1
|
Kaleli A, Ozbayram EG, Zengin Z, Akcaalan R. Investigation of coastal benthic diatom communities using the rbcL marker with nanopore sequencing in Urban Marine environments. JOURNAL OF PHYCOLOGY 2025. [PMID: 40448515 DOI: 10.1111/jpy.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025]
Abstract
Marine benthic diatoms are one of the most important groups in coastal primary production and photosynthesis, and the number of molecular studies revealing diatom biodiversity is increasing. In this study, we investigated diatom composition using environmental DNA metabarcoding based on the rbcL gene using MinION (Oxford Nanopore) at 11 sampling sites along the Istanbul coasts of the Sea of Marmara in 2023. We identified 261 species belonging to 121 genera, and among them, Nitzschia (19.6%; 24 species) and Navicula (17.1%; 21 species) were the most abundant genera, followed by Licmophora (6.9%) and Nanofrustulum (6.1%). At the species level, the highest number of reads was assigned to Nitzschia inconspicua, Navicula perminuta, and Nanofrustulum shiloi. Redundancy analysis (RDA) showed that pH was the major driving factor related to taxon abundance at the genera and species levels. Metabarcoding results revealed the presence of new taxa for the Sea of Marmara such as Minutocellus, Pierrecomperia, Perideraion, Rhoikoneis, Sternimirus, and Synedropsis, which had not been formerly detected by traditional monitoring methods. Since there are few studies on marine diatom monitoring using rbcL gene markers, our results could support the use of this marker to reveal the diversity of marine benthic diatoms from urban coasts.
Collapse
Affiliation(s)
- Aydın Kaleli
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Türkiye
| | - Emine Gozde Ozbayram
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Türkiye
| | - Zuhal Zengin
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Türkiye
| | - Reyhan Akcaalan
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
2
|
Pinder MIM, Andersson B, Blossom H, Svensson M, Rengefors K, Töpel M. Bamboozle: A Bioinformatic Tool for Identification and Quantification of Intraspecific Barcodes. Mol Ecol Resour 2025; 25:e14067. [PMID: 39903046 PMCID: PMC11969633 DOI: 10.1111/1755-0998.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/03/2024] [Indexed: 02/06/2025]
Abstract
Evolutionary changes in populations of microbes, such as microalgae, cannot be traced using conventional metabarcoding loci as they lack intraspecific resolution. Consequently, selection and competition processes among strains of the same species cannot be resolved without elaborate isolation, culturing, and genotyping efforts. Bamboozle, a new bioinformatic tool introduced here, scans the entire genome of a species and identifies allele-rich barcodes that enable direct identification of different genetic strains from a population using amplicon sequencing of a single DNA sample. We demonstrate its usefulness by identifying hypervariable barcoding loci (< 500 bp) from genomic data in two microalgal species, the diploid diatom Skeletonema marinoi and the haploid chlorophyte Chlamydomonas reinhardtii. Across the two genomes, four and twenty-two loci, respectively, were identified that could in silico resolve all analysed genotypes. All of the identified loci are within protein-coding genes with various metabolic functions. Single nucleotide polymorphisms (SNPs) provided the most reliable genetic markers, and among 54 strains of S. marinoi, three 500 bp loci contained, on average, 46 SNPs, 103 strain-specific alleles, and displayed 100% heterozygosity. This high level of heterozygosity was identified as a novel opportunity to improve strain quantification and detect false positive artefacts during denoising of amplicon sequences. Finally, we illustrate how metabarcoding of a single genetic locus can be used to track abundances of S. marinoi strains in an artificial selection experiment. As future genomic datasets become available and DNA sequencing technologies develop, Bamboozle has flexible user settings enabling optimal barcodes to be designed for other species and applications.
Collapse
Affiliation(s)
| | - Björn Andersson
- Department of Marine SciencesUniversity of GothenburgGöteborgSweden
- NIRAS Sweden ABGöteborgSweden
| | - Hannah Blossom
- Department of BiologyLund UniversityLundSweden
- Bigelow Laboratory for Ocean SciencesBoothbayMaineUSA
| | | | | | - Mats Töpel
- Department of Marine SciencesUniversity of GothenburgGöteborgSweden
- IVL Swedish Environmental Research InstituteGöteborgSweden
| |
Collapse
|
3
|
Wang W, Li Y, Han BH, Hwang SO, Kim BH. Morphology and Phylogenetic Positions of Two Novel Gogorevia Species (Bacillariophyta) from the Han River, South Korea. PLANTS (BASEL, SWITZERLAND) 2025; 14:1272. [PMID: 40364301 PMCID: PMC12073239 DOI: 10.3390/plants14091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
This study reports two novel species, Gogorevia contracta sp. nov. and G. recticentralis sp. nov., which were isolated from freshwater environments in South Korea. Using an integrative taxonomic approach, we conducted morphological analyses using light microscopy and scanning electron microscopy, along with molecular phylogenetic investigations using SSU rRNA and rbcL gene sequences. Phylogenetic reconstructions highlighted the distinct characteristics of both species, confirming their classification within the genus Gogorevia and elucidating their evolutionary relationships. Morphologically, G. contracta was characterized by a bow-tie-shaped central area and circular depressions in the rapheless valve, whereas G. recticentralis exhibited a rectangular-to-wedge-shaped central area with parallel striae near the center of the raphe valve. Our findings highlighted the ecological significance of Gogorevia species and suggested their potential role as bioindicators of water quality in relatively unpolluted freshwater systems. Over the past decade, our research has focused on the taxonomic and ecological study of diatoms in the Han River system and identified 136 species, including nine newly described taxa. The findings of the present study contribute to a growing understanding of Gogorevia diversity, underscore the importance of region-specific diatom indices, and support the integration of morphological and molecular methods into diatom systematics.
Collapse
Affiliation(s)
- Weihan Wang
- Department of Environmental Science, Hanyang University, Seoul 04763, Republic of Korea; (W.W.); (Y.L.); (B.-H.H.)
| | - Yuyao Li
- Department of Environmental Science, Hanyang University, Seoul 04763, Republic of Korea; (W.W.); (Y.L.); (B.-H.H.)
| | - Byeong-Hun Han
- Department of Environmental Science, Hanyang University, Seoul 04763, Republic of Korea; (W.W.); (Y.L.); (B.-H.H.)
| | - Su-Ok Hwang
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea;
| | - Baik-Ho Kim
- Department of Environmental Science, Hanyang University, Seoul 04763, Republic of Korea; (W.W.); (Y.L.); (B.-H.H.)
