1
|
Sonbol S, Siam R. Abundance of integrons in halophilic bacteria. Can J Microbiol 2022; 68:435-445. [PMID: 35239425 DOI: 10.1139/cjm-2021-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrons are genetic platforms used for expressing open reading frames (ORFs) arranged in gene cassettes. Excision and integration of gene cassettes is controlled by their associated integron integrase (IntI). Using IntegronFinder software, we analyzed all complete halophilic genomes available in the HaloDom database, along with selected partial halophilic genomes. We identified 18 new complete bacterial integrons and 46 clusters of attC sites lacking a neighboring integron-integrase (CALINs). Different classes of insertion sequences (ISs) were also identified within and nearby integrons and CALINs; with the abundance of IS1182 elements and different ISs that can presumably mobilize adjacent genomic structures. Different promoters for intI genes (PintI) showed nearby binding sites for arginine repressor (ArgR), raising the possibility that IntIs expression and recombination activity are regulated by these proteins. Our findings reveal the existence of new integrons in halophilic bacteria with possible adaptive roles.
Collapse
Affiliation(s)
- Sarah Sonbol
- The American University in Cairo School of Sciences and Engineering, 110156, Biotechnology, New Cairo, Egypt, 11835;
| | - Rania Siam
- The American University in Cairo School of Sciences and Engineering, 110156, Biology department and Biotechnology graduate program, New Cairo, Cairo, Egypt.,University of Medicine and Health Sciences, Basseterre, St. Kitts, West Indies, Saint Kitts and Nevis;
| |
Collapse
|
2
|
Wilkowska K, Mruk I, Furmanek-Blaszk B, Sektas M. Low-level expression of the Type II restriction-modification system confers potent bacteriophage resistance in Escherichia coli. DNA Res 2021; 27:5804985. [PMID: 32167561 PMCID: PMC7315355 DOI: 10.1093/dnares/dsaa003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/09/2020] [Indexed: 01/21/2023] Open
Abstract
Restriction–modification systems (R–M) are one of the antiviral defense tools used by bacteria, and those of the Type II family are composed of a restriction endonuclease (REase) and a DNA methyltransferase (MTase). Most entering DNA molecules are usually cleaved by the REase before they can be methylated by MTase, although the observed level of fragmented DNA may vary significantly. Using a model EcoRI R–M system, we report that the balance between DNA methylation and cleavage may be severely affected by transcriptional signals coming from outside the R–M operon. By modulating the activity of the promoter, we obtained a broad range of restriction phenotypes for the EcoRI R–M system that differed by up to 4 orders of magnitude in our biological assays. Surprisingly, we found that high expression levels of the R–M proteins were associated with reduced restriction of invading bacteriophage DNA. Our results suggested that the regulatory balance of cleavage and methylation was highly sensitive to fluctuations in transcriptional signals both up- and downstream of the R–M operon. Our data provided further insights into Type II R–M system maintenance and the potential conflict within the host bacterium.
Collapse
Affiliation(s)
- Karolina Wilkowska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Beata Furmanek-Blaszk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Marian Sektas
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Charlier D, Nguyen Le Minh P, Roovers M. Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis. Amino Acids 2018; 50:1647-1661. [PMID: 30238253 PMCID: PMC6245113 DOI: 10.1007/s00726-018-2654-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
In all organisms, carbamoylphosphate (CP) is a precursor common to the synthesis of arginine and pyrimidines. In Escherichia coli and most other Gram-negative bacteria, CP is produced by a single enzyme, carbamoylphosphate synthase (CPSase), encoded by the carAB operon. This particular situation poses a question of basic physiological interest: what are the metabolic controls coordinating the synthesis and distribution of this high-energy substance in view of the needs of both pathways? The study of the mechanisms has revealed unexpected moonlighting gene regulatory activities of enzymes and functional links between mechanisms as diverse as gene regulation and site-specific DNA recombination. At the level of enzyme production, various regulatory mechanisms were found to cooperate in a particularly intricate transcriptional control of a pair of tandem promoters. Transcription initiation is modulated by an interplay of several allosteric DNA-binding transcription factors using effector molecules from three different pathways (arginine, pyrimidines, purines), nucleoid-associated factors (NAPs), trigger enzymes (enzymes with a second unlinked gene regulatory function), DNA remodeling (bending and wrapping), UTP-dependent reiterative transcription initiation, and stringent control by the alarmone ppGpp. At the enzyme level, CPSase activity is tightly controlled by allosteric effectors originating from different pathways: an inhibitor (UMP) and two activators (ornithine and IMP) that antagonize the inhibitory effect of UMP. Furthermore, it is worth noticing that all reaction intermediates in the production of CP are extremely reactive and unstable, and protected by tunneling through a 96 Å long internal channel.
