1
|
Hsin KT, Lee H, Huang YC, Lin GJ, Lin PY, Lin YCJ, Chen PY. Lignocellulose degradation in bacteria and fungi: cellulosomes and industrial relevance. Front Microbiol 2025; 16:1583746. [PMID: 40351319 PMCID: PMC12063362 DOI: 10.3389/fmicb.2025.1583746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Lignocellulose biomass is one of the most abundant resources for sustainable biofuels. However, scaling up the biomass-to-biofuels conversion process for widespread usage is still pending. One of the main bottlenecks is the high cost of enzymes used in key process of biomass degradation. Current research efforts are therefore targeted at creative solutions to improve the feasibility of lignocellulosic-degrading enzymes. One way is to engineer multi-enzyme complexes that mimic the bacterial cellulosomal system, known to increase degradation efficiency up to 50-fold when compared to freely-secreted enzymes. However, these designer cellulosomes are instable and less efficient than wild type cellulosomes. In this review, we aim to extensively analyze the current knowledge on the lignocellulosic-degrading enzymes through three aspects. We start by reviewing and comparing sets of enzymes in bacterial and fungal lignocellulose degradation. Next, we focus on the characteristics of cellulosomes in both systems and their feasibility to be engineered. Finally, we highlight three key strategies to enhance enzymatic lignocellulose degradation efficiency: discovering novel lignocellulolytic species and enzymes, bioengineering enzymes for improved thermostability, and structurally optimizing designer cellulosomes. We anticipate these insights to act as resources for the biomass community looking to elevate the usage of lignocellulose as biofuel.
Collapse
Affiliation(s)
- Kuan-Ting Hsin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung City, Taiwan
| | - HueyTyng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan
- Bioinformatics Program, Institute of Statistical Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Guan-Jun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Pei-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Chung Jimmy Lin
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Gan X, Yu Q, Hu X, Qian Y, Mu X, Li H. Metagenomic and metatranscriptomic analysis reveals the enzymatic mechanism of plant polysaccharide degradation through gut microbiome in plateau model animal (Ochotona curzoniae). FEMS Microbiol Lett 2025; 372:fnaf045. [PMID: 40338610 DOI: 10.1093/femsle/fnaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/09/2025] Open
Abstract
Herbivorous animals can obtain energy by decomposing plant polysaccharides through gut microbiota, but the mechanism of gut microbiota decomposing plant polysaccharides in high-altitude model animals is still unclear. Plateau pika (Ochotona curzoniae) is a key model animal native to the Qinghai-Tibet Plateau with a high intake of grass. Thus, Plateau pika is an excellent animal model for studying how herbivorous animals digest and metabolize grass polysaccharides. Here, we used 16S rDNA, 16S rRNA, metagenomic, and metatranscriptomic sequencing to characterize gut microbial composition, gene potential, and expressed function in pikas from different altitudes. Unlike total bacteria, Oscillospira and Ruminococcus were main active bacterial genera in pika's gut. The metabolic pathways of cellulose and hemicellulose were up-regulated in the middle and high-altitude groups; those genes encoding polysaccharide enzymes were enriched. Notably, the proportion of lignin metabolic genes expressed in pika's gut was the highest, followed by cellulase and hemicellulase genes. According to comparative metagenomics of different animals, the number and relative abundance of cellulase and hemicellulase genes in pika's gut were at a higher level compared with steer, etc. These results indicated that plateau pika obtained sufficient energy from grass-based diet by increasing the expression of related metabolic enzymes.
Collapse
Affiliation(s)
- Xueying Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Xueqian Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuan Qian
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xianxian Mu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
3
|
Liu Y, Angelov A, Übelacker M, Baudrexl M, Ludwig C, Rühmann B, Sieber V, Liebl W. Proteomic analysis of Viscozyme L and its major enzyme components for pectic substrate degradation. Int J Biol Macromol 2024; 266:131309. [PMID: 38580019 DOI: 10.1016/j.ijbiomac.2024.131309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Enzymatic degradation of plant biomass requires the coordinated action of various enzymes. In this study, the production of reducing sugars from pectic substrates and sugar beet pulp (SBP) was investigated and compared using commercial enzyme preparations, including M2, pectinase (E1), Viscozyme L (V-L) and L-40. V-L, a cellulolytic enzyme mix produced by Aspergillus sp. was further evaluated as the most robust enzyme cocktail with the strongest SBP degradation ability in terms of the release of monosaccharides, methanol, and acetate from SBP. Mass-spectrometry-based proteomics analysis of V-L revealed 156 individual proteins. Of these, 101 proteins were annotated as containing a carbohydrate-active enzyme module. Notably, of the 50 most abundant proteins, ca. 44 % were predicted to be involved in pectin degradation. To reveal the role of individual putative key enzymes in pectic substrate decomposition, two abundant galacturonases (PglA and PglB), were heterologously expressed in Pichia pastoris and further characterized. PglA and PglB demonstrated maximum activity at 57 °C and 68 °C, respectively, and exhibited endo-type cleavage patterns towards polygalacturonic acid. Further studies along this line may lead to a better understanding of efficient SBP degradation and may help to design improved artificial enzyme mixtures with lower complexity for future application in biotechnology.
Collapse
Affiliation(s)
- Yajing Liu
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany; Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Angel Angelov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany; NGS Competence Center Tübingen, Universitätsklinikum Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Maria Übelacker
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Melanie Baudrexl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Straβe 4, 85354 Freising-Weihenstephan, Germany
| | - Broder Rühmann
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Straβe 4, 85354 Freising-Weihenstephan, Germany.
| |
Collapse
|
4
|
Mekwichai P, Chutivisut P, Tuntiwiwattanapun N. Enhancing biogas production from palm oil mill effluent through the synergistic application of surfactants and iron supplements. Heliyon 2024; 10:e29617. [PMID: 38660277 PMCID: PMC11040070 DOI: 10.1016/j.heliyon.2024.e29617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, the effects of various surfactants on the soluble chemical oxygen demand (COD) fraction and biogas production from palm oil mill effluent (POME) were investigated. A cationic surfactant (cetyltrimethylammonium bromide, CTAB) and a nonionic surfactant (Tween 80; TW80) were found to adsorb onto the particulate matter from POME, markedly reducing the soluble COD, unlike an anionic surfactant (sodium dodecyl sulfate, SDS). The mechanism underlying this phenomenon might be the adsolubilization of oil on particulate matter induced by the adsorbed surfactants. In terms of biogas production, 0.1 % w/v SDS and CTAB dramatically reduced the biogas yield, while 0.1 % w/v TW80 did not have this negative effect. A synergistic effect was observed when TW80 (0.1 % w/v) was combined with FeSO4 (400 mg/L), resulting in a 17 % greater biogas yield than that achieved with treatments using TW80 or FeSO4 alone. Moreover, the combination of TW80 and FeSO4 increased the biogas production rate. Surprisingly, the water-soluble iron fraction remained consistent across all treatments, suggesting that the adsorption of TW80 on particulate matter may limit micelle formation. Importantly, the proportion of methane in the generated biogas remained stable in all the treatments. Microbial community analysis revealed that the introduction of TW80 and FeSO4 had no discernible impact on the microbial community of the system. Pretreatment with TW80 and an iron supplement significantly enhanced biogas production and reduced the retention time of the anaerobic digestion (AD) system while maintaining the biogas quality and microbial community stability.
Collapse
Affiliation(s)
- Pannawee Mekwichai
- Environmental Research Institute Chulalongkorn University, Bangkok, Thailand
| | - Pokchat Chutivisut
- Environmental Research Institute Chulalongkorn University, Bangkok, Thailand
| | - Nattapong Tuntiwiwattanapun
- Environmental Research Institute Chulalongkorn University, Bangkok, Thailand
- Hub of Waste Management for Sustainable Development, Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Zaplana T, Miele S, Tolonen AC. Lachnospiraceae are emerging industrial biocatalysts and biotherapeutics. Front Bioeng Biotechnol 2024; 11:1324396. [PMID: 38239921 PMCID: PMC10794557 DOI: 10.3389/fbioe.2023.1324396] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
The Lachnospiraceae is a family of anaerobic bacteria in the class Clostridia with potential to advance the bio-economy and intestinal therapeutics. Some species of Lachnospiraceae metabolize abundant, low-cost feedstocks such as lignocellulose and carbon dioxide into value-added chemicals. Others are among the dominant species of the human colon and animal rumen, where they ferment dietary fiber to promote healthy gut and immune function. Here, we summarize recent studies of the physiology, cultivation, and genetics of Lachnospiraceae, highlighting their wide substrate utilization and metabolic products with industrial applications. We examine studies of these bacteria as Live Biotherapeutic Products (LBPs), focusing on in vivo disease models and clinical studies using them to treat infection, inflammation, metabolic syndrome, and cancer. We discuss key research areas including elucidation of intra-specific diversity and genetic modification of candidate strains that will facilitate the exploitation of Lachnospiraceae in industry and medicine.
Collapse
Affiliation(s)
| | | | - Andrew C. Tolonen
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
6
|
Hivarkar SS, Vasudevan G, Dhakephalkar PK, Dagar SS. Description of Sporanaerobium hydrogeniformans gen. nov., sp. nov., an obligately anaerobic, hydrogen-producing bacterium isolated from Aravali hot spring in India. Arch Microbiol 2023; 205:305. [PMID: 37572166 DOI: 10.1007/s00203-023-03641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
An obligately anaerobic bacterium XHS1971T, capable of degrading cellulose and xylan, was isolated from a sediment sample of Aravali hot spring, Ratnagiri, India. Cells of strain XHS1971T were Gram-stain-negative, spore-forming, motile, long-rods. Growth was observed at temperatures 30-50 °C (optimum 40-45 °C), pH 5.0-10.0 (optimum pH 8.0) and NaCl concentrations 0-0.5% (optimum 0%). Generation time of strain XHS1971T was 5 h under optimised growth conditions. Strain XHS1971T showed the ability to metabolise different complex and simple sugars constituting lignocellulosic biomass. Glucose was fermented majorly into hydrogen, formic acid, acetic acid, and ethanol, whereas carbon dioxide, butyric acid, lactic acid and succinic acid were produced in traces. 16S rRNA gene analysis of strain XHS1971T revealed < 94.5% homology with Cellulosilyticum lentocellum DSM5427T followed by Cellulosilyticum ruminicola JCM14822T, identifying strain as a distinct member of family Lachnospiraceae. The major cellular fatty acids (> 5%) were C14:0, C16:0, C18:0, and C16:1 ω7c. The genome size of the strain was 3.74 Mb with 35.3 mol% G + C content, and genes were annotated to carbohydrate metabolism, including genes involved in the degradation of cellulose and xylan and the production of hydrogen, ethanol and acetate. The uniqueness of strain was further validated by digital DNA-DNA hybridisation (dDDH), Average Nucleotide Identity (ANI), and Average Amino Acid Identity (AAI) values of 22%, 80%, and 63%, respectively, with nearest phylogenetic affiliates. Based on the detailed analyses, we propose a new genus and species, Sporanaerobium hydrogeniformans gen. nov., sp. nov., for strain XHS1971T (= MCC3498T = KCTC15729T = JCM32657T) within family Lachnospiraceae.