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea;
| |
Collapse
|
4
|
Somma E, Costantini M, Pennesi C, Ruocco N, De Castro O, Terlizzi A, Zupo V. Identification of Cocconeis neothumensis var. marina using a polyphasic approach including ultrastructure and gene annotation. PLoS One 2025; 20:e0317360. [PMID: 39946438 PMCID: PMC11825096 DOI: 10.1371/journal.pone.0317360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 02/17/2025] Open
Abstract
Several microalgae, including marine diatoms, significantly contribute to the global primary production and play a vital role in the food webs of benthic and planktonic ecosystems. Diatoms of the genus Cocconeis frequently inhabit benthic substrates, including the leaves of seagrasses. They are seasonally dominant in the leaf epiphytic layer of the Mediterranean seagrass Posidonia oceanica L. Delile, and have been proposed as model organisms for chemical ecology studies. However, the genome of Cocconeis spp. has not been sequenced. Consequently, their low-level molecular identification is currently impossible, besides a few examples. To address this gap, a polyphasic identification of C. neothumensis has been employed, combining ultra-morphological data with DNA barcoding markers. A strain of diatoms was isolated from P. oceanica leaves. It has been cultured in the laboratory and examined under Scanning Electron Microscopy (SEM). The 18S ribosomal RNA gene (18S rRNA, nrDNA) and the ribulose 1,5-biphosphate carboxylase (rbcL, cpDNA) gene were analysed for DNA barcoding characterisation. Since ultra-morphology data unambiguously identified the isolated strain as C. neothumensis Krammer, 1991, the molecular sequences herein reported will facilitate its rapid and accurate identification. In addition, our comparative analyses will facilitate the evaluation of these molecular markers for identification of closely related benthic diatoms.
Collapse
Affiliation(s)
- Emanuele Somma
- Ischia Marine Centre, Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Ischia (NA), Italy
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Chiara Pennesi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, CRIMAC, Calabria Marine Centre, Amendolara (CS), Italy
| | - Nadia Ruocco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, Amendolara (CS), Italy
| | - Olga De Castro
- Department of Biology, University of Naples Federico II, Naples, Italy
- Botanical Garden, University of Naples Federico II, Naples, Italy
| | - Antonio Terlizzi
- Department of Life Science, University of Trieste, Trieste, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Valerio Zupo
- Ischia Marine Centre, Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Ischia (NA), Italy
| |
Collapse
|
5
|
Abdelhay RA, El-Mor MS, Salem MAM, Al-Sagheer AA, Abd-Elhakim YM, Hassan BA, Mounes HAM. Effect of Nitrogen Sources on Diatoms Growth and Nutritional Value for Enhancing Litopenaeus vannamei Larval Performance. Animals (Basel) 2025; 15:466. [PMID: 40002948 PMCID: PMC11851799 DOI: 10.3390/ani15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigated the impact of different nitrogen sources on the growth and biochemical composition of two diatom species, Chaetoceros calcitrans and Thalassiosira weissflogii, and evaluated their use as live feed for Litopenaeus vannamei larvae. Diatoms were cultured in a Conway medium supplemented with four nitrogen sources: potassium nitrate (control), urea, ammonium sulfate, and ammonium nitrate. In a separate experiment, white-leg shrimp larvae (300 larvae/L) at stage Nauplius 6 were fed diets consisting of C. calcitrans, T. weissflogii, or a combination of both diatoms under controlled conditions. The results indicated that urea, ammonium nitrate, and ammonium sulfate significantly enhanced the growth and nutrient composition of C. calcitrans and T. weissflogii compared to the control (potassium nitrate). In C. calcitrans, ammonium nitrate significantly increased protein and lipid contents, while carbohydrate levels were the highest in the control. Similarly, urea and ammonium sulfate treatments yielded the highest lipid levels, whereas the control exhibited the lowest. For T. weissflogii, the control achieved the highest cell count on day 4, but ammonium nitrate significantly improved protein and lipid contents while reducing carbohydrate levels. A mixed diet of C. calcitrans and T. weissflogii significantly enhanced growth performance and reduced mortality rates in L. vannamei larvae compared to single-species diets. In conclusion, the findings indicated that ammonium nitrate was an efficient nitrogen source for enhancing diatom growth. Additionally, combining C. calcitrans and T. weissflogii as a diet improved growth and survival of L. vannamei larvae, offering practical implications for aquaculture.
Collapse
Affiliation(s)
- Reham A. Abdelhay
- Limnology Department, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abassa, Abu Hammad 44662, Egypt;
| | - Mohammad S. El-Mor
- Marine Science Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed A. M. Salem
- Marine Science Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Adham A. Al-Sagheer
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Bayan A. Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt;
| | - Hossam A. M. Mounes
- Limnology Department, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abassa, Abu Hammad 44662, Egypt;
| |
Collapse
|
6
|
Hu H, Wei XY, Liu L, Wang YB, Bu LK, Jia HJ, Pei DS. Biogeographic patterns of meio- and micro-eukaryotic communities in dam-induced river-reservoir systems. Appl Microbiol Biotechnol 2024; 108:130. [PMID: 38229334 PMCID: PMC10789839 DOI: 10.1007/s00253-023-12993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/30/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
Although the Three Gorges Dam (TGD) is the world's largest hydroelectric dam, little is known about the spatial-temporal patterns and community assembly mechanisms of meio- and micro-eukaryotes and its two subtaxa (zooplankton and zoobenthos). This knowledge gap is particularly evident across various habitats and during different water-level periods, primarily arising from the annual regular dam regulation. To address this inquiry, we employed mitochondrial cytochrome c oxidase I (COI) gene-based environmental DNA (eDNA) metabarcoding technology to systematically analyze the biogeographic pattern of the three communities within the Three Gorges Reservoir (TGR). Our findings reveal distinct spatiotemporal characteristics and complementary patterns in the distribution of meio- and micro-eukaryotes. The three communities showed similar biogeographic patterns and assembly processes. Notably, the diversity of these three taxa gradually decreased along the river. Their communities were less shaped by stochastic processes, which gradually decreased along the longitudinal riverine-transition-lacustrine gradient. Hence, deterministic factors, such as seasonality, environmental, and spatial variables, along with species interactions, likely play a pivotal role in shaping these communities. Environmental factors primarily drive seasonal variations in these communities, while hydrological conditions, represented as spatial distance, predominantly influence spatial variations. These three communities followed the distance-decay pattern. In winter, compared to summer, both the decay and species interrelationships are more pronounced. Taken together, this study offers fresh insights into the composition and diversity patterns of meio- and micro-eukaryotes at the spatial-temporal level. It also uncovers the mechanisms behind community assembly in various environmental niches within the dam-induced river-reservoir systems. KEY POINTS: • Distribution and diversity of meio- and micro-eukaryotes exhibit distinct spatiotemporal patterns in the TGR. • Contribution of stochastic processes in community assembly gradually decreases along the river. • Deterministic factors and species interactions shape meio- and micro-eukaryotic community.