Collapse
Affiliation(s)
- Daniel Charlier
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Phu Nguyen Le Minh
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Martine Roovers
- LABIRIS Institut de Recherches, Av. Emile Gryson 1, 1070, Brussels, Belgium
| |
Collapse
|
4
|
Paul S, Summers D. ArgR and PepA, accessory proteins for XerCD-mediated resolution of ColE1 dimers, are also required for stable maintenance of the P1 prophage. Plasmid 2004; 52:63-8. [PMID: 15212893 DOI: 10.1016/j.plasmid.2004.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Indexed: 10/26/2022]
Abstract
Dimers of low copy number plasmids must be resolved to monomers to prevent interference with active partition. For the P1 prophage this is achieved by the Cre site-specific recombinase acting at lox. Multimerisation of multicopy plasmids threatens stability via copy number depression, and multimers of ColE1 are resolved by XerCD-mediated recombination at cer. Xer-cer is constrained to multimer resolution by accessory proteins ArgR and PepA. Recently, it has been shown that ArgR and PepA influence Cre-mediated recombination at a cer-lox hybrid site in vitro, defining the structure of the synaptic complex. We show here that both ArgR and PepA are required for stable maintenance of the P1 prophage. It is extremely difficult to establish P1 in a strain lacking PepA and the prophage was lost rapidly once selection was removed. ArgR plays a less crucial role although its absence significantly increased prophage loss. The effect of the accessory proteins is seen only at physiological concentrations of Cre; when the recombinase is expressed from a multicopy plasmid, the prophage is unstable even in the presence of ArgR and PepA. We propose that ArgR and PepA are involved in Cre-lox recombination in vivo, probably by constraining the system to resolution of prophage dimers.
Collapse
Affiliation(s)
- Sunirmal Paul
- Department of Genetics, Cambridge University, Downing Street, Cambridge CB2 3EH, UK
| | | |
Collapse
|
5
|
Chatwin HM, Summers DK. Monomer-dimer control of the ColE1 P(cer) promoter. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3071-81. [PMID: 11700357 DOI: 10.1099/00221287-147-11-3071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
XerCD-mediated recombination at cer converts multimers of plasmid ColE1 to monomers, maximizing the number of independently segregating molecules and minimizing the frequency of plasmid loss. In addition to XerCD, recombination requires the accessory factors ArgR and PepA. The promoter P(cer), located centrally within cer, is also required for stable plasmid maintenance. P(cer) is active in plasmid multimers and directs transcription of a short RNA, Rcd, which appears to inhibit cell division. It has been proposed that Rcd is part of a checkpoint which ensures that multimer resolution is complete before the cell divides. This study has shown that ArgR does not act as a transcriptional repressor of P(cer) in plasmid monomers. P(cer) is unusual in that the -35 and -10 hexamers are separated by only 15 bp and this study has demonstrated that increasing this to a more conventional spacing results in elevated activity. An increase to 17 bp resulted in a 10- to 20-fold increase in activity, while smaller effects were seen when the spacer was increased to 16 bp or 18 bp. These observations are consistent with the hypothesis that P(cer) activation involves realignment of the -35 and -10 sequences within a recombinational synaptic complex. This predicts that a 17 bp spacer promoter derivative should be down-regulated by plasmid multimerization, and this is confirmed experimentally.