Collapse
Affiliation(s)
- Sai Suresh Hivarkar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Gowdaman Vasudevan
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
| | - Prashant K Dhakephalkar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Sumit Singh Dagar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind, Pune, India.
| |
Collapse
|
7
|
Wang A, Luo X, Li X, Huang D, Huang Q, Zhang XX, Chen W. Bioaugmentation of woodchip bioreactors by Pseudomonas nicosulfuronedens D1-1 with functional species enrichment. BIORESOURCE TECHNOLOGY 2023:129309. [PMID: 37311530 DOI: 10.1016/j.biortech.2023.129309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
A novel heterotrophic nitrification and aerobic denitrification (HN-AD) bacterium D1-1 was identified as Pseudomonas nicosulfuronedens D1-1. Strain D1-1 removed 97.24%, 97.25%, and 77.12% of 100 mg/L NH4+-N, NO3--N, and NO2--N, with corresponding maximum removal rates of 7.42, 8.69, and 7.15 mg·L-1·h-1, respectively. Strain D1-1 bioaugmentation enhanced woodchip bioreactor performance with an average NO3--N removal efficiency of 93.8%. Bioaugmentation enriched N cyclers along with increased bacterial diversity and predicted genes for denitrification, DNRA (dissimilatory nitrate reduction to ammonium), and ammonium oxidation. It also reduced local selection and network modularity from 4.336 to 0.934, resulting in predicted nitrogen (N) cycling genes shared by more modules. These observations suggested that bioaugmentation could enhance the functional redundancy to stabilize the NO3--N removal performance. This study provides insights into the potential applications of HN-AD bacteria in bioremediation or other environmental engineering fields, relying on their ability to shape bacterial communities.
Collapse
Affiliation(s)
- Achen Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuesong Luo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daqing Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Sun Z, He J, Yu N, Chen Y, Chen Y, Tang Y, Kida K. Biomethane production and microbial strategies corresponding to high organic loading treatment for molasses wastewater in an upflow anaerobic filter reactor. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02882-5. [PMID: 37209175 DOI: 10.1007/s00449-023-02882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Molasses wastewater contains high levels of organic compounds, cations, and anions, causing operational problems for anaerobic biological treatment. In this study, an upflow anaerobic filter (UAF) reactor was employed to establish a high organic loading treatment system for molasses wastewater and further investigated the microbial community dynamics in response to this stressful operation. The biogas production increased with an increase in total organic carbon (TOC) loading rate from 1.0 to 14 g/L/day, and then it decreased with further TOC loading rate addition until 16 g/L/day. The UAF reactor achieved a maximum biogas production of 6800 mL/L/day with a TOC removal efficiency of 66.5% at a TOC loading rate of 14 g/L/day. Further microbial analyses revealed that both the bacterial and archaeal communities developed multiple strategies to maintain stable operation of the reactor at high organic loading (e.g., Proteiniphilum and Defluviitoga maintained high abundances throughout the operation; Tissierella temporarily dominated the bacterial community at TOC loading rates of 8.0 to 14 g/L/day; and multi-trophic Methanosarcina shifted as the dominant methanogen at the TOC loading rates of 8.0 to 16 g/L/day). This study presents insights into a high organic loading molasses wastewater treatment system and the microbial flexibility in methane fermentation in response to process disturbances.
Collapse
Affiliation(s)
- Zhaoyong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jinting He
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Na Yu
- School of Environmental and Planning, Liaocheng University, Liaocheng, 252000, China
| | - Yuwei Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, 610207, China
| | - Yating Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, 610207, China.
| | - Yueqin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
9
|
Wang J, Zhao N, Zhang X, Jiang L, Kang YR, Chu YX, He R. Additional ratios of hydrolysates from lignocellulosic digestate at different hydrothermal temperatures influencing anaerobic digestion performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32866-32881. [PMID: 36472738 DOI: 10.1007/s11356-022-24519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Hydrothermal treatment (HT) is envisaged as a promising technology to treat the lignocellulosic biomass. HT temperature is an important parameter influencing the hydrolysate compositions such as organic compounds and potential inhibitors, and therefore affect the subsequential anaerobic digestion (AD) process. Herein, HT-AD was employed to treat the wheat straw-derived digestate. The HT temperature of 190 °C was proved to be the best performance with a higehst reducing sugar yield (45.05 mg g-1) in the hydrolysate and a highest methane yield (120.8 mL gTS-1) from the AD of the hydrolysate, which was 42.5% higher than the methane yield in the control without the hydrolysate addition (84.8 mL gTS-1). 3-Furaldehyde was the dominant organic in the hydrolysates. The HT temperature of 210 °C led to the presence of AD inhibitory moieties (e.g., phenols and furans) in the hydrolysate, resulting in a low methane yield. Although the treatments with the addition of 100% hydrolysate outperformed those of 50% hydrolysate in the methane yields in the late stage, the latter had higher methane yields in the first stage, suggesting that the additional ratios of hydrolysates should be carefully considered in AD, especially the detrimental effects of inhibitors and adaptability issues of AD consortia. The MiSeq sequencing showed that the hydrolysis/acidogenesis was dominant in the first stage, while methanogenesis became dominant in the late stage with the acetoclastic/hydrogenotrophic methanogens (Methanosarcina and Methanobacterium) enriched in the hydrolysate-feeding reactors. These findings demonstrated that a integration of HT-AD was a promising approach for the digestate valorization and to reduce the potential carbon emission from waste treatments.
Collapse
Affiliation(s)
- Jing Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xuan Zhang
- Eco-Environmental Science and Research Institute of Zhejiang Province, Hangzhou, 310061, China
| | - Lei Jiang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ya-Ru Kang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Sakarika M, Regueira A, Rabaey K, Ganigué R. Thermophilic caproic acid production from grass juice by sugar-based chain elongation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160501. [PMID: 36436634 DOI: 10.1016/j.scitotenv.2022.160501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Medium chain carboxylic acids (MCCA) such as caproic acid have a plethora of applications, ranging from food additives to bioplastics. MCCA can be produced via microbial chain elongation using waste and side-streams as substrates, a process that can be more sustainable than conventional production routes. Most chain elongation studies have focused on mesophilic conditions, with only two recent studies hinting at the possibility of thermophilic chain elongation, but a systematic study of its mechanisms is lacking. Here, we investigated thermophilic chain elongation from grass juice, to understand the effect of key operational parameters (pH, temperature, substrate) on the process performance and to establish the key microbial genera and their role in the system. The genus Caproiciproducens was identified as responsible for thermophilic chain elongation, and caproic acid production was most favorable at pH 6.0 and 50 °C among the conditions tested, reaching an average concentration of 3.4 g/L. Batch experiments showed that the substrate for caproic acid production were glucose and xylose, while lactic acid led to the production of only butyric acid. Fed-batch experiments showed that substrate availability and the presence of caproic acid in the system play a major role in shaping the profile of thermophilic chain elongation. The increase of the total sugar concentration by glucose addition (without changing the organic load) during continuous operation led to a microbial community dominated (75 %) by Caproiciproducens and increased by 76 % the final average caproic acid concentration to 6.0 g/L (13 gCOD/L) which represented 32 % (g/g) of the total carboxylic acids. The highest concentration achieved was 7.2 g/L (day 197) which is the highest concentration reported under thermophilic conditions thus far. The results of this work pave the way to the potential development of thermophilic systems for upgrading various underexplored abundant and cheap sugar-rich side-streams to caproic acid.
Collapse
Affiliation(s)
- Myrsini Sakarika
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| | - Alberte Regueira
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium; Cross-disciplinary Research in Environmental Technologies (CRETUS), Department of Chemical Engineering, Universidade de Santiago de Compostela, Spain
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium.
| |
Collapse
|
11
|
Köller N, Hahnke S, Zverlov V, Wibberg D, Klingl A, Busche T, Klocke M, Pühler A, Schlüter A, Liebl W, Maus I. Anaeropeptidivorans aminofermentans gen. nov., sp. nov., a mesophilic proteolytic salt-tolerant bacterium isolated from a laboratory-scale biogas fermenter, and emended description of Clostridium colinum. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748496 DOI: 10.1099/ijsem.0.005668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An anaerobic bacterial strain, designated strain M3/9T, was isolated from a laboratory-scale biogas fermenter fed with maize silage supplemented with 5 % wheat straw. Cells were straight, non-motile rods, which stained Gram-negative. Optimal growth occurred between 30 and 40°C, at pH 7.5-8.5, and up to 3.9 % (w/v) NaCl was tolerated. When grown on peptone from casein and soymeal, strain M3/9T produced mainly acetic acid, ethanol, and isobutyric acid. The major cellular fatty acids of the novel strain were C16 : 0 and C16 : 0 DMA. The genome of strain M3/9T is 3757 330 bp in size with a G+C content of 38.45 mol%. Phylogenetic analysis allocated strain M3/9T within the family Lachnospiraceae with Clostridium colinum DSM 6011T and Anaerotignum lactatifermentans DSM 14214T being the most closely related species sharing 57.86 and 56.99% average amino acid identity and 16S rRNA gene sequence similarities of 91.58 and 91.26 %, respectively. Based on physiological, chemotaxonomic and genetic data, we propose the description of a novel species and genus Anaeropeptidivorans aminofermentans gen. nov., sp. nov., represented by the type strain M3/9T (=DSM 100058T=LMG 29527T). In addition, an emended description of Clostridium colinum is provided.
Collapse
Affiliation(s)
- Nora Köller
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Sarah Hahnke
- Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Vladimir Zverlov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.,Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Andreas Klingl
- Plant Development, Department Biology I - Botany, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Tobias Busche
- Medical Faculty OWL & Centrum für Biotechnologie (CeBiTec), Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Michael Klocke
- Institute of Agricultural and Urban Ecological Projects affiliated to Berlin Humboldt University (IASP), Philippstraße 13, 10115 Berlin, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.,Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
12
|
Maus I, Wibberg D, Belmann P, Hahnke S, Huang L, Spröer C, Bunk B, Blom J, Sczyrba A, Pühler A, Klocke M, Schlüter A. The novel oligopeptide utilizing species Anaeropeptidivorans aminofermentans M3/9 T, its role in anaerobic digestion and occurrence as deduced from large-scale fragment recruitment analyses. Front Microbiol 2022; 13:1032515. [PMID: 36439843 PMCID: PMC9682168 DOI: 10.3389/fmicb.2022.1032515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/24/2022] [Indexed: 09/11/2024] Open
Abstract
Research on biogas-producing microbial communities aims at elucidation of correlations and dependencies between the anaerobic digestion (AD) process and the corresponding microbiome composition in order to optimize the performance of the process and the biogas output. Previously, Lachnospiraceae species were frequently detected in mesophilic to moderately thermophilic biogas reactors. To analyze adaptive genome features of a representative Lachnospiraceae strain, Anaeropeptidivorans aminofermentans M3/9T was isolated from a mesophilic laboratory-scale biogas plant and its genome was sequenced and analyzed in detail. Strain M3/9T possesses a number of genes encoding enzymes for degradation of proteins, oligo- and dipeptides. Moreover, genes encoding enzymes participating in fermentation of amino acids released from peptide hydrolysis were also identified. Based on further findings obtained from metabolic pathway reconstruction, M3/9T was predicted to participate in acidogenesis within the AD process. To understand the genomic diversity between the biogas isolate M3/9T and closely related Anaerotignum type strains, genome sequence comparisons were performed. M3/9T harbors 1,693 strain-specific genes among others encoding different peptidases, a phosphotransferase system (PTS) for sugar uptake, but also proteins involved in extracellular solute binding and import, sporulation and flagellar biosynthesis. In order to determine the occurrence of M3/9T in other environments, large-scale fragment recruitments with the M3/9T genome as a template and publicly available metagenomes representing different environments was performed. The strain was detected in the intestine of mammals, being most abundant in goat feces, occasionally used as a substrate for biogas production.