Collapse
Affiliation(s)
- Huan Hu
- Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xing-Yi Wei
- Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yuan-Bo Wang
- Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ling-Kang Bu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Huang-Jie Jia
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
UCHIDA Y, UCHIDA H, SATO T, NISHIMOTO Y, TSUTSUMI K, OI T, TANIGUCHI M, INOUE K, SUZUKI Y. Cytochrome c oxidase subunit I gene in Thalassiosira nordenskioeldii strains inhabiting in cold and warm sea waters. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:140-148. [PMID: 38346753 PMCID: PMC10978971 DOI: 10.2183/pjab.100.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/28/2023] [Indexed: 02/15/2024]
Abstract
From the biota beneath the sea ice in Lake Saroma, which is adjacent to Sea of Okhotsk, a diatom culture of Saroma 16 was isolated. Strutted processes and a labiate process in Saroma 16 were characteristic of those in Thalassiosira nordenskioeldii. Similarity search analysis showed that the 826-bp rbcL-3P region sequence of this strain was 100% identical to multiple sequences registered as T. nordenskioeldii in a public database. The 4305-bp PCR-amplified mitochondrial cytochrome c oxidase subunit I (COI) gene (COI)-5P region of Saroma 16 included a 1060-bp open reading frame (ORF), which was interrupted by 934-bp and 2311-bp introns that included frame-shifted ORFs encoding reverse-transcriptase (RTase)-like proteins. Previous reports showed that a strain of the same species, CNS00052, originating from the East China Sea included no introns in the COI, whereas North Atlantic Ocean strains of the same species, such as CCMP992, CCMP993, and CCMP997, included a 2.3-kb intron in the same position as Saroma 16.
Collapse
Affiliation(s)
- Yoshie UCHIDA
- Department of Food Business, School of Health and Human Life, Nagoya Bunri University, Inazawa, Aichi, Japan
| | - Hidenobu UCHIDA
- Department of Food Business, School of Health and Human Life, Nagoya Bunri University, Inazawa, Aichi, Japan
- Research Institute for Integrated Science, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Takeshi SATO
- Research Institute for Integrated Science, Kanagawa University, Yokohama, Kanagawa, Japan
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Yuko NISHIMOTO
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Koichi TSUTSUMI
- Department of Food Business, School of Health and Human Life, Nagoya Bunri University, Inazawa, Aichi, Japan
| | - Takao OI
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Mitsutaka TANIGUCHI
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Kazuhito INOUE
- Research Institute for Integrated Science, Kanagawa University, Yokohama, Kanagawa, Japan
- Department of Biochemistry and Biotechnology, Faculty of Chemistry and Biochemistry, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Yoshihiro SUZUKI
- Research Institute for Integrated Science, Kanagawa University, Yokohama, Kanagawa, Japan
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Turk Dermastia T, Vascotto I, Francé J, Stanković D, Mozetič P. Evaluation of the rbcL marker for metabarcoding of marine diatoms and inference of population structure of selected genera. Front Microbiol 2023; 14:1071379. [PMID: 36950161 PMCID: PMC10026700 DOI: 10.3389/fmicb.2023.1071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Diatoms are one of the most important phytoplankton groups in the world's oceans. There are responsible for up to 40% of the photosynthetic activity in the Ocean, and they play an important role in the silicon and carbon cycles by decoupling carbon from atmospheric interactions through sinking and export. These processes are strongly influenced by the taxonomic composition of diatom assemblages. Traditionally, these have been assessed using microscopy, which in some cases is not reliable or reproducible. Next-generation sequencing enabled us to study diversity in a high-throughput manner and uncover new distribution patterns and diversity. However, phylogenetic markers used for this purpose, such as various 18S rDNA regions, are often insufficient because they cannot distinguish between some taxa. In this work, we demonstrate the performance of the chloroplast-encoded rbcL marker for metabarcoding marine diatoms compared to microscopy and 18S-V9 metabarcoding using a series of monthly samples from the Gulf of Trieste (GoT), northern Adriatic Sea. We demonstrate that rbcL is able to detect more taxa compared to 18S-V9 metabarcoding or microscopy, while the overall structure of the diatom assemblage was comparable to the other two methods with some variations, that were taxon dependent. In total, 6 new genera and 22 new diatom species for the study region were identified. We were able to spot misidentification of genera obtained with microscopy such as Pseudo-nitzschia galaxiae, which was mistaken for Cylindrotheca closterium, as well as genera that were completely overlooked, such as Minidiscus and several genera from the Cymatosiraceae family. Furthermore, on the example of two well-studied genera in the region, namely Chaetoceros and particularly Pseudo-nitzschia, we show how the rbcL method can be used to infer even deeper phylogenetic and ecologically significant differences at the species population level. Despite a very thorough community analysis obtained by rbcL the incompleteness of reference databases was still evident, and we shed light on possible improvements. Our work has further implications for studies dealing with taxa distribution and population structure, as well as carbon and silica flux models and networks.
Collapse
Affiliation(s)
- Timotej Turk Dermastia
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ivano Vascotto
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Janja Francé
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - David Stanković
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - Patricija Mozetič
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| |
Collapse
|
9
|
Chong JWR, Khoo KS, Chew KW, Ting HY, Show PL. Trends in digital image processing of isolated microalgae by incorporating classification algorithm. Biotechnol Adv 2023; 63:108095. [PMID: 36608745 DOI: 10.1016/j.biotechadv.2023.108095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Identification of microalgae species is of importance due to the uprising of harmful algae blooms affecting both the aquatic habitat and human health. Despite this occurence, microalgae have been identified as a green biomass and alternative source due to its promising bioactive compounds accumulation that play a significant role in many industrial applications. Recently, microalgae species identification has been conducted through DNA analysis and various microscopy techniques such as light, scanning electron, transmission electron, and atomic force -microscopy. The aforementioned procedures have encouraged researchers to consider alternate ways due to limitations such as costly validation, requiring skilled taxonomists, prolonged analysis, and low accuracy. This review highlights the potential innovations in digital microscopy with the incorporation of both hardware and software that can produce a reliable recognition, detection, enumeration, and real-time acquisition of microalgae species. Several steps such as image acquisition, processing, feature extraction, and selection are discussed, for the purpose of generating high image quality by removing unwanted artifacts and noise from the background. These steps of identification of microalgae species is performed by reliable image classification through machine learning as well as deep learning algorithms such as artificial neural networks, support vector machines, and convolutional neural networks. Overall, this review provides comprehensive insights into numerous possibilities of microalgae image identification, image pre-processing, and machine learning techniques to address the challenges in developing a robust digital classification tool for the future.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Huong-Yong Ting
- Drone Research and Application Centre, University of Technology Sarawak, No.1, Jalan Universiti, 96000 Sibu, Sarawak, Malaysia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
10
|
Bíró T, Duleba M, Földi A, Kiss KT, Orgoványi P, Trábert Z, Vadkerti E, Wetzel CE, Ács É. Metabarcoding as an effective complement of microscopic studies in revealing the composition of the diatom community – a case study of an oxbow lake of Tisza River (Hungary) with the description of a new Mayamaea species. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.87497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diatoms are valuable bioindicators and their traditional classification and identification are mainly based on the morphological characteristics of their frustules. However, in recent years, DNA-based methods have been proposed and are rapidly growing in the scientific literature as a complementary tool to assess the ecological status of freshwaters. Diatom-based ecological status assessment uses indices calculated from sensitivity and tolerance values as well as relative abundance of species. Correct assessment requires an accurate identification of species. In the present study, diatom assemblages of an oxbow lake were investigated using light and scanning electron microscopy as well as metabarcoding using rbcL marker, and the identification results were compared, intending to match barcode sequences of species that are currently missing in the diatom reference database. The investigated oxbow is an important wetland for bird conservation, although it is impacted by land use. Taxon lists based on morphology and metabarcoding considerably differed when bioinformatics analysis involved DADA2 pipeline with Diat.barcode database. Previously unknown sequence variants of four pennate species were found with additional BLAST search. Using phylogeny and p-distance calculations sequences could be matched to three small-celled naviculoid species that were found under a microscope. One of them was found to be a new species of the genus Mayamaea and was described as a new species, Mayamaea ectorii. Additionally, spatial distribution maps for several small-celled naviculoid species are provided for the Hungarian territory.
