. equi USA-18 may deserve further investigation for its application potential.
Collapse
|
38
|
Yao K, Xu LQ, Wang FQ, Wei DZ. Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Metab Eng 2014; 24:181-91. [DOI: 10.1016/j.ymben.2014.05.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/22/2014] [Accepted: 05/05/2014] [Indexed: 01/17/2023]
|
39
|
Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01. World J Microbiol Biotechnol 2014; 30:1947-54. [PMID: 24510385 DOI: 10.1007/s11274-014-1614-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Mycobacterium neoaurum NwIB-01 exhibits powerful ability to cleave the side chain of soybean phytosterols to accumulate 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD). The difficulty in separation of AD from ADD is one of the key bottlenecks to the microbial transformation of phytosterols in the industry. To enhance ADD quantity in products, 3-ketosteroid Δ(1)-dehydrogenase genes (kstD M and kstD(A)) were obtained from M. neoaurum NwIB-01 and Arthrobacter simplex respectively. Using replicating vector pMV261, kstD(M) and kstD(A) were overexpressed in M. neoaurum NwIB-01. For foreign gene stable expression, the integration vector pMV306 was used for kstD M/kstD(A) overexpression and the relevant sequences of promoter and kanamycin antibiotic resistance gene sequences were amplified by PCR to verify plasmid integrity. The resultant plasmid and mutant strain were verified and the kstD augmentation mutants were good ADD-producing strains. The ADD producing capacity of NwIB-04 and NwIB-05 was 0.1401 and 0.1740 g/l (cultured in shake bottles with 0.4 g/l phytosterols), and the molar ratio of ADD in products was 98.34 and 98.60%, respectively. This study on the manipulation of the main kstDM gene in Mycobacterium sp. provides a feasible way to achieve excellent phytosterol-transformation strains with high product purity.
Collapse
|
40
|
Bragin EY, Shtratnikova VY, Dovbnya DV, Schelkunov MI, Pekov YA, Malakho SG, Egorova OV, Ivashina TV, Sokolov SL, Ashapkin VV, Donova MV. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol 2013; 138:41-53. [PMID: 23474435 DOI: 10.1016/j.jsbmb.2013.02.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/28/2013] [Accepted: 02/24/2013] [Indexed: 11/27/2022]
Abstract
A comparative genome analysis of Mycobacterium spp. VKM Ac-1815D, 1816D and 1817D strains used for efficient production of key steroid intermediates (androst-4-ene-3,17-dione, AD, androsta-1,4-diene-3,17-dione, ADD, 9α-hydroxy androst-4-ene-3,17-dione, 9-OH-AD) from phytosterol has been carried out by deep sequencing. The assembled contig sequences were analyzed for the presence putative genes of steroid catabolism pathways. Since 3-ketosteroid-9α-hydroxylases (KSH) and 3-ketosteroid-Δ(1)-dehydrogenase (Δ(1) KSTD) play key role in steroid core oxidation, special attention was paid to the genes encoding these enzymes. At least three genes of Δ(1) KSTD (kstD), five genes of KSH subunit A (kshA), and one gene of KSH subunit B of 3-ketosteroid-9α-hydroxylases (kshB) have been found in Mycobacterium sp. VKM Ac-1817D. Strains of Mycobacterium spp. VKM Ac-1815D and 1816D were found to possess at least one kstD, one kshB and two kshA genes. The assembled genome sequence of Mycobacterium sp. VKM Ac-1817D differs from those of 1815D and 1816D strains, whereas these last two are nearly identical, differing by 13 single nucleotide substitutions (SNPs). One of these SNPs is located in the coding region of a kstD gene and corresponds to an amino acid substitution Lys (135) in 1816D for Ser (135) in 1815D. The findings may be useful for targeted genetic engineering of the biocatalysts for biotechnological application.