Collapse
Affiliation(s)
- H M Chatwin
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | | |
Collapse
|
6
|
Makarova KS, Mironov AA, Gelfand MS. Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biol 2001; 2:RESEARCH0013. [PMID: 11305941 PMCID: PMC31482 DOI: 10.1186/gb-2001-2-4-research0013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Revised: 12/14/2000] [Accepted: 02/06/2001] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The arginine repressor ArgR/AhrC is a transcription factor universally conserved in bacterial genomes. Its recognition signal (the ARG box), a weak palindrome, is also conserved between genomes, despite a very low degree of similarity between individual sites within a genome. Thus, the arginine repressor is different from two other universal transcription factors - HrcA, whose recognition signal is very strongly conserved both within and between genomes, and LexA/DinR, whose signal is strongly conserved within, but not between, genomes. The arginine regulon is well studied in Escherichia coli and to some extent in Bacillus subtilis and some other genomes. Here, we apply the comparative genomic approach to the prediction of the ArgR-binding sites in all completely sequenced bacterial genomes. RESULTS Orthologs of ArgR/AhrC were identified in the complete genomes of E. coli, Haemophilus influenzae, Vibrio choleras, B. subtilis, Mycobacterium tuberculosis, Thermotoga maritima, Chlamydia pneumoniae and Deinococcus radiodurans. Candidate arginine repressor binding sites were identified upstream of arginine transport and metabolism genes. CONCLUSIONS We found that the ArgR/AhrC recognition signal is conserved in all genomes that contain genes encoding orthologous transcription factors of this family. All genomes studied except M. tuberculosis contain ABC transport cassettes (related to the Art system of E. coli) belonging to the candidate arginine regulons.
Collapse
Affiliation(s)
- Kira S Makarova
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
7
|
Abstract
Bacterial plasmids are exemplary subjects for study, being conveniently isolated, dissected, reassembled, and introduced into various hosts. Their versatility and power make them eminently worthy of our attention. In what follows I consider some consequences of simply doubling the dosage of particular plasmid genes or of forming a plasmid dimer. These consequences can be perverse, paradoxical, or informative. They bear on questions of cell viability, copy number limitation, clonal homogeneity, check-point control, and the recovery of mutants. They have relevance to biotechnology, evolution and medicine. In reviewing these effects, my motivation is largely to share my enthusiasm for certain kinds of biological narratives, the nature of which is best left for the reader to discern.
Collapse
Affiliation(s)
- M B Yarmolinsky
- Laboratory of Biochemistry, National Cancer Institute, N. I. H., 37 Convent Drive, Bethesda, MD 20892-4255, USA.
| |
Collapse
|
8
|
Charlier D, Kholti A, Huysveld N, Gigot D, Maes D, Thia-Toong TL, Glansdorff N. Mutational analysis of Escherichia coli PepA, a multifunctional DNA-binding aminopeptidase. J Mol Biol 2000; 302:411-26. [PMID: 10970742 DOI: 10.1006/jmbi.2000.4067] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli PepA is a hexameric aminopeptidase that is also endowed with a DNA-binding activity that functions in transcription control and plasmid dimer resolution. To gain further insight into the functioning of PepA, mutants were selected on the basis of reduced repressibility of a genomic carA-lacZ fusion and studied for the various cellular processes requiring PepA, i.e. repression of the carAB operon, autoregulation, resolution of ColE1 multimers, and peptide proteolysis. The methylation status of the carAB control region was analysed in several pepA mutants and purified proteins were assayed in vitro for car operator DNA binding. This study provides a critical test of predictions advanced on the basis of the structural analysis of PepA and demonstrates the importance for DNA binding of several secondary structural elements in the N-terminal domain and near the very C terminus. By analysis of single amino acid substitutions, we could distinguish the mode of PepA action in car regulation from its action in plasmid resolution. We demonstrate that mere binding of PepA to the car control region is not sufficient to explain its role in pyrimidine-specific regulation; protein-protein interactions appear to play an important role in transcriptional repression. The multifunctional character of PepA and of an increasing number of transcriptional regulators that combine catalytic and regulatory properties, of which several participate in the metabolism of arginine and of the pyrimidines, suggests that enzymes and DNA (RNA) binding proteins fulfilling an essential primeval function may have been recruited in evolution to fulfil an additional regulatory task.