Collapse
|
11
|
Zhang M, Cui Z, Liu F, Chen N. Complete chloroplast genome of Eucampia zodiacus (Mediophyceae, Bacillariophyta). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2194-2197. [PMID: 34263048 PMCID: PMC8253180 DOI: 10.1080/23802359.2021.1944828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cosmopolitan phytoplankton species Eucampia zodiacus Ehrenberg 1839 is a common harmful algal bloom (HAB) species with significant negative ecological impact. However, molecular information for this HAB species is limited. In this study, the complete chloroplast genome (cpDNA) of E. zodiacus was constructed for the first time. The circular genome was 118,107 bp in length, containing a pair of inverted repeats (IR) (6991 bp each). The overall GC content of E. zodiacus cpDNA was 31.64%. It encoded 169 genes, including 131 protein-coding genes (PCGs), 30 tRNA genes, one tmRNA gene, one ncRNA gene, and six rRNA genes in IR regions. Phylogenetic analysis using concatenated PCGs of 56 diatom cpDNAs strongly supported that E. zodiacus was closely related to Cerataulina daemon, which belongs to the same family Hemiaulaceae according to AlgaeBase. Syntenic analysis revealed nearly identical gene order between the two cpDNAs, except for an inversion in the small single-copy (SSC) region.
Collapse
Affiliation(s)
- Mengjia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zongmei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
12
|
Zhang M, Cui Z, Liu F, Chen N. Definition of a High-Resolution Molecular Marker for Tracking the Genetic Diversity of the Harmful Algal Species Eucampia zodiacus Through Comparative Analysis of Mitochondrial Genomes. Front Microbiol 2021; 12:631144. [PMID: 33841358 PMCID: PMC8024477 DOI: 10.3389/fmicb.2021.631144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
The cosmopolitan phytoplankton species Eucampia zodiacus is a common harmful algal bloom (HAB) species that have been found to cause HABs in essentially all coastal regions except the Polar regions. However, molecular information for this HAB species is limited with only a few molecular markers. In this project, we constructed the mitochondrial genome (mtDNA) of E. zodiacus, which was also the first mtDNA constructed for any species in the order Hemiaulales that includes 145 reported species (including two additional HAB species Cerataulina bicornis and Cerataulina pelagica). Comparative analysis of eight E. zodiacus strains revealed that they could not be distinguished using common molecular markers, suggesting that common molecular markers do not have adequate resolution for distinguishing E. zodiacus strains. However, these E. zodiacus strains could be distinguished using whole mtDNAs, suggesting the presence of different genotypes due to evolutionary divergence. Through comparative analysis of the mtDNAs of multiple E. zodiacus strains, we identified a new molecular marker ezmt1 that could adequately distinguish different E. zodiacus strains isolated in various coastal regions in China. This molecular marker ezmt1, which was ∼400 bp in size, could be applied to identify causative genotypes during E. zodiacus HABs through tracking the dynamic changes of genetic diversity of E. zodiacus in HABs.
Collapse
Affiliation(s)
- Mengjia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Oceanology, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zongmei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Oceanology, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
13
|
Xiao C, Xu Q, Li H, Zhu X, Yu Z, Zhao J, Li Y, Liu H, Shi H, Liu C. Development and application of a multiplex PCR system for drowning diagnosis. Electrophoresis 2021; 42:1270-1278. [PMID: 33687071 DOI: 10.1002/elps.202000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/11/2022]
Abstract
In recent years, the DNA detection of drowning-related diatoms, cyanobacteria, and aeromonas has gradually attracted interest from forensic scientists. In this study, we described the validation and application of a novel multiplex PCR system. This system integrated 12 fluorescently labelled primers designed to amplify specific genes of diatoms, cyanobacteria, and aeromonas. The specificity studies demonstrated that this multiplex PCR system could detect nine species of diatom, seven species of cyanobacteria, and five species of aeromonas, all of which were drowning-related and widely distributed in various water circumstance of southern China. The sensitivity studies indicated that the limit concentration of template DNA was 0.0125 ng. Besides, this multiplex PCR system had good performance in sizing precision and stability, but it is not suitable for degraded DNA samples. The application into forensic casework showed that all the tissue samples from ten nondrowning cases showed negative results, and the positive rates of lung, liver, kidney, and water samples from 30 drowning bodies were 100, 86.7, 90, and 100%, respectively. Combined with results of diatom tests of MD-VF-Auto SEM method, this multiplex PCR system could help rule out nondrowning bodies and provide extra evidences to support drowning diagnosis, especially for those cases with few diatoms observed. It is expected that this multiplex PCR system has great potential for forensic drowning diagnosis.
Collapse
Affiliation(s)
- Cheng Xiao
- Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China.,School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Quyi Xu
- Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Huan Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Xiaolin Zhu
- College of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China
| | - Zhonghao Yu
- School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Jian Zhao
- Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Yue Li
- Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Hong Liu
- Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - He Shi
- Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Chao Liu
- Guangdong Province Key Laboratory of Forensic Genetics, Guangzhou Forensic Science Institute, Guangzhou, P. R. China.,School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
14
|
SYBR Green real-time qPCR method: Diagnose drowning more rapidly and accurately. Forensic Sci Int 2021; 321:110720. [PMID: 33639416 DOI: 10.1016/j.forsciint.2021.110720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022]
Abstract
In the field of drowning research, the method of diatom morphology has been most applied to determine whether the cause of death is drowning. However, the characteristics of complex operation, high level of professional knowledge drive us to propose a new method. Here, based on the common phytoplankton in water(such as diatoms and Aeromonas), aiming at the rbcL, 23 S, NIES, rPOD, Hly and preprotoxin aerolysin gene, we designed 6 pairs of specific primers and applied SYBR Green real-time qPCR(RT-qPCR) method to detect phytoplankton in the Pearl River Basin of Guangdong Province, China, so as to achieve the purpose of diagnosing drowning. After the experimental verification of the corresponding algae species and the standard strains of bacteria, as well as the verification of tissue samples (lung, liver and kidney) of 56 cases( 40 drowning cases and 16 non-drowning cases), we found that these primers were of great accuracy and tedious laboratory work of diatom test was reduced. Based on the advantages of high throughput, short period and high sensitivity, this RT-qPCR method is expected to diagnose drowning more rapidly and accurately.