Collapse
Key Words
- 2,3-dehydroxyphenyl dioxygenase
- 2-enoyl acyl-CoA hydratase
- 2-hydroxypenta-2,4-dienoate hydratase
- 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione 4,5-dioxygenase
- 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione monooxygenase
- 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione monooxygenase subunit
- 3-ketosteroid-9α-hydroxylase
- 3-ketosteroid-Δ(1)-dehydrogenase
- 3β-hydroxysteroid-dehydrogenase
- 4,5:9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-diene-4-oate hydrolase
- 4-hydroxy-2-oxovalerate aldolase
- 9-OH-AD
- 9α-hydroxy androst-4-ene-3,17-dione
- AD
- ADD
- Androst-1,4-diene-3,17-dione
- Androst-4-ene-3,17-dione
- BWA
- Broadband-Wheeler Aligner
- CTAB
- ChoX
- ChoX(D,E)
- EchA19
- FAD
- FadA5
- FadD17
- FadD19
- FadE26
- FadE27
- FadE28
- Genome sequencing
- HSD
- HTH-type transcriptional repressor
- HsaA
- HsaAB
- HsaB
- HsaC
- HsaD
- HsaE
- HsaF
- HsaG
- Hsd4A
- Hsd4B
- KSH
- KshA
- KshB
- KstR
- KstR2
- Ltp2
- Ltp3
- Ltp4
- Mycobacterium
- ORFs
- PWM
- Phytosterol
- SNP
- Steroid bioconversion
- TesB
- YrbE4A
- YrbE4B
- acetaldehyde dehydrogenase
- acetyl-CoA acetyltransferase
- acyl-CoA dehydrogenase
- acyl-CoA synthetase
- acyl-CoA thioesterase II
- androst-4-ene-3,17-dione
- androsta-1,4-diene-3,17-dione
- base pair
- bp
- cetyl trimethyl ammonium bromide
- cholesterol oxidase
- enoyl-CoA hydratase
- flavin adenine dinucleotide
- hydroxysteroid dehydrogenase
- integral membrane protein
- lipid transfer protein 4 (keto acyl-CoA thiolase)
- lipid-transfer protein 2
- lipid-transfer protein 3 (acetyl-CoA acetyltransferase)
- open reading frames
- position weight matrix
- single nucleotide substitution
- subunit A of 3-ketosteroid-9α-hydroxylase
- subunit B of 3-ketosteroid-9α-hydroxylases
- Δ(1) KSTD
Collapse
Affiliation(s)
- E Yu Bragin
- Center of Innovations and Technologies "Biological Active Compounds and Their Applications", Russian Academy of Sciences, Moscow 119991, Russian Federation; G.K.Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rohman A, van Oosterwijk N, Thunnissen AMWH, Dijkstra BW. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism. J Biol Chem 2013; 288:35559-68. [PMID: 24165124 DOI: 10.1074/jbc.m113.522771] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
3-Ketosteroid Δ(1)-dehydrogenases are FAD-dependent enzymes that catalyze the 1,2-desaturation of 3-ketosteroid substrates to initiate degradation of the steroid nucleus. Here we report the 2.0 Å resolution crystal structure of the 56-kDa enzyme from Rhodococcus erythropolis SQ1 (Δ(1)-KSTD1). The enzyme contains two domains: an FAD-binding domain and a catalytic domain, between which the active site is situated as evidenced by the 2.3 Å resolution structure of Δ(1)-KSTD1 in complex with the reaction product 1,4-androstadiene-3,17-dione. The active site contains four key residues: Tyr(119), Tyr(318), Tyr(487), and Gly(491). Modeling of the substrate 4-androstene-3,17-dione at the position of the product revealed its interactions with these residues and the FAD. The C1 and C2 atoms of the substrate are at reaction distance to the N5 atom of the isoalloxazine ring of FAD and the hydroxyl group of Tyr(318), respectively, whereas the C3 carbonyl group is at hydrogen bonding distance from the hydroxyl group of Tyr(487) and the backbone amide of Gly(491). Site-directed mutagenesis of the tyrosines to phenylalanines confirmed their importance for catalysis. The structural features and the kinetic properties of the mutants suggest a catalytic mechanism in which Tyr(487) and Gly(491) work in tandem to promote keto-enol tautomerization and increase the acidity of the C2 hydrogen atoms of the substrate. With assistance of Tyr(119), the general base Tyr(318) abstracts the axial β-hydrogen from C2 as a proton, whereas the FAD accepts the axial α-hydrogen from the C1 atom of the substrate as a hydride ion.
Collapse
Affiliation(s)
- Ali Rohman
- From the Department of Chemistry, Faculty of Sciences and Technology and
| | | | | | | |
Collapse
|
42
|
Zhang W, Shao M, Rao Z, Xu M, Zhang X, Yang T, Li H, Xu Z. Bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum JC-12. J Steroid Biochem Mol Biol 2013; 135:36-42. [PMID: 23298646 DOI: 10.1016/j.jsbmb.2012.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
The enzyme 3-ketosteroid-Δ(1)-dehydrogenase (KSDD), involved in steroid metabolism, catalyzes the transformation of 4-androstene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD) specifically. Its coding gene was obtained from Mycobacterium neoaurum JC-12 and expressed on the plasmid pMA5 in Bacillus subtilis 168. The successfully expressed KSDD was analyzed by native-PAGE. The activities of the recombinant enzyme in B. subtilis were 1.75 U/mg, which was about 5-fold that of the wild type in M. neoaurum. When using the whole-cells as catalysts, the products were analyzed by tin-layer chromatography and high-performance liquid chromatography. The recombinant B. subtilis catalyzed the biotransformation of AD to ADD in a percent conversion of 65.7% and showed about 18 folds higher than M. neoaurum JC-12. The time required for transformation of AD to ADD was about 10h by the recombinant B. subtilis, much shorter than that of the wild-type strain and other reported strains. Thus, the efficiency of ADD production could be improved immensely. For industrial applications, the recombinant B. subtilis containing KSDD provides a new pathway of producing steroid medicines.