Collapse
Affiliation(s)
- Irena Maus
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Computational Metagenomics, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences IBG-5, Jülich, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Computational Metagenomics, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences IBG-5, Jülich, Germany
| | - Peter Belmann
- Computational Metagenomics, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences IBG-5, Jülich, Germany
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Sarah Hahnke
- Department of Human Medicine, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Liren Huang
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Cathrin Spröer
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Brunswick, Germany
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Brunswick, Germany
| | - Jochen Blom
- Department Bioinformatics and Systems Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Alexander Sczyrba
- Computational Metagenomics, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences IBG-5, Jülich, Germany
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Michael Klocke
- Institute of Agricultural and Urban Ecological Projects affiliated to Humboldt-Universität zu Berlin (IASP), Berlin, Germany
| | - Andreas Schlüter
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Gladkov GV, Kimeklis AK, Afonin AM, Lisina TO, Orlova OV, Aksenova TS, Kichko AA, Pinaev AG, Andronov EE. The Structure of Stable Cellulolytic Consortia Isolated from Natural Lignocellulosic Substrates. Int J Mol Sci 2022; 23:ijms231810779. [PMID: 36142684 PMCID: PMC9501375 DOI: 10.3390/ijms231810779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 10/27/2022] Open
Abstract
Recycling plant matter is one of the challenges facing humanity today and depends on efficient lignocellulose degradation. Although many bacterial strains from natural substrates demonstrate cellulolytic activities, the CAZymes (Carbohydrate-Active enZYmes) responsible for these activities are very diverse and usually distributed among different bacteria in one habitat. Thus, using microbial consortia can be a solution to rapid and effective decomposition of plant biomass. Four cellulolytic consortia were isolated from enrichment cultures from composting natural lignocellulosic substrates—oat straw, pine sawdust, and birch leaf litter. Enrichment cultures facilitated growth of similar, but not identical cellulose-decomposing bacteria from different substrates. Major components in all consortia were from Proteobacteria, Actinobacteriota and Bacteroidota, but some were specific for different substrates—Verrucomicrobiota and Myxococcota from straw, Planctomycetota from sawdust and Firmicutes from leaf litter. While most members of the consortia were involved in the lignocellulose degradation, some demonstrated additional metabolic activities. Consortia did not differ in the composition of CAZymes genes, but rather in axillary functions, such as ABC-transporters and two-component systems, usually taxon-specific and associated with CAZymes. Our findings show that enrichment cultures can provide reproducible cellulolytic consortia from various lignocellulosic substrates, the stability of which is ensured by tight microbial relations between its components.
Collapse
Affiliation(s)
- Grigory V. Gladkov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-921-402-65-16
| | - Anastasiia K. Kimeklis
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Department of Applied Ecology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexey M. Afonin
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Tatiana O. Lisina
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Olga V. Orlova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Tatiana S. Aksenova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Arina A. Kichko
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Alexander G. Pinaev
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Evgeny E. Andronov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Dokuchaev Soil Science Institute, 119017 Moscow, Russia
| |
Collapse
|
14
|
Abstract
Type VI CRISPR-Cas systems have been repurposed for various applications such as gene knockdown, viral interference, and diagnostics. However, the identification and characterization of thermophilic orthologs will expand and unlock the potential of diverse biotechnological applications. Herein, we identified and characterized a thermostable ortholog of the Cas13a family from the thermophilic organism Thermoclostridium caenicola (TccCas13a). We show that TccCas13a has a close phylogenetic relation to the HheCas13a ortholog from the thermophilic bacterium Herbinix hemicellulosilytica and shares several properties such as thermostability and inability to process its own pre-CRISPR RNA. We demonstrate that TccCas13a possesses robust cis and trans activities at a broad temperature range of 37 to 70 °C, compared with HheCas13a, which has a more limited range and lower activity. We harnessed TccCas13a thermostability to develop a sensitive, robust, rapid, and one-pot assay, named OPTIMA-dx, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. OPTIMA-dx exhibits no cross-reactivity with other viruses and a limit of detection of 10 copies/μL when using a synthetic SARS-CoV-2 genome. We used OPTIMA-dx for SARS-CoV-2 detection in clinical samples, and our assay showed 95% sensitivity and 100% specificity compared with qRT-PCR. Furthermore, we demonstrated that OPTIMA-dx is suitable for multiplexed detection and is compatible with the quick extraction protocol. OPTIMA-dx exhibits critical features that enable its use at point of care (POC). Therefore, we developed a mobile phone application to facilitate OPTIMA-dx data collection and sharing of patient sample results. This work demonstrates the power of CRISPR-Cas13 thermostable enzymes in enabling key applications in one-pot POC diagnostics and potentially in transcriptome engineering, editing, and therapies.
Collapse
|
15
|
Baudrexl M, Fida T, Berk B, Schwarz WH, Zverlov VV, Groll M, Liebl W. Biochemical and Structural Characterization of Thermostable GH159 Glycoside Hydrolases Exhibiting α-L-Arabinofuranosidase Activity. Front Mol Biosci 2022; 9:907439. [PMID: 35847984 PMCID: PMC9278983 DOI: 10.3389/fmolb.2022.907439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Functional, biochemical, and preliminary structural properties are reported for three glycoside hydrolases of the recently described glycoside hydrolase (GH) family 159. The genes were cloned from the genomic sequences of different Caldicellulosiruptor strains. This study extends the spectrum of functions of GH159 enzymes. The only activity previously reported for GH159 was hydrolytic activity on β-galactofuranosides. Activity screening using a set of para-nitrophenyl (pNP) glycosides suggested additional arabinosidase activity on substrates with arabinosyl residues, which has not been previously reported for members of GH159. Even though the thermophilic enzymes investigated-Cs_Gaf159A, Ch_Gaf159A, and Ck_Gaf159A-cleaved pNP-α-l-arabinofuranoside, they were only weakly active on arabinogalactan, and they did not cleave arabinose from arabinan, arabinoxylan, or gum arabic. However, the enzymes were able to hydrolyze the α-1,3-linkage in different arabinoxylan-derived oligosaccharides (AXOS) with arabinosylated xylose at the non-reducing end (A3X, A2,3XX), suggesting their role in the intracellular hydrolysis of oligosaccharides. Crystallization and structural analysis of the apo form of one of the Caldicellulosiruptor enzymes, Ch_Gaf159A, enabled the elucidation of the first 3D structure of a GH159 member. This work revealed a five-bladed β-propeller structure for GH159 enzymes. The 3D structure and its substrate-binding pocket also provides an explanation at the molecular level for the observed exo-activity of the enzyme. Furthermore, the structural data enabled the prediction of the catalytic amino acids. This was supported by the complete inactivation by mutation of residues D19, D142, and E190 of Ch_Gaf159A.
Collapse
Affiliation(s)
- Melanie Baudrexl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Tarik Fida
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Berkay Berk
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | | | - Vladimir V. Zverlov
- Chair of Microbiology, Technical University of Munich, Freising, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | - Michael Groll
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Garching, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| |
Collapse
|
16
|
Biogas Production and Microbial Communities of Mesophilic and Thermophilic Anaerobic Co-Digestion of Animal Manures and Food Wastes in Costa Rica. ENERGIES 2022. [DOI: 10.3390/en15093252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Biomass generated from agricultural operations in Costa Rica represents an untapped renewable resource for bioenergy generation. This study investigated the effects of two temperatures and three mixture ratios of manures and food wastes on biogas production and microbial community structure. Increasing the amount of fruit and restaurant wastes in the feed mixture significantly enhanced the productivity of the systems (16% increase in the mesophilic systems and 41% in the thermophilic). The methane content of biogas was also favored at higher temperatures. Beta diversity analysis, based on high-throughput sequencing of 16S rRNA gene, showed that microbial communities of the thermophilic digestions were more similar to each other than the mesophilic digestions. Species richness of the thermophilic digestions was significantly greater than the corresponding mesophilic digestions (F = 40.08, p = 0.003). The mesophilic digesters were dominated by Firmicutes and Bacteroidetes while in thermophilic digesters, the phyla Firmicutes and Chloroflexi accounted for up to 90% of all sequences. Methanosarcina represented the key methanogen and was more abundant in thermophilic digestions. These results demonstrate that increasing digestion temperature and adding food wastes can alleviate the negative impact of low C:N ratios on anaerobic digestion.
Collapse
|
17
|
Chu YX, Wang J, Tian G, He R. Reduction in VOC emissions by intermittent aeration in bioreactor landfills with gas-water joint regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118059. [PMID: 34488158 DOI: 10.1016/j.envpol.2021.118059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Landfill mining and reclamation is a new strategy for addressing the lack of space available for new landfills and realizing the sustainable development of landfills. A gas-water joint bioreactor landfill is regulated by injecting water and/or recirculating leachate, and a blasting aeration system to optimize waste stabilization. In this study, four landfill reactors were constructed to investigate the effects of ventilation methods, including continuous (20 h d-1) and intermittent aeration (4 h d-1 in continuous or 2-h aeration per 12 h, twice a day), on the degradation of organic matter and volatile organic compound (VOC) emissions in comparison with traditional landfills. A total of 62 VOCs were detected in the landfill reactors. Among them, halogenated compounds had the highest abundance (39.8-65.4 %), followed by oxygenated compounds, alkanes and alkenes, and aromatic compounds. Both intermittent and continuous aeration could accelerate the degradation of landfilled waste and increase the volatilization rate of VOCs. Compared with intermittent aeration, the degradation of landfilled waste was more quickly in the landfill reactor with continuous aeration. However, intermittent aeration could create anaerobic-anoxic-aerobic conditions, which were conducive to the growth and metabolism of anaerobic and aerobic microorganisms in landfills and thereby reduced more than 63.4 % of total VOC emissions from the landfill reactor with continuous aeration. Moreover, intermittent aeration could reduce the ventilation rate and decrease the cost of aeration by 80 % relative to continuous aeration. Firmicutes, Bacteroidetes, Proteobacteria and Tenericutes predominated in the landfill reactors. The environmental variables including organic matter and VOCs concentrations had significant influences on microbial community structure in the landfilled waste. These findings indicated that intermittent aeration was an effective way to accelerate the stabilization of landfilled waste and reduce the cost and environmental risks in bioreactor landfills with gas-water joint regulation.
Collapse
Affiliation(s)
- Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Guangming Tian
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Rettenmaier R, Thieme N, Streubel J, Di Bello L, Kowollik ML, Huang L, Maus I, Klingl A, Liebl W, Zverlov VV. Variimorphobacter saccharofermentans gen. nov., sp. nov., a new member of the family Lachnospiraceae, isolated from a maize-fed biogas fermenter. Int J Syst Evol Microbiol 2021; 71. [PMID: 34731077 DOI: 10.1099/ijsem.0.005044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain MD1T is an anaerobic, Gram-stain-negative bacterium isolated from a lab-scale biogas fermenter fed with maize silage. It has a rod-shaped morphology with peritrichously arranged appendages and forms long chains of cells and coccoid structures. The colonies of MD1T were white, circular, slightly convex and had a smooth rim. The isolate is mesophilic, displaying growth between 25 and 45 °C with an optimum at 40 °C. It grew at pH values of pH 6.7-8.2 (optimum, pH 7.1) and tolerated the addition of up to 1.5% (w/v) NaCl to the medium. The main cellular fatty acids of MD1T are C14:0 DMA and C16:0. Strain MD1T fermented xylose, arabinose, glucose, galactose, cellobiose, maltose, maltodextrin10, lactose starch, and xylan, producing mainly 2-propanol and acetic acid. The genome of the organism has a total length of 4163427 bp with a G+C content of 38.5 mol%. The two closest relatives to MD1T are Mobilitalea sibirica P3M-3T and Anaerotaenia torta FH052T with 96.44 or 95.8 % 16S rRNA gene sequence similarity and POCP values of 46.58 and 50.58%, respectively. As MD1T showed saccharolytic and xylanolytic properties, it may play an important role in the biogas fermentation process. Closely related variants of MD1T were also abundant in microbial communities involved in methanogenic fermentation. Based on morphological, phylogenetic and genomic data, the isolated strain can be considered as representing a novel genus in the family Lachnospiraceae, for which the name Variimorphobacter saccharofermentans gen. nov., sp. nov. (type strain MD1T=DSM 110715T=JCM 39125T) is proposed.