Collapse
|
15
|
Yu J, Young RG, Deeth LE, Hanner RH. Molecular Detection Mapping and Analysis Platform for R (MDMAPR) facilitating the standardization, analysis, visualization, and sharing of qPCR data and metadata. PeerJ 2020; 8:e9974. [PMID: 33150057 PMCID: PMC7587055 DOI: 10.7717/peerj.9974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Quantitative polymerase chain reaction (qPCR) has been used as a standard molecular detection tool in many scientific fields. Unfortunately, there is no standard method for managing published qPCR data, and those currently used generally focus on only managing raw fluorescence data. However, associated with qPCR experiments are extensive sample and assay metadata, often under-examined and under-reported. Here, we present the Molecular Detection Mapping and Analysis Platform for R (MDMAPR), an open-source and fully scalable informatics tool for researchers to merge raw qPCR fluorescence data with associated metadata into a standard format, while geospatially visualizing the distribution of the data and relative intensity of the qPCR results. The advance of this approach is in the ability to use MDMAPR to store varied qPCR data. This includes pathogen and environmental qPCR species detection studies ideally suited to geographical visualization. However, it also goes beyond these and can be utilized with other qPCR data including gene expression studies, quantification studies used in identifying health dangers associated with food and water bacteria, and the identification of unknown samples. In addition, MDMAPR’s novel centralized management and geospatial visualization of qPCR data can further enable cross-discipline large-scale qPCR data standardization and accessibility to support research spanning multiple fields of science and qPCR applications.
Collapse
Affiliation(s)
- Jiaojia Yu
- Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Robert G Young
- Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lorna E Deeth
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada
| | - Robert H Hanner
- Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Lovrenčić L, Bonassin L, Boštjančić LL, Podnar M, Jelić M, Klobučar G, Jaklič M, Slavevska-Stamenković V, Hinić J, Maguire I. New insights into the genetic diversity of the stone crayfish: taxonomic and conservation implications. BMC Evol Biol 2020; 20:146. [PMID: 33158414 PMCID: PMC7648294 DOI: 10.1186/s12862-020-01709-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Background Austropotamobius torrentium is a freshwater crayfish species native to central and south-eastern Europe, with an intricate evolutionary history and the highest genetic diversity recorded in the northern-central Dinarides (NCD). Its populations are facing declines, both in number and size across its entire range. By extanding current knowledge on the genetic diversity of this species, we aim to assist conservation programmes. Multigene phylogenetic analyses were performed using different divergence time estimates based on mitochondrial and, for the first time, nuclear DNA markers on the largest data set analysed so far. In order to reassess taxonomic relationships within this species we applied several species delimitation methods and studied the meristic characters with the intention of finding features that would clearly separate stone crayfish belonging to different phylogroups. Results Our results confirmed the existence of high genetic diversity within A. torrentium, maintained in divergent phylogroups which have their own evolutionary dynamics. A new phylogroup in the Kordun region belonging to NCD has also been discovered. Due to the incongruence between implemented species delimitation approaches and the lack of any morphological characters conserved within lineages, we are of the opinion that phylogroups recovered on mitochondrial and nuclear DNA are cryptic subspecies and distinct evolutionary significant units. Conclusions Geographically and genetically isolated phylogroups represent the evolutionary legacy of A. torrentium and are highly relevant for conservation due to their evolutionary distinctiveness and restricted distribution.
Collapse
Affiliation(s)
- Leona Lovrenčić
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Lena Bonassin
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Ljudevit Luka Boštjančić
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Martina Podnar
- Croatian Natural History Museum, Demetrova 1, 10000, Zagreb, Croatia
| | - Mišel Jelić
- Department of Natural Sciences, Varaždin City Museum, Franjevački trg 10, 42000, Varaždin, Croatia
| | - Göran Klobučar
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Martina Jaklič
- Center for Clinical Research, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Valentina Slavevska-Stamenković
- Department of Invertebrates and Animal Ecology, Faculty of Natural Sciences and Mathematics, University "St. Cyril and Methodius", Arhimedova 3, 1000, Skopje, Republic of North Macedonia
| | - Jelena Hinić
- Department of Invertebrates and Animal Ecology, Faculty of Natural Sciences and Mathematics, University "St. Cyril and Methodius", Arhimedova 3, 1000, Skopje, Republic of North Macedonia
| | - Ivana Maguire
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| |
Collapse
|
17
|
Two New Benthic Diatoms of the Genus Achnanthidium (Bacillariophyceae) from the Hangang River, Korea. DIVERSITY 2020. [DOI: 10.3390/d12070285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two new benthic freshwater species belonging to the genus Achnanthidium were found in Korea. Achnanthidium ovale sp. nov. and A. cavitatum sp. nov. are described as new species based on light and scanning electron microscopy observations and molecular analyses. Both species are compared with the type material of morphologically similar taxa. Achnanthidium ovale differs from other species belonging to the A. pyrenaicum complex in outline, striation pattern, raphe central endings, and freestanding areolae at the apices. Achnanthidium cavitatum differs from other species in the A. minutissimum complex in outline, broad axial central area in the raphel ess valve, and slit-like areolae near the axial central area. We assessed their molecular characteristics by analyzing nuclear small subunit (SSU) rRNA and chloroplast-encoded rbcL gene sequences. Both the morphological comparison and the SSU and rbcL sequence analyses provide strong evidence to support the recognition of A. ovale and A. cavitatum as new species.
Collapse
|
18
|
Armbrecht L, Herrando-Pérez S, Eisenhofer R, Hallegraeff GM, Bolch CJS, Cooper A. An optimized method for the extraction of ancient eukaryote DNA from marine sediments. Mol Ecol Resour 2020; 20:906-919. [PMID: 32277584 DOI: 10.1111/1755-0998.13162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Marine sedimentary ancient DNA (sedaDNA) provides a powerful means to reconstruct marine palaeo-communities across the food web. However, currently there are few optimized sedaDNA extraction protocols available to maximize the yield of small DNA fragments typical of ancient DNA (aDNA) across a broad diversity of eukaryotes. We compared seven combinations of sedaDNA extraction treatments and sequencing library preparations using marine sediments collected at a water depth of 104 m off Maria Island, Tasmania, in 2018. These seven methods contrasted frozen versus refrigerated sediment, bead-beating induced cell lysis versus ethylenediaminetetraacetic acid (EDTA) incubation, DNA binding in silica spin columns versus in silica-solution, diluted versus undiluted DNA in shotgun library preparations to test potential inhibition issues during amplification steps, and size-selection of low molecular-weight (LMW) DNA to increase the extraction efficiency of sedaDNA. Maximum efficiency was obtained from frozen sediments subjected to a combination of EDTA incubation and bead-beating, DNA binding in silica-solution, and undiluted DNA in shotgun libraries, across 45 marine eukaryotic taxa. We present an optimized extraction protocol integrating these steps, with an optional post-library LMW size-selection step to retain DNA fragments of ≤500 base pairs. We also describe a stringent bioinformatic filtering approach for metagenomic data and provide a comprehensive list of contaminants as a reference for future sedaDNA studies. The new extraction and data-processing protocol should improve quantitative paleo-monitoring of eukaryotes from marine sediments, as well as other studies relying on the detection of highly fragmented and degraded eukaryote DNA in sediments.