Collapse
Affiliation(s)
- Wenqing Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microbiology and Metabolic Engineering, School of Biotechnology, Jiangnan University, Jiangsu Province, Wuxi 214122, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Swizdor A, Panek A, Milecka-Tronina N, Kołek T. Biotransformations utilizing β-oxidation cycle reactions in the synthesis of natural compounds and medicines. Int J Mol Sci 2012; 13:16514-43. [PMID: 23443116 PMCID: PMC3546705 DOI: 10.3390/ijms131216514] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 12/28/2022] Open
Abstract
β-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the β-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via β-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described.
Collapse
Affiliation(s)
- Alina Swizdor
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| | | | | | | |
Collapse
|
44
|
Fernández de las Heras L, van der Geize R, Drzyzga O, Perera J, María Navarro Llorens J. Molecular characterization of three 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4. J Steroid Biochem Mol Biol 2012; 132:271-81. [PMID: 22771584 DOI: 10.1016/j.jsbmb.2012.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/11/2012] [Accepted: 06/24/2012] [Indexed: 12/16/2022]
Abstract
Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Δ(1)-dehydrogenases (KstDs) in the genome of R. ruber strain Chol-4. The genome of this strain does not contain any homologues of a 3-keto-5α-steroid-Δ(4)-dehydrogenase (Kst4d or TesI) that appears in the genomes of Rhodococcus erythropolis SQ1 or Comamonas testosteroni. Growth experiments with kstD2 mutants, either a kstD2 single mutant, kstD2 double mutants in combination with kstD1 or kstD3, or the triple kstD1,2,3 mutant, proved that KstD2 is involved in the transformation of 4-androstene-3,17-dione (AD) to 1,4-androstadiene-3,17-dione (ADD) and in the conversion of 9α-hydroxy-4-androstene-3,17-dione (9OHAD) to 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD). kstD2,3 and kstD1,2,3 R. ruber mutants (both lacking KstD2 and KstD3) did not grow in minimal medium with cholesterol as the only carbon source, thus demonstrating the involvement of KstD2 and KstD3 in cholesterol degradation. In contrast, mutation of kstD1 does not alter the bacterial growth on the steroids tested in this study and therefore, the role of this protein still remains unclear. The absence of a functional KstD2 in R. ruber mutants provoked in all cases an accumulation of 9OHAD, as a branch product probably formed by the action of a 3-ketosteroid-9α-hydroxylase (KshAB) on the AD molecule. Therefore, KstD2 is a key enzyme in the AD catabolism pathway of R. ruber strain Chol-4 while KstD3 is involved in cholesterol catabolism.
Collapse
|
45
|
Donova MV, Egorova OV. Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 2012; 94:1423-47. [PMID: 22562163 DOI: 10.1007/s00253-012-4078-0] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 12/14/2022]
Abstract
Studies of steroid modifications catalyzed by microbial whole cells represent a well-established research area in white biotechnology. Still, advances over the last decade in genetic and metabolic engineering, whole-cell biocatalysis in non-conventional media, and process monitoring raised research in this field to a new level. This review summarizes the data on microbial steroid conversion obtained since 2003. The key reactions of structural steroid functionalization by microorganisms are highlighted including sterol side-chain degradation, hydroxylation at various positions of the steroid core, and redox reactions. We also describe methods for enhancement of bioprocess productivity, selectivity of target reactions, and application of microbial transformations for production of valuable pharmaceutical ingredients and precursors. Challenges and prospects of whole-cell biocatalysis applications in steroid industry are discussed.
Collapse
Affiliation(s)
- Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow Region 142290, Russia.
| | | |
Collapse
|
46
|
Rohman A, van Oosterwijk N, Dijkstra BW. Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:551-6. [PMID: 22691786 PMCID: PMC3374511 DOI: 10.1107/s1744309112011025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/13/2012] [Indexed: 11/10/2022]
Abstract
3-Ketosteroid Δ(1)-dehydrogenase plays a crucial role in the early steps of steroid degradation by introducing a double bond between the C1 and C2 atoms of the A-ring of its 3-ketosteroid substrates. The 3-ketosteroid Δ(1)-dehydrogenase from Rhodococcus erythropolis SQ1, a 56 kDa flavoprotein, was crystallized using the sitting-drop vapour-diffusion method at room temperature. The crystals grew in various buffers over a wide pH range (from pH 5.5 to 10.5), but the best crystallization condition consisted of 2%(v/v) PEG 400, 0.1 M HEPES pH 7.5, 2.0 M ammonium sulfate. A native crystal diffracted X-rays to 2.0 Å resolution. It belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 107.4, b = 131.6, c = 363.2 Å, and contained eight molecules in the asymmetric unit. The initial structure of the enzyme was solved using multi-wavelength anomalous dispersion (MAD) data collected from a Pt-derivatized crystal.