Collapse
Affiliation(s)
- Regina Rettenmaier
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Nils Thieme
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Johanna Streubel
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Luca Di Bello
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Marie-Louise Kowollik
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Liren Huang
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Andreas Klingl
- Ludwig-Maximilians-Universität Munich, Plant Development & Electron Microscopy, Biocenter LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Liebl
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Vladimir V Zverlov
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany.,Institute of Molecular Genetics, National Research Centre 'Kurchatov Institute', Kurchatov Sq 2, 123182 Moscow, Russia
| |
Collapse
|
19
|
Banu JR, Kumar G, Chattopadhyay I. Management of microbial enzymes for biofuels and biogas production by using metagenomic and genome editing approaches. 3 Biotech 2021; 11:429. [PMID: 34603908 DOI: 10.1007/s13205-021-02962-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Non-renewable fossil fuels such as bitumen, coal, natural gas, oil shale, and petroleum are depleting over the world owing to unrestricted consumption. Biofuels such as biodiesel, biobutanol, bioethanol, and biogas are considered an eco-friendly and cost-effective alternatives of fossil fuels. For energy sustainability, the production of advanced biofuels is required. The advancement of genetic and metabolic engineering in microbial cells played a significant contribution to biofuels overproduction. Essential approaches such as next-generation sequencing technologies and CRISPR/Cas9-mediated genome editing of microbial cells are required for the mass manufacture of biofuels globally. Advanced "omics" approaches are used to construct effective microorganisms for biofuels manufacturing. A new investigation is required to augment the production of lignocellulosic-based biofuels with minimal use of energy. Advanced areas of metabolic engineering are introduced in the manufacture of biofuels by the use of engineered microbial strains. Genetically modified microorganisms are used for the production of biofuels in large quantities at a low-cost.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamilnadu India
| | - Gopalakrishnan Kumar
- Faculty of Science and Technology, Institute of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Forus, Box 8600, 4036 Stavanger, Norway
| | - Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamilnadu India
| |
Collapse
|
20
|
Fakhri H, Arabacı DN, Ünlü İD, Yangin-Gomec C, Ovez S, Aydin S. Addition of Trichocladium canadense to an anaerobic membrane bioreactor: evaluation of the microbial composition and reactor performance. BIOFOULING 2021; 37:711-723. [PMID: 34378470 DOI: 10.1080/08927014.2021.1949002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Membrane bioreactors are powerful systems for wastewater treatment and the removal of toxic compounds. However, membrane biofouling stands in the way of their widespread usage. In this study, the saprophytic fungus Trichocladium canadense was used as the bioaugmentor in an anaerobic membrane bioreactor (AnMBR) and its impact on membrane biofouling, biogas production, the microbial communities of the reactor and removal of the common antibiotics erythromycin (ERY), sulfamethoxazole (SMX) and tetracycline (TET) from synthetic wastewater was investigated. The results indicated that through bioaugmentation with 20% T. canadense, membrane biofouling was slowed by 25%, the chemical oxygen demand removal increased by 16% and a higher efficiency removal of ERY and SMX was achieved. The presence of T. canadense significantly increased the abundance and diversity of the biofilm archaeal community and the bacterial phylum Firmicutes, a known bio-foulant.
Collapse
Affiliation(s)
- Hadi Fakhri
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Duygu Nur Arabacı
- Department of Genetics and Bioengineering, Nişantaşı University, Maslak, Istanbul, Turkey
| | - İlayda Dilara Ünlü
- Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Cigdem Yangin-Gomec
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Suleyman Ovez
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sevcan Aydin
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| |
Collapse
|
21
|
Wang J, Feng K, Lou Y, Lu B, Liu B, Xie G, Ren N, Xing D. The synergistic effect of potassium ferrate and peroxymonosulfate application on biogas production and shaping microbial community during anaerobic co-digestion of a cow manure-cotton straw mixture. BIORESOURCE TECHNOLOGY 2021; 333:125166. [PMID: 33895668 DOI: 10.1016/j.biortech.2021.125166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic co-digestion of a cow manure-cotton straw mixture (CCM) has been shown to promote methanogenesis, but the recalcitrant crystal structure of organic polymers in CCM hinders its hydrolysis during anaerobic digestion (AD). Here, the efficacy of different pretreatment methods based on potassium ferrate (PF) and peroxymonosulfate (PMS) was evaluated to facilitate CCM decomposition and methanogenesis during AD. The maximum lignocellulosic removal rate (62.5%), the highest volatile fatty acids (VFAs) (7769.6 mg/L), and cumulative methane yield (109.4 mL CH4/g VS) were both achieved in PF-pretreated samples after the digestion process. The dominant bacterial populations in PF-pretreated CCM were affiliated with Sideroxydans, Herbinix, Clostridium, and Smithella, which played an important role in the hydrolysis and acidification of CCM. The enrichment of Methanosarcina and Methanobacterium and highly-effective acidogenesis might account for the highest methane yield in the PF-pretreated group.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
22
|
Ejaz U, Sohail M, Ghanemi A. Cellulases: From Bioactivity to a Variety of Industrial Applications. Biomimetics (Basel) 2021; 6:44. [PMID: 34287227 PMCID: PMC8293267 DOI: 10.3390/biomimetics6030044] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
Utilization of microbial enzymes has been widely reported for centuries, but the commercial use of enzymes has been recently adopted. Particularly, cellulases have been utilized in various commercial sectors including agriculture, brewing, laundry, pulp and paper and textile industry. Cellulases of microbial origin have shown their potential application in various commercial sectors including textile, pulp and paper, laundry, brewing, agriculture and biofuel. Cellulases have diversified applications in the food industry, food service, food supply and its preservation. Indeed, cellulases can tenderize fruits, clarify the fruit juices, reduce roughage in dough, hydrolyze the roasted coffee, extract tea polyphenols and essential oils from olives and can increase aroma and taste in food items. However, their role in food industries has by and large remained neglected. The use of immobilized cellulases has further expanded their application in fruit and vegetable processing as it potentiates the catalytic power and reduces the cost of process. Technological and scientific developments will further expand their potential usage in the food industry.
Collapse
Affiliation(s)
- Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
23
|
Carrillo-Reyes J, Buitrón G, Arcila JS, López-Gómez MO. Thermophilic biogas production from microalgae-bacteria aggregates: biogas yield, community variation and energy balance. CHEMOSPHERE 2021; 275:129898. [PMID: 33667771 DOI: 10.1016/j.chemosphere.2021.129898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Biogas production through anaerobic mesophilic digestion is the most straightforward biofuel production route integrated into microalgae-bacteria wastewater treatment plants. Improvement of this biofuel route without adding pretreatment units is possible through the temperature increase. This paper presents a comprehensive evaluation of the transitory effect of different temperatures (35 °C and 55 °C) and hydraulic retention times (HRT) of 15 and 30 d on the long-term methane production using non-pretreated microalgae-bacteria aggregates as a feedstock. The thermophilic transition from mesophilic inoculum adapted to microalgae-bacteria aggregate increased 1.7-fold the methane production (0.41 m3CH4 kgVS-1) at HRT of 30 d. A substantial decrease in the microbial community's diversity present in the anaerobic reactor was observed when thermophilic conditions were applied, explaining the long adaptation period needed. The increase of the operative temperature condition promotes changes in the dominance pathway of methanogenesis from hydrogenotrophic to acetolactic. The energy balance assessment showed a positive net energy ratio when the digester was operated at an HRT of 30 d. A maximum net energy ratio of 1.5 was achieved at mesophilic temperature. This study demonstrated, based on experimental data, that microalgal digestion with an HRT of 30 d favors energy self-sustainability in microalgal wastewater treatment plants.
Collapse
Affiliation(s)
- Julián Carrillo-Reyes
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico.
| | - Juan Sebastián Arcila
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico; Research Group of Technological and Environmental Advances, Universidad Católica de Manizales, Carrera 23 No. 60 - 63, Manizales, Caldas, Colombia
| | - Matías Orlando López-Gómez
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| |
Collapse
|
24
|
Draft Genome Sequence of Mobilitalea sibirica Strain P3M-3 T, the Sole Representative of the Genus Mobilitalea. Microbiol Resour Announc 2021; 10:10/13/e00129-21. [PMID: 33795340 PMCID: PMC8104048 DOI: 10.1128/mra.00129-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobilitalea sibirica strain P3M-3T is a strictly anaerobic, halotolerant, organotrophic bacterium of the family Lachnospiraceae that can utilize various plant-derived polysaccharides as its carbon source. The strain was originally isolated by from a microbial mat in western Siberia (Russia). In this study, we present the draft genome sequence of M. sibirica P3M-3T based on Illumina paired-end sequencing. Mobilitalea sibirica strain P3M-3T is a strictly anaerobic, halotolerant, organotrophic bacterium of the family Lachnospiraceae that can utilize various plant-derived polysaccharides as its carbon source. The strain was originally isolated from a microbial mat in western Siberia (Russia). In this study, we present the draft genome sequence of M. sibirica P3M-3T based on Illumina paired-end sequencing.
Collapse
|
25
|
Rettenmaier R, Kowollik ML, Klingl A, Liebl W, Zverlov V. Ruminiclostridium herbifermentans sp. nov., a mesophilic and moderately thermophilic cellulolytic and xylanolytic bacterium isolated from a lab-scale biogas fermenter fed with maize silage. Int J Syst Evol Microbiol 2021; 71. [PMID: 33555241 DOI: 10.1099/ijsem.0.004692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic bacterial strain, designated MA18T, was isolated from a laboratory-scale biogas fermenter fed with maize silage. Cells stained Gram-negative and performed Gram-negative in the KOH test. The peptidoglycan type was found to be A1y-meso-Dpm direct. The major cellular fatty acids were C14 : 0 iso, C15 : 0 iso, anteiso and iso DMA as well as a C16 unidentified fatty acid. Oxidase and catalase activities were absent. Cells were slightly curved rods, motile, formed spores and measured approximately 0.35 µm in diameter and 3.0-5.0 µm in length. When cultivated on GS2 agar with cellobiose, round, arched, shiny and slightly yellow-pigmented colonies were formed. The isolate was mesophilic to moderately thermophilic with a growth optimum between 40 and 48 °C. Furthermore, neutral pH values were preferred and up to 1.2 % (w/v) NaCl supplemented to the GS2 medium was tolerated. Producing mainly acetate and ethanol, MA18T fermented arabinose, cellobiose, crystalline and amorphous cellulose, ribose, and xylan. The genome of MA18T consists of 4 817 678 bp with a G+C content of 33.16 mol%. In the annotated protein sequences, cellulosomal components were detected. Phylogenetically, MA18T is most closely related to Ruminiclostridium sufflavum DSM 19573T (76.88 % average nucleotide identity of the whole genome sequence; 97.23 % 16S rRNA gene sequence similarity) and can be clustered into one clade with other species of the genus Ruminiclostridium, family Oscillospiraceae, class Clostridia. Based on morphological, physiological and genetic characteristics, this strain represents a novel species in the genus Ruminiclostridium. Therefore, the name Ruminiclostridium herbifermentans sp. nov. is proposed. The type strain is MA18T (=DSM 109966T=JCM 39124T).