Collapse
Affiliation(s)
- Linda Armbrecht
- School of Biological Sciences, Faculty of Sciences, Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA, Australia
| | - Salvador Herrando-Pérez
- School of Biological Sciences, Faculty of Sciences, Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA, Australia
| | - Raphael Eisenhofer
- School of Biological Sciences, Faculty of Sciences, Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA, Australia
| | - Gustaaf M Hallegraeff
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Christopher J S Bolch
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tas., Australia
| | - Alan Cooper
- South Australian Museum, Adelaide, SA, Australia
| |
Collapse
|
19
|
Hatfield RG, Batista FM, Bean TP, Fonseca VG, Santos A, Turner AD, Lewis A, Dean KJ, Martinez-Urtaza J. The Application of Nanopore Sequencing Technology to the Study of Dinoflagellates: A Proof of Concept Study for Rapid Sequence-Based Discrimination of Potentially Harmful Algae. Front Microbiol 2020; 11:844. [PMID: 32457722 PMCID: PMC7227484 DOI: 10.3389/fmicb.2020.00844] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/08/2020] [Indexed: 01/05/2023] Open
Abstract
Harmful algal blooms (HABs) are a naturally occurring global phenomena that have the potential to impact fisheries, leisure and ecosystems, as well as posing a significant hazard to animal and human health. There is significant interest in the development and application of methodologies to study all aspects of the causative organisms and toxins associated with these events. This paper reports the first application of nanopore sequencing technology for the detection of eukaryotic harmful algal bloom organisms. The MinION sequencing platform from Oxford Nanopore technologies provides long read sequencing capabilities in a compact, low cost, and portable format. In this study we used the MinION to sequence long-range PCR amplicons from multiple dinoflagellate species with a focus on the genus Alexandrium. Primers applicable to a wide range of dinoflagellates were selected, meaning that although the study was primarily focused on Alexandrium the applicability to three additional genera of toxic algae, namely; Gonyaulax, Prorocentrum, and Lingulodinium was also demonstrated. The amplicon generated here spanned approximately 3 kb of the rDNA cassette, including most of the 18S, the complete ITS1, 5.8S, ITS2 and regions D1 and D2 of the 28S. The inclusion of barcode genes as well as highly conserved regions resulted in identification of organisms to the species level. The analysis of reference cultures resulted in over 99% of all sequences being attributed to the correct species with an average identity above 95% from a reference list of over 200 species (see Supplementary Material 1). The use of mock community analysis within environmental samples highlighted that complex matrices did not prevent the ability to distinguish between phylogenetically similar species. Successful identification of causative organisms in environmental samples during natural toxic events further highlighted the potential of the assay. This study proves the suitability of nanopore sequencing technology for taxonomic identification of harmful algal bloom organisms and acquisition of data relevant to the World Health Organisations "one health" approach to marine monitoring.
Collapse
Affiliation(s)
- Robert G. Hatfield
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | - Frederico M. Batista
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | | | - Vera G. Fonseca
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | - Andres Santos
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Andrew D. Turner
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | - Adam Lewis
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | - Karl J. Dean
- Centre for Environment, Fisheries and Aquaculture Science, Dorset, United Kingdom
| | | |
Collapse
|
20
|
Diversity and dynamics of relevant nanoplanktonic diatoms in the Western English Channel. ISME JOURNAL 2020; 14:1966-1981. [PMID: 32350410 DOI: 10.1038/s41396-020-0659-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 11/08/2022]
Abstract
In the ocean, Bacillariophyta are one of the most successful protistan groups. Due to their considerable biogeochemical implications, diatom diversity, development, and seasonality have been at the center of research, specifically large-sized species. In comparison, nanoplanktonic diatoms are mostly disregarded from routine monitoring and are often underrepresented in genetic reference databases. Here, we identified and investigated the temporal dynamics of relevant nanodiatoms occurring in the Western English Channel (SOMLIT-Astan station). Coupling in situ and laboratory approaches, we revealed that nano-species from the genera Minidiscus and Thalassiosira are key components of the phytoplankton community that thrive in these coastal waters, but they display different seasonal patterns. Some species formed recurrent blooms whilst others were persistent year round. These results raise questions about their regulation in the natural environment. Over a full seasonal cycle at the monitoring station, we succeeded in isolating viruses which infect these minute diatoms, suggesting that these mortality agents may contribute to their control. Overall, our study points out the importance of considering nanodiatom communities within time-series surveys to further understand their role and fate in marine systems.
Collapse
|
21
|
Jones LR, Manrique JM, Uyua NM, Whitton BA. Genetic analysis of the invasive alga Didymosphenia geminata in Southern Argentina: Evidence of a Pleistocene origin of local lineages. Sci Rep 2019; 9:18706. [PMID: 31822736 PMCID: PMC6904681 DOI: 10.1038/s41598-019-55155-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/23/2019] [Indexed: 11/10/2022] Open
Abstract
The diatom Didymosphenia geminata has gained notoriety due to the massive growths which have occurred in recent decades in temperate regions. Different explanations have been proposed for this phenomenon, including the emergence of new invasive strains, human dispersion and climate change. Despite the fact in Argentina nuisance growths began in about 2010, historical records suggest that the alga was already present before that date. In addition, preliminary genetic data revealed too high a diversity to be explained by a recent invasion. Here, we estimate the divergence times of strains from southern Argentina. We integrate new genetic data and secondary, fossil and geological calibrations into a Penalized Likelihood model used to infer 18,630 plausible chronograms. These indicate that radiation of the lineages in Argentina began during or before the Pleistocene, which is hard to reconcile with the hypothesis that a new variant is responsible for the local mass growths. Instead, this suggests that important features of present distribution could be the result of multiple recent colonizations or the expansion of formerly rare populations. The text explains how these two possibilities are compatible with the hypothesis that recent nuisance blooms may be a consequence of climate change.