Collapse
Affiliation(s)
- Ali Rohman
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Department of Chemistry, Faculty of Sciences and Technology, Airlangga University, Kampus C Unair, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Institute of Tropical Disease, Airlangga University, Kampus C Unair, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Niels van Oosterwijk
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bauke W. Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
47
|
Uhía I, Galán B, Kendall SL, Stoker NG, García JL. Cholesterol metabolism in Mycobacterium smegmatis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:168-182. [PMID: 23757270 DOI: 10.1111/j.1758-2229.2011.00314.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The metabolism of cholesterol in Mycobacterium smegmatis mc(2) 155 has been investigated by using a microarray approach. The transcriptome of M. smegmatis growing in cholesterol was compared with that of cells growing in glycerol as the sole carbon and energy sources during the middle exponential phase. Microarray analyses revealed that only 89 genes were upregulated at least threefold during growth on cholesterol compared with growth on glycerol. The upregulated genes are scattered throughout the 7 Mb M. smegmatis genome and likely reflect a general physiological adaptation of the bacterium to grow on this highly hydrophobic polycyclic compound. Nevertheless, 39 of the catabolic genes are organized in three specific clusters. These results not only supported the role of KstR and KstR2 as auto-regulated repressors of cholesterol catabolism, and revealed some metabolic similarities and differences on actinobacteria, but more important, they have facilitated the identification of new catabolic genes, opening a research scenario that might provide important clues on the role of cholesterol in tuberculosis infection.
Collapse
Affiliation(s)
- Iria Uhía
- Departament of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain Department of Pathology and Infectious Diseases, The Royal Veterinary College, Centre for Emerging, Endemic and Exotic Disease, Hawkshead Lane, Hertfordshire AL9 7TA, UK
| | | | | | | | | |
Collapse
|
48
|
Horinouchi M, Hayashi T, Kudo T. Steroid degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 2012; 129:4-14. [PMID: 21056662 DOI: 10.1016/j.jsbmb.2010.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/22/2010] [Accepted: 10/30/2010] [Indexed: 11/22/2022]
Abstract
Steroid degradation by Comamonas testosteroni and Nocardia restrictus have been intensively studied for the purpose of obtaining materials for steroid drug synthesis. C. testosteroni degrades side chains and converts single/double bonds of certain steroid compounds to produce androsta-1,4-diene 3,17-dione or the derivative. Following 9α-hydroxylation leads to aromatization of the A-ring accompanied by cleavage of the B-ring, and aromatized A-ring is hydroxylated at C-4 position, cleaved at Δ4 by meta-cleavage, and divided into 2-hydroxyhexa-2,4-dienoic acid (A-ring) and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (B,C,D-ring) by hydrolysis. Reactions and the genes involved in the cleavage and the following degradation of the A-ring are similar to those for bacterial biphenyl degradation, and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid degradation is suggested to be mainly β-oxidation. Genes involved in A-ring aromatization and degradation form a gene cluster, and the genes involved in β-oxidation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid also comprise a large cluster of more than 10 genes. The DNA region between these two main steroid degradation gene clusters contain 3α-hydroxysteroid dehydrogenase gene, Δ5,3-ketosteroid isomerase gene, genes for inversion of an α-oriented-hydroxyl group to a β-oriented-hydroxyl group at C-12 position of cholic acid, and genes possibly involved in the degradation of a side chain at C-17 position of cholic acid, indicating this DNA region of more than 100kb to be a steroid degradation gene hot spot of C. testosteroni. Article from a special issue on steroids and microorganisms.
Collapse
|
49
|
García JL, Uhía I, Galán B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol 2012; 5:679-99. [PMID: 22309478 PMCID: PMC3815891 DOI: 10.1111/j.1751-7915.2012.00331.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.
Collapse
Affiliation(s)
- J L García
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, C/ Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | | | |
Collapse
|
50
|
Characterization and application of fusidane antibiotic biosynethsis enzyme 3-ketosteroid-∆1-dehydrogenase in steroid transformation. Appl Microbiol Biotechnol 2012; 96:133-42. [DOI: 10.1007/s00253-011-3855-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/13/2011] [Accepted: 12/20/2011] [Indexed: 11/26/2022]
|