Collapse
Affiliation(s)
- Regina Rettenmaier
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Marie-Louise Kowollik
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Andreas Klingl
- LMU Munich, Plant Development & Electron Microscopy, Biocenter LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Liebl
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Vladimir Zverlov
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Kurchatov Sq. 2, 123182 Moscow, Russia.,Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| |
Collapse
|
26
|
Li Y, Zhao J, Achinas S, Zhang Z, Krooneman J, Euverink GJW. The biomethanation of cow manure in a continuous anaerobic digester can be boosted via a bioaugmentation culture containing Bathyarchaeota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141042. [PMID: 32736108 DOI: 10.1016/j.scitotenv.2020.141042] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
A bioaugmentation approach was used to enhance the performance of anaerobic digestion (AD) using cow manure (CM) as the substrate in a continuous system. To obtain the desirable microbial culture for bioaugmentation, a biochemical methane potential test (BMP) was used to evaluate three commonly used inocula namely (1) municipal solid waste (MSW), (2) wastewater treatment plant (WWTP), and (3) cow manure digester (CMMD) for their hydrolytic capacity. The highest lignocellulose removal (56% for cellulose and 50% for hemicellulose) and the most profusion of cellulolytic bacteria were obtained when CM was inoculated with CMMD. CMMD was thus used as the seed inoculum in a continuously operated reactor (Ra) with the fiber fraction of CM as the substrate to further enrich cellulolytic microbes. After 100 days (HRT: 30 days), the Bacteria fraction mainly contained Ruminofilibacter, norank_o_SBR1031, Treponema, Acetivibrio. Surprisingly, the Archaea fraction contained 97% 'cellulolytic archaea' norank_c_Bathyarchaeia (Phylum Bathyarchaeota). This enriched consortium was used in the bioaugmentation experiment. A positive effect of bioaugmentation was verified, with a substantial daily methane yield (DMY) enhancement (24.3%) obtained in the bioaugmented reactor (Rb) (179 mL CH4/gVS/d) than that of the control reactor (Rc) (144 mL CH4/gVS/d) (P < 0.05). Meanwhile, the effluent of Rb enjoyed an improved cellulose reduction (14.7%) than that of Rc, whereas the amount of hemicellulose remained similar in both reactors' effluent. When bioaugmentation stopped, its influence on the hydrolysis and methanogenesis sustained, reflected by an improved DMY (160 mL CH4/gVS/d) and lower cellulose content (53 mg/g TS) in Rb than those in Rc (DMY 144 mL/CH4/gVS/d and cellulose content 63 mg/g TS, respectively). The increased DMY of the continuous reactor seeded with a specifically enriched consortium able to degrade the fiber fraction in CM shows the feasibility of applying bioaugmentation in AD of CM.
Collapse
Affiliation(s)
- Yu Li
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Spyridon Achinas
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Zhenhua Zhang
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Janneke Krooneman
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Gert Jan Willem Euverink
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
27
|
Ziganshina EE, Belostotskiy DE, Bulynina SS, Ziganshin AM. Effect of magnetite on anaerobic digestion of distillers grains and beet pulp: Operation of reactors and microbial community dynamics. J Biosci Bioeng 2020; 131:290-298. [PMID: 33172764 DOI: 10.1016/j.jbiosc.2020.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
It has been previously shown that magnetite (Fe3O4) nanoparticles stimulate the anaerobic digestion process in several anaerobic reactors. Here we evaluate the effect of magnetite nanoparticles on the efficiency of anaerobic digestion of distillers grains with solubles and sugar beet pulp in mesophilic batch experiments. The addition of magnetite nanopowder had a positive effect on the anaerobic digestion process. CH4 was produced faster in the presence of 50 mg of Fe3O4 per 1 g of added total solids than from treatments without addition of Fe3O4. These results demonstrate that the addition of magnetite enhances the methanogenic decomposition of organic acids. Microbial community structure and dynamics were investigated based on bacterial and archaeal 16S rRNA genes, as well as mcrA genes encoding the methyl-CoM reductase. Depending on the reactor, Bacteroides, midas_1138, Petrimonas, unclassified Rikenellaceae (class Bacteroidia), Ruminiclostridium, Proteiniclasticum, Herbinix, and Intestinibacter (class Clostridia) were the main representatives of the bacterial communities. The archaeal communities in well-performed anaerobic reactors were mainly represented by representatives of the genera Methanosarcina and Methanobacterium. Based on our findings, Fe3O4 nanoparticles, when used properly, will improve biomethane production.
Collapse
Affiliation(s)
- Elvira E Ziganshina
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Dmitry E Belostotskiy
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Svetlana S Bulynina
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Ayrat M Ziganshin
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia.
| |
Collapse
|
28
|
Thieme N, Panitz JC, Held C, Lewandowski B, Schwarz WH, Liebl W, Zverlov V. Milling byproducts are an economically viable substrate for butanol production using clostridial ABE fermentation. Appl Microbiol Biotechnol 2020; 104:8679-8689. [PMID: 32915256 PMCID: PMC7502454 DOI: 10.1007/s00253-020-10882-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Butanol is a platform chemical that is utilized in a wide range of industrial products and is considered a suitable replacement or additive to liquid fuels. So far, it is mainly produced through petrochemical routes. Alternative production routes, for example through biorefinery, are under investigation but are currently not at a market competitive level. Possible alternatives, such as acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia are not market-ready to this day either, because of their low butanol titer and the high costs of feedstocks. Here, we analyzed wheat middlings and wheat red dog, two wheat milling byproducts available in large quantities, as substrates for clostridial ABE fermentation. We could identify ten strains that exhibited good butanol yields on wheat red dog. Two of the best ABE producing strains, Clostridium beijerinckii NCIMB 8052 and Clostridium diolis DSM 15410, were used to optimize a laboratory-scale fermentation process. In addition, enzymatic pretreatment of both milling byproducts significantly enhanced ABE production rates of the strains C. beijerinckii NCIMB 8052 and C. diolis DSM 15410. Finally, a profitability analysis was performed for small- to mid-scale ABE fermentation plants that utilize enzymatically pretreated wheat red dog as substrate. The estimations show that such a plant could be commercially successful.Key points• Wheat milling byproducts are suitable substrates for clostridial ABE fermentation.• Enzymatic pretreatment of wheat red dog and middlings increases ABE yield.• ABE fermentation plants using wheat red dog as substrate are economically viable. Graphical abstract.
Collapse
Affiliation(s)
- Nils Thieme
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Johanna C Panitz
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Claudia Held
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
- TDK Electronics AG, Rosenheimer Str. 141e, 81671, Munich, Germany
| | - Birgit Lewandowski
- Fritzmeier Umwelttechnik GmbH & Co KG, Dorfstraße 7, 85653, Aying, Germany
- Electrochaea GmbH, Semmelweisstrasse 3, 82152, Planegg, Germany
| | - Wolfgang H Schwarz
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
- aspratis GmbH, Huebnerstrasse 11, 80637, Munich, Germany
| | - Wolfgang Liebl
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Vladimir Zverlov
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany.
- Institute of Molecular Genetics, RAS, Kurchatov Sq 2, 123128, Moscow, Russia.
| |
Collapse
|
29
|
Rettenmaier R, Lo YK, Schmidt L, Munk B, Lagkouvardos I, Neuhaus K, Schwarz W, Liebl W, Zverlov V. A Novel Primer Mixture for GH48 Genes: Quantification and Identification of Truly Cellulolytic Bacteria in Biogas Fermenters. Microorganisms 2020; 8:E1297. [PMID: 32854333 PMCID: PMC7565076 DOI: 10.3390/microorganisms8091297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022] Open
Abstract
Genomic studies revealed the glycoside hydrolases of family 48 (GH48) as a powerful marker for the identification of truly cellulolytic bacteria. Here we report an improved method for detecting cellulolytic bacteria in lab-scale biogas fermenters by using GH48 genes as a molecular marker in DNA and RNA samples. We developed a mixture of primers for the specific amplification of a GH48 gene region in a broad range of bacteria. Additionally, we built a manually curated reference database containing GH48 gene sequences directly linked to the corresponding taxonomic information. Phylogenetic correlation analysis of GH48 to 16S rRNA gene sequences revealed that GH48 gene sequences with 94% identity belong with high confidence to the same genus. Applying this analysis, GH48 amplicon reads revealed that at mesophilic fermenter conditions, 50-99% of the OTUs appear to belong to novel taxa. In contrast, at thermophilic conditions, GH48 gene sequences from the genus Hungateiclostridium dominated with 60-91% relative abundance. The novel primer combinations enabled detection and relative quantification of a wide spectrum of GH48 genes in cellulolytic microbial communities. Deep phylogenetic correlation analysis and a simplified taxonomic identification with the novel database facilitate identification of cellulolytic organisms, including the detection of novel taxa in biogas fermenters.
Collapse
Affiliation(s)
- Regina Rettenmaier
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (Y.K.L.); (L.S.); (W.L.)
| | - Yat Kei Lo
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (Y.K.L.); (L.S.); (W.L.)
| | - Larissa Schmidt
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (Y.K.L.); (L.S.); (W.L.)
| | - Bernhard Munk
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany;
| | - Ilias Lagkouvardos
- ZIEL—Core Facility Microbiome, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (I.L.); (K.N.)
| | - Klaus Neuhaus
- ZIEL—Core Facility Microbiome, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany; (I.L.); (K.N.)
| | - Wolfgang Schwarz
- Aspratis GmbH. Munich, Germany, Hübnerstr. 11, 80637 Munich, Germany;
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (Y.K.L.); (L.S.); (W.L.)
| | - Vladimir Zverlov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (Y.K.L.); (L.S.); (W.L.)
- Institute of Molecular Genetics of National Research Centre (Kurchatov Institute), Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
30
|
Rettenmaier R, Schneider M, Munk B, Lebuhn M, Jünemann S, Sczyrba A, Maus I, Zverlov V, Liebl W. Importance of Defluviitalea raffinosedens for Hydrolytic Biomass Degradation in Co-Culture with Hungateiclostridium thermocellum. Microorganisms 2020; 8:E915. [PMID: 32560349 PMCID: PMC7355431 DOI: 10.3390/microorganisms8060915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 01/02/2023] Open
Abstract
Bacterial hydrolysis of polysaccharides is an important step for the production of sustainable energy, for example during the conversion of plant biomass to methane-rich biogas. Previously, Hungateiclostridium thermocellum was identified as cellulolytic key player in thermophilic biogas microbiomes with a great frequency as an accompanying organism. The aim of this study was to physiologically characterize a recently isolated co-culture of H. thermocellum and the saccharolytic bacterium Defluviitalea raffinosedens from a laboratory-scale biogas fermenter. The characterization focused on cellulose breakdown by applying the measurement of cellulose hydrolysis, production of metabolites, and the activity of secreted enzymes. Substrate degradation and the production of volatile metabolites was considerably enhanced when both organisms acted synergistically. The metabolic properties of H. thermocellum have been studied well in the past. To predict the role of D. raffinosedens in this bacterial duet, the genome of D. raffinosedens was sequenced for the first time. Concomitantly, to deduce the prevalence of D. raffinosedens in anaerobic digestion, taxonomic composition and transcriptional activity of different biogas microbiomes were analyzed in detail. Defluviitalea was abundant and metabolically active in reactor operating at highly efficient process conditions, supporting the importance of this organism for the hydrolysis of the raw substrate.