Collapse
Affiliation(s)
- Leandro R Jones
- Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, 9 de Julio y Belgrano s/n, (9100), Trelew, Chubut, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Julieta M Manrique
- Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, 9 de Julio y Belgrano s/n, (9100), Trelew, Chubut, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Noelia M Uyua
- Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, 9 de Julio y Belgrano s/n, (9100), Trelew, Chubut, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación de Hidrobiología, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Gales 48, (9100), Trelew, Chubut, Argentina
| | - Brian A Whitton
- Durham University, Department of Biosciences, Durham, DH1 3LE, UK
| |
Collapse
|
22
|
Mn oxide formation by phototrophs: Spatial and temporal patterns, with evidence of an enzymatic superoxide-mediated pathway. Sci Rep 2019; 9:18244. [PMID: 31796791 PMCID: PMC6890756 DOI: 10.1038/s41598-019-54403-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/13/2019] [Indexed: 12/05/2022] Open
Abstract
Manganese (Mn) oxide minerals influence the availability of organic carbon, nutrients and metals in the environment. Oxidation of Mn(II) to Mn(III/IV) oxides is largely promoted by the direct and indirect activity of microorganisms. Studies of biogenic Mn(II) oxidation have focused on bacteria and fungi, with phototrophic organisms (phototrophs) being generally overlooked. Here, we isolated phototrophs from Mn removal beds in Pennsylvania, USA, including fourteen Chlorophyta (green algae), three Bacillariophyta (diatoms) and one cyanobacterium, all of which consistently formed Mn(III/IV) oxides. Isolates produced cell-specific oxides (coating some cells but not others), diffuse biofilm oxides, and internal diatom-specific Mn-rich nodules. Phototrophic Mn(II) oxidation had been previously attributed to abiotic oxidation mediated by photosynthesis-driven pH increases, but we found a decoupling of Mn oxide formation and pH alteration in several cases. Furthermore, cell-free filtrates of some isolates produced Mn oxides at specific time points, but this activity was not induced by Mn(II). Manganese oxide formation in cell-free filtrates occurred via reaction with the oxygen radical superoxide produced by soluble extracellular proteins. Given the known widespread ability of phototrophs to produce superoxide, the contribution of phototrophs to Mn(II) oxidation in the environment may be greater and more nuanced than previously thought.
Collapse
|
23
|
Winfield MO, Downer A, Longyear J, Dale M, Barker GLA. Comparative study of biofilm formation on biocidal antifouling and fouling-release coatings using next-generation DNA sequencing. BIOFOULING 2018; 34:464-477. [PMID: 29745769 DOI: 10.1080/08927014.2018.1464152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The bacterial and eukaryotic communities forming biofilms on six different antifouling coatings, three biocidal and three fouling-release, on boards statically submerged in a marine environment were studied using next-generation sequencing. Sequenced amplicons of bacterial 16S ribosomal DNA and eukaryotic ribosomal DNA internal transcribed spacer were assigned taxonomy by comparison to reference databases and relative abundances were calculated. Differences in species composition, bacterial and eukaryotic, and relative abundance were observed between the biofilms on the various coatings; the main difference was between coating type, biocidal compared to fouling-release. Species composition and relative abundance also changed through time. Thus, it was possible to group replicate samples by coating and time point, indicating that there are fundamental and reproducible differences in biofilms assemblages. The routine use of next-generation sequencing to assess biofilm formation will allow evaluation of the efficacy of various commercial coatings and the identification of targets for novel formulations.
Collapse
Affiliation(s)
| | - Adrian Downer
- b School of Biological Sciences , AkzoNobel/International Paint Ltd , Gateshead , UK
| | - Jennifer Longyear
- b School of Biological Sciences , AkzoNobel/International Paint Ltd , Gateshead , UK
| | - Marie Dale
- b School of Biological Sciences , AkzoNobel/International Paint Ltd , Gateshead , UK
| | | |
Collapse
|
24
|
Gonzalez E, Pitre FE, Pagé AP, Marleau J, Guidi Nissim W, St-Arnaud M, Labrecque M, Joly S, Yergeau E, Brereton NJB. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. MICROBIOME 2018; 6:53. [PMID: 29562928 PMCID: PMC5863371 DOI: 10.1186/s40168-018-0432-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. METHODS Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. RESULTS The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. CONCLUSIONS Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.
Collapse
Affiliation(s)
- E Gonzalez
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center, Montréal, H3A 1A4, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - F E Pitre
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - A P Pagé
- Aquatic and Crop Resource Development (ACRD), National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - J Marleau
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| | - W Guidi Nissim
- Department of Agri-food and Environmental Science, University of Florence, Viale delle Idee, Sesto Fiorentino, FI, Italy
| | - M St-Arnaud
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - M Labrecque
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - S Joly
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - E Yergeau
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - N J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
25
|
Pytlik N, Kaden J, Finger M, Naumann J, Wanke S, Machill S, Brunner E. Biological synthesis of gold nanoparticles by the diatom Stephanopyxis turris and in vivo SERS analyses. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Ellegaard M, Ribeiro S. The long-term persistence of phytoplankton resting stages in aquatic ‘seed banks’. Biol Rev Camb Philos Soc 2017; 93:166-183. [DOI: 10.1111/brv.12338] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Marianne Ellegaard
- Department of Plant and Environmental Sciences; University of Copenhagen; 1871 Frederiksberg Denmark
| | - Sofia Ribeiro
- Geological Survey of Denmark and Greenland (GEUS), Glaciology and Climate Department; 1350 Copenhagen K Denmark
| |
Collapse
|
27
|
Balzano S, Percopo I, Siano R, Gourvil P, Chanoine M, Marie D, Vaulot D, Sarno D. Morphological and genetic diversity of Beaufort Sea diatoms with high contributions from the Chaetoceros neogracilis species complex. JOURNAL OF PHYCOLOGY 2017; 53:161-187. [PMID: 27809344 DOI: 10.1111/jpy.12489] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Seventy-five diatom strains isolated from the Beaufort Sea (Canadian Arctic) in the summer of 2009 were characterized by light and electron microscopy (SEM and TEM), as well as 18S and 28S rRNA gene sequencing. These strains group into 20 genotypes and 17 morphotypes and are affiliated with the genera Arcocellulus, Attheya, Chaetoceros, Cylindrotheca, Eucampia, Nitzschia, Porosira, Pseudo-nitzschia, Shionodiscus, Thalassiosira, and Synedropsis. Most of the species have a distribution confined to the northern/polar area. Chaetoceros neogracilis and Chaetoceros gelidus were the most represented taxa. Strains of C. neogracilis were morphologically similar and shared identical 18S rRNA gene sequences, but belonged to four distinct genetic clades based on 28S rRNA, ITS-1 and ITS-2 phylogenies. Secondary structure prediction revealed that these four clades differ in hemi-compensatory base changes (HCBCs) in paired positions of the ITS-2, suggesting their inability to interbreed. Reproductively isolated C. neogracilis genotypes can thus co-occur in summer phytoplankton communities in the Beaufort Sea. C. neogracilis generally occurred as single cells but also formed short colonies. It is phylogenetically distinct from an Antarctic species, erroneously identified in some previous studies as C. neogracilis, but named here as Chaetoceros sp. This work provides taxonomically validated sequences for 20 Arctic diatom taxa, which will facilitate future metabarcoding studies on phytoplankton in this region.