Collapse
MESH Headings
- Adenine/metabolism
- Aminopeptidases/chemistry
- Aminopeptidases/genetics
- Aminopeptidases/isolation & purification
- Aminopeptidases/metabolism
- Bacterial Proteins
- Catalysis
- Chromosomes, Bacterial/genetics
- DNA Methylation
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Dioxygenases
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Feedback
- Gene Expression Regulation, Bacterial
- Genes, Reporter/genetics
- Glutamyl Aminopeptidase
- Leucine/metabolism
- Models, Molecular
- Multienzyme Complexes/chemistry
- Multienzyme Complexes/genetics
- Multienzyme Complexes/isolation & purification
- Multienzyme Complexes/metabolism
- Mutation/genetics
- Nucleic Acid Conformation
- Operator Regions, Genetic/genetics
- Oxygenases/genetics
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Structure, Secondary
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/isolation & purification
- Repressor Proteins/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- D Charlier
- Microbiologie en Erfelijkheidsleer, Vrije Universiteit Brussel and Microbiology Department of the Flanders Interuniversity Institute for Biotechnology, 1-av. E. Gryson, Brussels, B-1070, Belgium.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Multicopy plasmids of Escherichia coli are distributed randomly at cell division and, as long as copy number remains high, plasmid-free cells arise only rarely. Copy number variation is minimized by plasmid-encoded control circuits, and the limited data available suggest that deviations are corrected efficiently under most circumstances. However, plasmid multimers confuse control circuits, leading to copy number depression. To make matters worse, multimers out-replicate monomers and accumulate clonally within the culture, creating a subpopulation of cells with a significantly increased rate of plasmid loss. Multimers of natural multicopy plasmids, such as ColE1, are resolved to monomers by a site-specific recombination system (Xer-cer) whose activity is limited to intramolecular recombination. Recombination requires the heterodimeric XerCD recombinase plus two accessory proteins (ArgR and PepA), which activate recombination and prevent intermolecular events. Evidence is accumulating that Xer-cer recombination is relatively slow, and there is a risk that cells might divide before multimer resolution is complete. The Rcd transcript encoded within cer may solve this problem by preventing the division of multimer-containing cells. Working in concert, the triumvirate of copy number control, multimer resolution and cell division control achieve an extremely high fidelity of plasmid maintenance.
Collapse
Affiliation(s)
- D Summers
- Department of Genetics, Cambridge, UK.
| |
Collapse
|
10
|
Abstract
Dimers of plasmid ColE1 are converted to monomers by site-specific recombination, a process that requires 240 bp of DNA (cer) and four host-encoded proteins (XerC, XerD, ArgR and PepA). Here, we propose structures for nucleoprotein complexes involved in cer-Xer recombination based upon existing knowledge of the structures of component proteins and computational analyses of protein structure and DNA curvature. We propose that, in the nucleoprotein complex at a single cer site, a PepA hexamer acts as an adaptor, connecting the heterodimeric recombinase (XerCD) to an ArgR hexamer. This provides a protein core around which the cer site wraps, its exact path being defined by strong sequence-specific interactions with ArgR and XerCD, weak interactions with PepA and sequence-dependent flexibility of cer. The initial association of single-site complexes (pairing) is proposed to occur via an ArgR-PepA interaction. Pairing between sites in a plasmid dimer is stabilized by DNA supercoiling and is followed by a structural isomerization to form a recombination-proficient synaptic complex. We propose that paired structures formed between sites in trans are too short-lived to permit synaptic complex formation. There is thus an energetic barrier to inappropriate recombination reactions. Our proposals are consistent with a wide range of experimental observations.
Collapse
Affiliation(s)
- T C Hodgman
- Department of Genetics, University of Cambridge, UK
| | | | | |
Collapse
|
11
|
Alén C, Sherratt DJ, Colloms SD. Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination. EMBO J 1997; 16:5188-97. [PMID: 9311979 PMCID: PMC1170151 DOI: 10.1093/emboj/16.17.5188] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Xer site-specific recombination at ColE1 cer converts plasmid multimers into monomers, thus ensuring the heritable stability of ColE1. Two related recombinase proteins, XerC and XerD, catalyse the strand exchange reaction at a 30 bp recombination core site. In addition, two accessory proteins, PepA and ArgR, are required for recombination at cer. These two accessory proteins are thought to act at 180 bp of accessory sequences adjacent to the cer recombination core to ensure that recombination only occurs between directly repeated sites on the same molecule. Here, we demonstrate that PepA and ArgR interact directly with cer, forming a complex in which the accessory sequences of two cer sites are interwrapped approximately three times in a right-handed fashion. We present a model for this synaptic complex, and propose that strand exchange can only occur after the formation of this complex.
Collapse
Affiliation(s)
- C Alén
- Microbiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|