Collapse
Affiliation(s)
- Regina Rettenmaier
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (M.S.); (W.L.)
| | - Martina Schneider
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (M.S.); (W.L.)
| | - Bernhard Munk
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany; (B.M.); (M.L.)
| | - Michael Lebuhn
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany; (B.M.); (M.L.)
| | - Sebastian Jünemann
- Center for Biotechnology (CeBiTec), Universitätsstr. 27, 33615 Bielefeld, Germany;
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Alexander Sczyrba
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Universitätsstr. 27, 33615 Bielefeld, Germany;
| | - Vladimir Zverlov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (M.S.); (W.L.)
- Institute of Molecular Genetics, RAS, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (R.R.); (M.S.); (W.L.)
| |
Collapse
|
31
|
Massello FL, Chan CS, Chan KG, Goh KM, Donati E, Urbieta MS. Meta-Analysis of Microbial Communities in Hot Springs: Recurrent Taxa and Complex Shaping Factors beyond pH and Temperature. Microorganisms 2020; 8:microorganisms8060906. [PMID: 32560103 PMCID: PMC7356817 DOI: 10.3390/microorganisms8060906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
The study of microbial communities from extreme environments is a fascinating topic. With every study, biologists and ecologists reveal interesting facts and questions that dispel the old belief that these are inhospitable environments. In this work, we assess the microbial diversity of three hot springs from Neuquén, Argentina, using high-throughput amplicon sequencing. We predicted a distinct metabolic profile in the acidic and the circumneutral samples, with the first ones being dominated by chemolithotrophs and the second ones by chemoheterotrophs. Then, we collected data of the microbial communities of hot springs around the world in an effort to comprehend the roles of pH and temperature as shaping factors. Interestingly, there was a covariation between both parameters and the phylogenetic distance between communities; however, neither of them could explain much of the microbial profile in an ordination model. Moreover, there was no correlation between alpha diversity and these parameters. Therefore, the microbial communities' profile seemed to have complex shaping factors beyond pH and temperature. Lastly, we looked for taxa associated with different environmental conditions. Several such taxa were found. For example, Hydrogenobaculum was frequently present in acidic springs, as was the Sulfolobaceae family; on the other hand, Candidatus Hydrothermae phylum was strongly associated with circumneutral conditions. Interestingly, some singularities related to sites featuring certain taxa were also observed.
Collapse
Affiliation(s)
- Francisco L. Massello
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
| | - Chia Sing Chan
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (C.S.C.); (K.M.G.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (C.S.C.); (K.M.G.)
| | - Edgardo Donati
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
| | - María Sofía Urbieta
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
- Correspondence:
| |
Collapse
|
32
|
Rettenmaier R, Liebl W, Zverlov VV. Anaerosphaera multitolerans sp. nov., a salt-tolerant member of the family Peptoniphilaceae isolated from a mesophilically operated biogas fermenter fed with maize silage. Int J Syst Evol Microbiol 2020; 70:1217-1223. [PMID: 31793857 DOI: 10.1099/ijsem.0.003903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work, we succeeded in the isolation of a novel species out of a mesophilically operated biogas fermenter fed with maize silage. Strains GS7-6-2T, GS-7K2 and GS-0K3 were isolated from three individual enrichment cultures. 16S rRNA gene sequence comparisons indicated that the isolates had 100 % sequence identity and were most closely related to Anaerosphaera amininiphila WN036T, with which they shared a 16S rRNA gene sequence similarity of 93.1 %. As a representative, strain GS7-6-2T was further characterized. Strain GS7-6-2T was mesophilic with its growth optimum at 30 °C and a pH range from pH 5.5 to 9.5 (optimum, pH 6.0-8.5). Cells were spherical and sometimes arranged into short chains. Growth was possible with up to 3.6 % (w/v) NaCl, but best without additional NaCl. Strain GS7-6-2T produced butyric acid and acetic acid as main fermentation products while growing on GS2 medium. The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C16 : 1ω9c. The Gram-stain result was negative. The DNA G+C content was 32.8 mol%. Strain GS7-6-2T was able to ferment 16 (comprising four carbohydrates, five amino acids, four organic acids and three nucleotides) out of the 95 tested substrates. Due to the ecological, genetic and phenotypic differences from the most closely affiliated and validly named organism, A. amininiphila WN036T, the isolates represent a novel species within the genus Anaerosphaera, family Peptoniphilaceae, for which the name Anaerosphaera multitolerans sp. nov. is proposed. The type strain is GS7-6-2T (=DSM 107952T=CECT 9705T).
Collapse
Affiliation(s)
- Regina Rettenmaier
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Vladimir V Zverlov
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany.,Institute of Molecular Genetics, RAS, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
33
|
Lackner N, Wagner AO, Markt R, Illmer P. pH and Phosphate Induced Shifts in Carbon Flow and Microbial Community during Thermophilic Anaerobic Digestion. Microorganisms 2020; 8:E286. [PMID: 32093251 PMCID: PMC7074938 DOI: 10.3390/microorganisms8020286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/11/2023] Open
Abstract
pH is a central environmental factor influencing CH4 production from organic substrates, as every member of the complex microbial community has specific pH requirements. Here, we show how varying pH conditions (5.0-8.5, phosphate buffered) and the application of a phosphate buffer per se induce shifts in the microbial community composition and the carbon flow during nine weeks of thermophilic batch digestion. Beside monitoring the methane production as well as volatile fatty acid concentrations, amplicon sequencing of the 16S rRNA gene was conducted. The presence of 100 mM phosphate resulted in reduced CH4 production during the initial phase of the incubation, which was characterized by a shift in the dominant methanogenic genera from a mixed Methanosarcina and Methanoculleus to a pure Methanoculleus system. In buffered samples, acetate strongly accumulated in the beginning of the batch digestion and subsequently served as a substrate for methanogens. Methanogenesis was permanently inhibited at pH values ≤5.5, with the maximum CH4 production occurring at pH 7.5. Adaptations of the microbial community to the pH variations included shifts in the archaeal and bacterial composition, as less competitive organisms with a broad pH range were able to occupy metabolic niches at unfavorable pH conditions.
Collapse
Affiliation(s)
- Nina Lackner
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria; (A.O.W.); (R.M.); (P.I.)
| | | | | | | |
Collapse
|
34
|
Abendroth C, Latorre-Pérez A, Porcar M, Simeonov C, Luschnig O, Vilanova C, Pascual J. Shedding light on biogas: Phototrophic biofilms in anaerobic digesters hold potential for improved biogas production. Syst Appl Microbiol 2019; 43:126024. [PMID: 31708159 DOI: 10.1016/j.syapm.2019.126024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
Abstract
Conventional anaerobic digesters intended for the production of biogas usually operate in complete darkness. Therefore, little is known about the effect of light on their microbial communities. In the present work, 16S rRNA gene amplicon Nanopore sequencing and shotgun metagenomic sequencing were used to study the taxonomic and functional structure of the microbial community forming a biofilm on the inner wall of a laboratory-scale transparent anaerobic biodigester illuminated with natural sunlight. The biofilm was composed of microorganisms involved in the four metabolic processes needed for biogas production, and it was surprisingly rich in Rhodopseudomonas faecalis, a versatile bacterium able to carry out photoautotrophic metabolism when grown under anaerobic conditions. The results suggested that this bacterium, which is able to fix carbon dioxide, could be considered for use in transparent biogas fermenters in order to contribute to the production of optimized biogas with a higher CH4:CO2 ratio than the biogas produced in regular, opaque digesters. To the best of our knowledge, this is the first study characterising the phototrophic biofilm associated with illuminated bioreactors.
Collapse
Affiliation(s)
- Christian Abendroth
- Robert Boyle Institut e.V., Jena, Germany; Technische Universität Dresden, Chair of Waste Management, Pratzschwitzer Str. 15, Pirna, Germany
| | | | - Manuel Porcar
- Darwin Bioprospecting Excellence, S.L., Paterna, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Valencia, Spain
| | | | | | | | - Javier Pascual
- Darwin Bioprospecting Excellence, S.L., Paterna, Valencia, Spain.
| |
Collapse
|
35
|
Hungateiclostridium mesophilum sp. nov., a mesophilic, cellulolytic and spore-forming bacterium isolated from a biogas fermenter fed with maize silage. Int J Syst Evol Microbiol 2019; 69:3567-3573. [DOI: 10.1099/ijsem.0.003663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Rettenmaier R, Duerr C, Neuhaus K, Liebl W, Zverlov VV. Comparison of sampling techniques and different media for the enrichment and isolation of cellulolytic organisms from biogas fermenters. Syst Appl Microbiol 2019; 42:481-487. [DOI: 10.1016/j.syapm.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022]
|
37
|
Kim W, Yang SH, Park MJ, Oh J, Lee JH, Kwon KK. Anaerosacchariphilus polymeriproducens gen. nov., sp. nov., an anaerobic bacterium isolated from a salt field. Int J Syst Evol Microbiol 2019; 69:1934-1940. [PMID: 31038448 DOI: 10.1099/ijsem.0.003404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative oval-rod-shaped, spore-forming anaerobic bacterium, designated as strain MCWD5T, was isolated from sediment of a salt pond in the Republic of Korea (35° 7' 18″ N 126° 19' 4″ E). The 16S rRNA gene sequence analysis revealed that strain MCWD5T had low similarity values to members in the family Lachnospiraceae, such as Robinsoniella peoriensis PPC31T (94.8 %), Ruminococcusgauvreauii CCRI-16110T (94.2 %) and Lachnotalea glycerini DLD10T (94.0 %), and its phylogenetic position is unstable. The strain could grow at 20-42 °C (optimum, 38-42 °C), pH 5.5-10.0 (pH 7.0) and with 0-6 % (2.0 %) NaCl. Strain MCWD5T could not use nitrate, nitrite, sulfate or sulfite as electron acceptors. The strain could utilize various carbohydrates, such as arabinose, cellobiose, glucose, etc., and polymers such as pectin and starch. The major fatty acids of strain MCWD5T were C14 : 0, C16 : 0, C16 : 1ω7c, C18 : 1ω7c DMA and summed feature 8 (C17 : 1ω8c and/or C17 : 2), which was clearly different from those of related genera. The major polar lipids were diphosphatidyglycerol, phosphatidyglycerol and an unknown phospholipid. Based on the results of phylogenetic, physiologic and chemotaxonomic studies, Anaerosacchariphilus polymeriproducens gen. nov., sp. nov. with the type strain MCWD5T (=KCTC 15595T=DSM 105757T) is proposed in the family Lachnospiraceae.