Collapse
Affiliation(s)
- Sergio Balzano
- CNRS, UMR7144, Station Biologique De Roscoff, Sorbonne Universités, UPMC Univ Paris 06, 29680, Roscoff, France
| | - Isabella Percopo
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | | - Priscillia Gourvil
- CNRS, UMR7144, Station Biologique De Roscoff, Sorbonne Universités, UPMC Univ Paris 06, 29680, Roscoff, France
| | - Mélanie Chanoine
- CNRS, UMR7144, Station Biologique De Roscoff, Sorbonne Universités, UPMC Univ Paris 06, 29680, Roscoff, France
| | - Dominique Marie
- CNRS, UMR7144, Station Biologique De Roscoff, Sorbonne Universités, UPMC Univ Paris 06, 29680, Roscoff, France
| | - Daniel Vaulot
- CNRS, UMR7144, Station Biologique De Roscoff, Sorbonne Universités, UPMC Univ Paris 06, 29680, Roscoff, France
| | - Diana Sarno
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|
28
|
Design and Evaluation of Illumina MiSeq-Compatible, 18S rRNA Gene-Specific Primers for Improved Characterization of Mixed Phototrophic Communities. Appl Environ Microbiol 2016; 82:5878-91. [PMID: 27451454 DOI: 10.1128/aem.01630-16] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/20/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The use of high-throughput sequencing technologies with the 16S rRNA gene for characterization of bacterial and archaeal communities has become routine. However, the adoption of sequencing methods for eukaryotes has been slow, despite their significance to natural and engineered systems. There are large variations among the target genes used for amplicon sequencing, and for the 18S rRNA gene, there is no consensus on which hypervariable region provides the most suitable representation of diversity. Additionally, it is unclear how much PCR/sequencing bias affects the depiction of community structure using current primers. The present study amplified the V4 and V8-V9 regions from seven microalgal mock communities as well as eukaryotic communities from freshwater, coastal, and wastewater samples to examine the effect of PCR/sequencing bias on community structure and membership. We found that degeneracies on the 3' end of the current V4-specific primers impact read length and mean relative abundance. Furthermore, the PCR/sequencing error is markedly higher for GC-rich members than for communities with balanced GC content. Importantly, the V4 region failed to reliably capture 2 of the 12 mock community members, and the V8-V9 hypervariable region more accurately represents mean relative abundance and alpha and beta diversity. Overall, the V4 and V8-V9 regions show similar community representations over freshwater, coastal, and wastewater environments, but specific samples show markedly different communities. These results indicate that multiple primer sets may be advantageous for gaining a more complete understanding of community structure and highlight the importance of including mock communities composed of species of interest. IMPORTANCE The quantification of error associated with community representation by amplicon sequencing is a critical challenge that is often ignored. When target genes are amplified using currently available primers, differential amplification efficiencies result in inaccurate estimates of community structure. The extent to which amplification bias affects community representation and the accuracy with which different gene targets represent community structure are not known. As a result, there is no consensus on which region provides the most suitable representation of diversity for eukaryotes. This study determined the accuracy with which commonly used 18S rRNA gene primer sets represent community structure and identified particular biases related to PCR amplification and Illumina MiSeq sequencing in order to more accurately study eukaryotic microbial communities.
Collapse
|
29
|
Minamoto T, Uchii K, Takahara T, Kitayoshi T, Tsuji S, Yamanaka H, Doi H. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio. Mol Ecol Resour 2016; 17:324-333. [PMID: 27487846 DOI: 10.1111/1755-0998.12586] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
The recently developed environmental DNA (eDNA) analysis has been used to estimate the distribution of aquatic vertebrates by using mitochondrial DNA (mtDNA) as a genetic marker. However, mtDNA markers have certain drawbacks such as variable copy number and maternal inheritance. In this study, we investigated the potential of using nuclear DNA (ncDNA) as a more reliable genetic marker for eDNA analysis by using common carp (Cyprinus carpio). We measured the copy numbers of cytochrome b (CytB) gene region of mtDNA and internal transcribed spacer 1 (ITS1) region of ribosomal DNA of ncDNA in various carp tissues and then compared the detectability of these markers in eDNA samples. In the DNA extracted from the brain and gill tissues and intestinal contents, CytB was detected at 95.1 ± 10.7 (mean ± 1 standard error), 29.7 ± 1.59 and 24.0 ± 4.33 copies per cell, respectively, and ITS1 was detected at 1760 ± 343, 2880 ± 503 and 1910 ± 352 copies per cell, respectively. In the eDNA samples from mesocosm, pond and lake water, the copy numbers of ITS1 were about 160, 300 and 150 times higher than those of CytB, respectively. The minimum volume of pond water required for quantification was 33 and 100 mL for ITS1 and CytB, respectively. These results suggested that ITS1 is a more sensitive genetic marker for eDNA studies of C. carpio.
Collapse
Affiliation(s)
- Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe City, Hyogo, 657-8501, Japan
| | - Kimiko Uchii
- Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.,Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Teruhiko Takahara
- Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.,Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan
| | - Takumi Kitayoshi
- Faculty of Science and Technology/Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Satsuki Tsuji
- Faculty of Science and Technology/Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Hiroki Yamanaka
- Faculty of Science and Technology/Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Hideyuki Doi
- Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.,Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
30
|
Protist metabarcoding and environmental biomonitoring: Time for change. Eur J Protistol 2016; 55:12-25. [DOI: 10.1016/j.ejop.2016.02.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 01/06/2023]
|
31
|
Rovira L, Trobajo R, Sato S, Ibáñez C, Mann DG. Genetic and Physiological Diversity in the Diatom Nitzschia inconspicua. J Eukaryot Microbiol 2015; 62:815-32. [DOI: 10.1111/jeu.12240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Laia Rovira
- Aquatic Ecosystems; Institute for Food and Agricultural Research and Technology (IRTA); St. Carles de la Ràpita 43540 Catalonia Spain
| | - Rosa Trobajo
- Aquatic Ecosystems; Institute for Food and Agricultural Research and Technology (IRTA); St. Carles de la Ràpita 43540 Catalonia Spain
| | - Shinya Sato
- Laboratory of Marine Bioscience; Fukui Prefectural Univeristy; 1-1 Gauken-Cho Obama City Fukui 917-0003 Japan
| | - Carles Ibáñez
- Aquatic Ecosystems; Institute for Food and Agricultural Research and Technology (IRTA); St. Carles de la Ràpita 43540 Catalonia Spain
| | - David G. Mann
- Aquatic Ecosystems; Institute for Food and Agricultural Research and Technology (IRTA); St. Carles de la Ràpita 43540 Catalonia Spain
- Royal Botanic Garden Edinburgh; Edinburgh EH3 5LR United Kingdom
| |
Collapse
|