Collapse
Affiliation(s)
- Wonduck Kim
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea.,†Present address: Genome and Company, Innovalley A-801, Pangyo-ro 253, Seongnam, Republic of Korea
| | - Sung-Hyun Yang
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Mi-Jeong Park
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea.,2KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Jihye Oh
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Jung-Hyun Lee
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Kae Kyoung Kwon
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea.,2KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
38
|
Draft Genome Sequence of Anaerosphaera sp. Strain GS7-6-2, a Coccal Bacterium Isolated from a Biogas-Related Environment. Microbiol Resour Announc 2019; 8:8/17/e00205-19. [PMID: 31023818 PMCID: PMC6486247 DOI: 10.1128/mra.00205-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Strain GS7-6-2 was isolated from a mesophilically operated biogas fermenter. The 16S rRNA gene sequence (93.27% identity to Anaerosphaera aminiphila WN036T) indicated that GS7-6-2 represents a putative novel species within the genus Anaerosphaera (family Peptoniphilaceae). Strain GS7-6-2 was isolated from a mesophilically operated biogas fermenter. The 16S rRNA gene sequence (93.27% identity to Anaerosphaera aminiphila WN036T) indicated that GS7-6-2 represents a putative novel species within the genus Anaerosphaera (family Peptoniphilaceae). Here, we report the draft genome sequence of GS7-6-2 as established by Illumina paired-end sequencing.
Collapse
|
39
|
Loderer C, Holmfeldt K, Lundin D. Non-host class II ribonucleotide reductase in Thermus viruses: sequence adaptation and host interaction. PeerJ 2019; 7:e6700. [PMID: 30993041 PMCID: PMC6459318 DOI: 10.7717/peerj.6700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/01/2019] [Indexed: 01/14/2023] Open
Abstract
Ribonucleotide reductases (RNR) are essential enzymes for all known life forms. Their current taxonomic distribution suggests extensive horizontal gene transfer e.g., by processes involving viruses. To improve our understanding of the underlying processes, we characterized a monomeric class II RNR (NrdJm) enzyme from a Thermus virus, a subclass not present in any sequenced Thermus spp. genome. Phylogenetic analysis revealed a distant origin of the nrdJm gene with the most closely related sequences found in mesophiles or moderate thermophiles from the Firmicutes phylum. GC-content, codon usage and the ratio of coding to non-coding substitutions (dN/dS) suggest extensive adaptation of the gene in the virus in terms of nucleotide composition and amino acid sequence. The NrdJm enzyme is a monomeric B12-dependent RNR with nucleoside triphosphate specificity. It exhibits a temperature optimum at 60–70 °C, which is in the range of the growth optimum of Thermus spp. Experiments in combination with the Thermus thermophilus thioredoxin system show that the enzyme is able to retrieve electrons from the host NADPH pool via host thioredoxin and thioredoxin reductases. This is different from other characterized viral RNRs such as T4 phage RNR, where a viral thioredoxin is present. We hence show that the monomeric class II RNR, present in Thermus viruses, was likely transferred from an organism phylogenetically distant from the one they were isolated from, and adapted to the new host in genetic signature and amino acids sequence.
Collapse
Affiliation(s)
- Christoph Loderer
- Institute for Microbiology, Technische Universität Dresden, Dresden, Saxony, Germany
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial model Systems-EEMiS, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial model Systems-EEMiS, Linnaeus University, Kalmar, Sweden.,Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
40
|
Multidisciplinary involvement and potential of thermophiles. Folia Microbiol (Praha) 2018; 64:389-406. [PMID: 30386965 DOI: 10.1007/s12223-018-0662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The full biotechnological exploitation of thermostable enzymes in industrial processes is necessary for their commercial interest and industrious value. The heat-tolerant and heat-resistant enzymes are a key for efficient and cost-effective translation of substrates into useful products for commercial applications. The thermophilic, hyperthermophilic, and microorganisms adapted to extreme temperatures (i.e., low-temperature lovers or psychrophiles) are a rich source of thermostable enzymes with broad-ranging thermal properties, which have structural and functional stability to underpin a variety of technologies. These enzymes are under scrutiny for their great biotechnological potential. Temperature is one of the most critical parameters that shape microorganisms and their biomolecules for stability under harsh environmental conditions. This review describes in detail the sources of thermophiles and thermostable enzymes from prokaryotes and eukaryotes (microbial cell factories). Furthermore, the review critically examines perspectives to improve modern biocatalysts, its production and performance aiming to increase their value for biotechnology through higher standards, specificity, resistance, lowing costs, etc. These thermostable and thermally adapted extremophilic enzymes have been used in a wide range of industries that span all six enzyme classes. Thus, in particular, target of this review paper is to show the possibility of both high-value-low-volume (e.g., fine-chemical synthesis) and low-value-high-volume by-products (e.g., fuels) by minimizing changes to current industrial processes.
Collapse
|
41
|
Broeker J, Mechelke M, Baudrexl M, Mennerich D, Hornburg D, Mann M, Schwarz WH, Liebl W, Zverlov VV. The hemicellulose-degrading enzyme system of the thermophilic bacterium Clostridium stercorarium: comparative characterisation and addition of new hemicellulolytic glycoside hydrolases. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:229. [PMID: 30159029 PMCID: PMC6106730 DOI: 10.1186/s13068-018-1228-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND The bioconversion of lignocellulosic biomass in various industrial processes, such as the production of biofuels, requires the degradation of hemicellulose. Clostridium stercorarium is a thermophilic bacterium, well known for its outstanding hemicellulose-degrading capability. Its genome comprises about 50 genes for partially still uncharacterised thermostable hemicellulolytic enzymes. These are promising candidates for industrial applications. RESULTS To reveal the hemicellulose-degrading potential of 50 glycoside hydrolases, they were recombinantly produced and characterised. 46 of them were identified in the secretome of C. stercorarium cultivated on cellobiose. Xylanases Xyn11A, Xyn10B, Xyn10C, and cellulase Cel9Z were among the most abundant proteins. The secretome of C. stercorarium was active on xylan, β-glucan, xyloglucan, galactan, and glucomannan. In addition, the recombinant enzymes hydrolysed arabinan, mannan, and galactomannan. 20 enzymes are newly described, degrading xylan, galactan, arabinan, mannan, and aryl-glycosides of β-d-xylose, β-d-glucose, β-d-galactose, α-l-arabinofuranose, α-l-rhamnose, β-d-glucuronic acid, and N-acetyl-β-d-glucosamine. The activities of three enzymes with non-classified glycoside hydrolase (GH) family modules were determined. Xylanase Xyn105F and β-d-xylosidase Bxl31D showed activities not described so far for their GH families. 11 of the 13 polysaccharide-degrading enzymes were most active at pH 5.0 to pH 6.5 and at temperatures of 57-76 °C. Investigation of the substrate and product specificity of arabinoxylan-degrading enzymes revealed that only the GH10 xylanases were able to degrade arabinoxylooligosaccharides. While Xyn10C was inhibited by α-(1,2)-arabinosylations, Xyn10D showed a degradation pattern different to Xyn10B and Xyn10C. Xyn11A released longer degradation products than Xyn10B. Both tested arabinose-releasing enzymes, Arf51B and Axh43A, were able to hydrolyse single- as well as double-arabinosylated xylooligosaccharides. CONCLUSIONS The obtained results lead to a better understanding of the hemicellulose-degrading capacity of C. stercorarium and its involved enzyme systems. Despite similar average activities measured by depolymerisation tests, a closer look revealed distinctive differences in the activities and specificities within an enzyme class. This may lead to synergistic effects and influence the enzyme choice for biotechnological applications. The newly characterised glycoside hydrolases can now serve as components of an enzyme platform for industrial applications in order to reconstitute synthetic enzyme systems for complete and optimised degradation of defined polysaccharides and hemicellulose.
Collapse
Affiliation(s)
- Jannis Broeker
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Matthias Mechelke
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Melanie Baudrexl
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Denise Mennerich
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Daniel Hornburg
- Present Address: School of Medicine, Stanford University, Stanford, CA 94305 USA
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang H. Schwarz
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Wolfgang Liebl
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, Moscow, 123182 Russia
| |
Collapse
|
42
|
Zheng G, Wang T, Niu M, Chen X, Liu C, Wang Y, Chen T. Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:783-791. [PMID: 29626822 DOI: 10.1016/j.envpol.2018.03.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
The urbanization and industrialization of cities around the coastal region of the Bohai Sea have produced large amounts of sewage sludge from sewage treatment plants. Research on the biodegradation of nonylphenol (NP) and the influencing factors of such biodegradation during sewage sludge composting is important to control pollution caused by land application of sewage sludge. The present study investigated the effect of aeration on NP biodegradation and the microbe community during aerobic composting under two intermittent aeration treatments in a full-scale plant of sewage sludge, sawdust, and returned compost at a ratio of 6:3:1. The results showed that 65% of NP was biodegraded and that Bacillus was the dominant bacterial species in the mesophilic phase. The amount of NP biodegraded in the mesophilic phase was 68.3%, which accounted for 64.6% of the total amount of biodegraded NP. The amount of NP biodegraded under high-volume aeration was 19.6% higher than that under low-volume aeration. Bacillus was dominant for 60.9% of the composting period under high-volume aeration, compared to 22.7% dominance under low-volume aeration. In the thermophilic phase, high-volume aeration promoted the biodegradation of NP and Bacillus remained the dominant bacterial species. In the cooling and stable phases, the contents of NP underwent insignificant change while different dominant bacteria were observed in the two treatments. NP was mostly biodegraded by Bacillus, and the rate of biodegradation was significantly correlated with the abundance of Bacillus (r = 0.63, p < 0.05). Under aeration, Bacillus remained the dominant bacteria, especially in the thermal phase; this phenomenon possibly increased the biodegradation efficiency of NP. High-volume aeration accelerated the activity and prolonged the survival of Bacillus. The risk of organic pollution could be decreased prior to sewage sludge reuse in soil by adjusting the ventilation strategies of aerobic compost measurements.
Collapse
Affiliation(s)
- Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tieyu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingjie Niu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xijuan Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changli Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuewei Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 2018; 102:5045-5063. [PMID: 29713790 PMCID: PMC5959977 DOI: 10.1007/s00253-018-8976-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism's genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets.
Collapse
Affiliation(s)
- Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Sandra Off
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Paul Scherer
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Michael Klocke
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
44
|
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 2018. [PMID: 29713790 DOI: 10.1007/s00253-018-8976-7)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism's genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets.
Collapse
Affiliation(s)
- Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Sandra Off
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Paul Scherer
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Michael Klocke
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
45
|
Tsavkelova E, Prokudina L, Egorova M, Leontieva M, Malakhova D, Netrusov A. The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Hirano SI, Matsumoto N. Analysis of a bio-electrochemical reactor containing carbon fiber textiles for the anaerobic digestion of tomato plant residues. BIORESOURCE TECHNOLOGY 2018; 249:809-817. [PMID: 29136936 DOI: 10.1016/j.biortech.2017.09.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
A bio-electrochemical system packed with supporting material can promote anaerobic digestion for several types of organic waste. To expand the target organic matters of a BES, tomato plant residues (TPRs), generated year-round as agricultural and cellulosic waste, were treated using three methanogenic reactors: a continuous stirred tank reactor (CSTR), a carbon fiber textile (CFT) reactor, and a bio-electrochemical reactor (BER) including CFT with electrochemical regulation (BER + CFT). CFT had positive effects on methane fermentation and methanogen abundance. The microbial population stimulated by electrochemical regulation, including hydrogenotrophic methanogens, cellulose-degrading bacteria, and acetate-degrading bacteria, suppressed acetate accumulation, as evidenced by the low acetate concentration in the suspended fraction in the BER + CFT. These results indicated that the microbial community in the BER + CFT facilitated the efficient decomposition of TPR and its intermediates such as acetate to methane.
Collapse
Affiliation(s)
- Shin-Ichi Hirano
- Environmental Chemistry Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan.
| | - Norio Matsumoto
- Environmental Chemistry Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
47
|
Luo L, Hu M, Li Y, Chen Y, Zhang S, Chen J, Wang Y, Lu B, Xie Z, Liao Q. Association between metabolic profile and microbiomic changes in rats with functional dyspepsia. RSC Adv 2018; 8:20166-20181. [PMID: 35541663 PMCID: PMC9080732 DOI: 10.1039/c8ra01432a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
Functional dyspepsia (FD) is one of the most prevalent functional gastrointestinal disorders (FGIDs). Accumulated evidence has shown that FD is a metabolic disease that might relate to gut microbiota, but the relationship between microbiome and the host metabolic changes is still uncertain. To clarify the host–microbiota co-metabolism disorders related to FD, an integrated approach combining 1H NMR-based metabolomics profiles, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rRNA gene sequencing was used to investigate the relationship among FD, metabolism of gut microbiota and the host. 34 differential urinary metabolites and 19 differential fecal metabolites, which affected the metabolism of energy, amino acids, nucleotides and short chain fatty acids (SCFAs), were found to have associated with FD. Based on the receiver operating characteristic (ROC) analysis, 10 biomarkers were screened out as diagnostic markers of FD. Meanwhile, the concentrations of Flintibacter, Parasutterella, Eubacterium and Bacteroides significantly increased in the FD group, whereas Eisenbergiella, Butyrivibrio, Intestinimonas, Saccharofermentans, Acetivibrio, Lachnoanaerobaculum and Herbinix significantly decreased. Furthermore, the above altered microbiota revealed a strong correlation with the intermediate products of the tricarboxylic acid (TCA) cycle, amino acids and SCFAs. In our study, it suggested that the energy metabolism was mainly disturbed in FD rats. Our findings also demonstrated that FD might be the result of gut microbiota and metabolism disorders, which was potentially valuable to enrich our understanding of the pathogenesis of FD. Functional dyspepsia (FD) is one of the most prevalent functional gastrointestinal disorders (FGIDs). The aim of our study was to evaluate the effects of FD on the microbiota and its metabolic profiles in feces and urine.![]()
Collapse
Affiliation(s)
- Liang Luo
- School of Pharmaceutical Sciences
- Guangzhou University of Chinese Medicine
- Guangzhou
- China
| | - Minghua Hu
- Infinitus (China) Company Ltd
- Guangzhou
- China
| | - Yuan Li
- School of Pharmaceutical Sciences
- Guangzhou University of Chinese Medicine
- Guangzhou
- China
| | - Yongxiong Chen
- School of Pharmaceutical Sciences
- Guangzhou University of Chinese Medicine
- Guangzhou
- China
| | - Shaobao Zhang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Guangzhou
- China
| | - Jiahui Chen
- Key Laboratory of State Administration of Traditional Chinese Medicine
- Sunshine Lake Pharma Company Ltd
- Dongguan
- China
| | | | - Biyu Lu
- School of Pharmaceutical Sciences
- Guangzhou University of Chinese Medicine
- Guangzhou
- China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Guangzhou
- China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences
- Guangzhou University of Chinese Medicine
- Guangzhou
- China
| |
Collapse
|
48
|
Kusada H, Kameyama K, Meng XY, Kamagata Y, Tamaki H. Fusimonas intestini gen. nov., sp. nov., a novel intestinal bacterium of the family Lachnospiraceae associated with diabetes in mice. Sci Rep 2017; 7:18087. [PMID: 29273795 PMCID: PMC5741734 DOI: 10.1038/s41598-017-18122-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Our previous study shows that an anaerobic intestinal bacterium strain AJ110941P contributes to type 2 diabetes development in mice. Here we phylogenetically and physiologically characterized this unique mouse gut bacterium. The 16S rRNA gene analysis revealed that the strain belongs to the family Lachnospiraceae but shows low sequence similarities ( < 92.5%) to valid species, and rather formed a distinct cluster with uncultured mouse gut bacteria clones. In metagenomic database survey, the 16S sequence of AJ110941P also matched with mouse gut-derived datasets (56% of total datasets) with > 99% similarity, suggesting that AJ110941P-related bacteria mainly reside in mouse digestive tracts. Strain AJ110941P shared common physiological traits (e.g., Gram-positive, anaerobic, mesophilic, and fermentative growth with carbohydrates) with relative species of the Lachnospiraceae. Notably, the biofilm-forming capacity was found in both AJ110941P and relative species. However, AJ110941P possessed far more strong ability to produce biofilm than relative species and formed unique structure of extracellular polymeric substances. Furthermore, AJ110941P cells are markedly long fusiform-shaped rods (9.0–62.5 µm) with multiple flagella that have never been observed in any other Lachnospiraceae members. Based on the phenotypic and phylogenetic features, we propose a new genus and species, Fusimonas intestini gen. nov., sp. nov. for strain AJ110941P (FERM BP-11443).
Collapse
Affiliation(s)
- Hiroyuki Kusada
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Keishi Kameyama
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
49
|
Mechelke M, Koeck DE, Broeker J, Roessler B, Krabichler F, Schwarz WH, Zverlov VV, Liebl W. Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica-Six new xylanases, three arabinofuranosidases and one xylosidase. J Biotechnol 2017; 257:122-130. [PMID: 28450260 DOI: 10.1016/j.jbiotec.2017.04.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
Herbinix hemicellulosilytica is a newly isolated, gram-positive, anaerobic bacterium with extensive hemicellulose-degrading capabilities obtained from a thermophilic biogas reactor. In order to exploit its potential as a source for new industrial arabinoxylan-degrading enzymes, six new thermophilic xylanases, four from glycoside hydrolase family 10 (GH10) and two from GH11, three arabinofuranosidases (1x GH43, 2x GH51) and one β-xylosidase (GH43) were selected. The recombinantly produced enzymes were purified and characterized. All enzymes were active on different xylan-based polysaccharides and most of them showed temperature-vs-activity profiles with maxima around 55-65°C. HPAEC-PAD analysis of the hydrolysates of wheat arabinoxylan and of various purified xylooligosaccharides (XOS) and arabinoxylooligosaccharides (AXOS) was used to investigate their substrate and product specificities: among the GH10 xylanases, XynB showed a different product pattern when hydrolysing AXOS compared to XynA, XynC, and XynD. None of the GH11 xylanases was able to degrade any of the tested AXOS. All three arabinofuranosidases, ArfA, ArfB and ArfC, were classified as type AXH-m,d enzymes. None of the arabinofuranosidases was able to degrade the double-arabinosylated xylooligosaccharides XA2+3XX. β-Xylosidase XylA (GH43) was able to degrade unsubstituted XOS, but showed limited activity to degrade AXOS.
Collapse
Affiliation(s)
- M Mechelke
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - D E Koeck
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - J Broeker
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - B Roessler
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - F Krabichler
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - W H Schwarz
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - V V Zverlov
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany; Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, 123182 Moscow Russia
| | - W Liebl
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany.
| |
Collapse
|
50
|
Maus I, Bremges A, Stolze Y, Hahnke S, Cibis KG, Koeck DE, Kim YS, Kreubel J, Hassa J, Wibberg D, Weimann A, Off S, Stantscheff R, Zverlov VV, Schwarz WH, König H, Liebl W, Scherer P, McHardy AC, Sczyrba A, Klocke M, Pühler A, Schlüter A. Genomics and prevalence of bacterial and archaeal isolates from biogas-producing microbiomes. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:264. [PMID: 29158776 PMCID: PMC5684752 DOI: 10.1186/s13068-017-0947-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 11/01/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND To elucidate biogas microbial communities and processes, the application of high-throughput DNA analysis approaches is becoming increasingly important. Unfortunately, generated data can only partialy be interpreted rudimentary since databases lack reference sequences. RESULTS Novel cellulolytic, hydrolytic, and acidogenic/acetogenic Bacteria as well as methanogenic Archaea originating from different anaerobic digestion communities were analyzed on the genomic level to assess their role in biomass decomposition and biogas production. Some of the analyzed bacterial strains were recently described as new species and even genera, namely Herbinix hemicellulosilytica T3/55T, Herbinix luporum SD1DT, Clostridium bornimense M2/40T, Proteiniphilum saccharofermentans M3/6T, Fermentimonas caenicola ING2-E5BT, and Petrimonas mucosa ING2-E5AT. High-throughput genome sequencing of 22 anaerobic digestion isolates enabled functional genome interpretation, metabolic reconstruction, and prediction of microbial traits regarding their abilities to utilize complex bio-polymers and to perform specific fermentation pathways. To determine the prevalence of the isolates included in this study in different biogas systems, corresponding metagenome fragment mappings were done. Methanoculleus bourgensis was found to be abundant in three mesophilic biogas plants studied and slightly less abundant in a thermophilic biogas plant, whereas Defluviitoga tunisiensis was only prominent in the thermophilic system. Moreover, several of the analyzed species were clearly detectable in the mesophilic biogas plants, but appeared to be only moderately abundant. Among the species for which genome sequence information was publicly available prior to this study, only the species Amphibacillus xylanus, Clostridium clariflavum, and Lactobacillus acidophilus are of importance for the biogas microbiomes analyzed, but did not reach the level of abundance as determined for M. bourgensis and D. tunisiensis. CONCLUSIONS Isolation of key anaerobic digestion microorganisms and their functional interpretation was achieved by application of elaborated cultivation techniques and subsequent genome analyses. New isolates and their genome information extend the repository covering anaerobic digestion community members.
Collapse
Affiliation(s)
- Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Andreas Bremges
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunscheig, Inhoffenstraße 7, 38124 Brunswick, Germany
| | - Yvonne Stolze
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Sarah Hahnke
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Katharina G. Cibis
- Johannes Gutenberg-University, Institute of Microbiology and Wine Research, Johann-Joachim Becherweg 15, 55128 Mainz, Germany
| | - Daniela E. Koeck
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Yong S. Kim
- Faculty Life Sciences/Research Center ‘Biomass Utilization Hamburg’, University of Applied Sciences Hamburg (HAW), Ulmenliet 20, 21033 Hamburg-Bergedorf, Germany
| | - Jana Kreubel
- Johannes Gutenberg-University, Institute of Microbiology and Wine Research, Johann-Joachim Becherweg 15, 55128 Mainz, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Aaron Weimann
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
| | - Sandra Off
- Faculty Life Sciences/Research Center ‘Biomass Utilization Hamburg’, University of Applied Sciences Hamburg (HAW), Ulmenliet 20, 21033 Hamburg-Bergedorf, Germany
| | - Robbin Stantscheff
- Johannes Gutenberg-University, Institute of Microbiology and Wine Research, Johann-Joachim Becherweg 15, 55128 Mainz, Germany
- Institut für Forensische Genetik GmbH, Im Derdel 8, 48168 Münster, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, Moscow, 123182 Russia
| | - Wolfgang H. Schwarz
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Helmut König
- Johannes Gutenberg-University, Institute of Microbiology and Wine Research, Johann-Joachim Becherweg 15, 55128 Mainz, Germany
| | - Wolfgang Liebl
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Paul Scherer
- Faculty Life Sciences/Research Center ‘Biomass Utilization Hamburg’, University of Applied Sciences Hamburg (HAW), Ulmenliet 20, 21033 Hamburg-Bergedorf, Germany
| | - Alice C. McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Michael Klocke
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|