1
|
Vondrášková A, Hauer T, Bengtsson R, Kaštovský J, Johansen JR. Molecular characterization of two cyanobacterial generitypes from their type localities in Scandinavia. JOURNAL OF PHYCOLOGY 2025; 61:119-131. [PMID: 39739453 PMCID: PMC11914952 DOI: 10.1111/jpy.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 01/02/2025]
Abstract
Over 400 cyanobacterial genera have been described up to the present. Since the Cambridge Rules (https://www.iapt-taxon.org/historic/1935.htm: Rendle 1935), a type species (generitype) must be specified at the time of description for a new genus to be validly described. Even though we have entered a time in which sequencing has become practical and widespread, the basic molecular characterization (e.g., 16S rRNA gene sequence) of most cyanobacterial generitypes is still lacking. About 15 cyanobacterial genera were originally described from Scandinavia. Following a field excursion in which the type or syntype localities for the type species of these genera were visited and sampled, we succeeded in finding three type species from their type or syntype localities: Capsosira brebissonii, Stigonema mamillosum, and Paracapsa siderophila. Epitypes for all three generitypes are herein established. Cells or filaments of C. brebissonii and S. mamillosum were isolated and used for single-cell/filament PCR amplification of the 16S rRNA gene and subsequent cloning and sequencing of the PCR amplicons. This allows a firm establishment of reference sequences of these two genera, to which morphologically similar taxa can now be compared. Stigonema and Capsosira are shown herein to be sister to Aetokthonos hydrillicola, a cyanobacterium known to cause avian vacuolar myelinopathy in birds, including bald eagles.
Collapse
Affiliation(s)
- Alžběta Vondrášková
- Faculty of Science, Department of BotanyUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Tomáš Hauer
- Faculty of Science, Department of BotanyUniversity of South BohemiaČeské BudějoviceCzech Republic
| | | | - Jan Kaštovský
- Faculty of Science, Department of BotanyUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Jeffrey R. Johansen
- Faculty of Science, Department of BotanyUniversity of South BohemiaČeské BudějoviceCzech Republic
- Department of BiologyJohn Carroll UniversityUniversity HeightsOhioUSA
| |
Collapse
|
2
|
Akagha MU, Pietrasiak N, Bustos DF, Vondrášková A, Lamb SC, Johansen JR. Albertania and Egbenema gen. nov. from Nigeria and the United States, expanding biodiversity in the Oculatellaceae (cyanobacteria). JOURNAL OF PHYCOLOGY 2023; 59:1217-1236. [PMID: 37696506 DOI: 10.1111/jpy.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/13/2023]
Abstract
Knowledge of the tropical terrestrial cyanobacterial flora from the African continent is still limited. Of 31 strains isolated from soil and subaerial samples collected in Lagos State, Nigeria, three were found to be in the Oculatellaceae, including two species in a new genus. Subsequently, isolates from microbial mats in White Sands National Park in New Mexico, United States, and from a rock near the ocean in Puerto Rico, United States, were found to belong to the new genus as well. Cyanobacterial isolates were characterized microscopically, sequenced for the 16S rRNA gene and associated ITS region, and phylogenetically analyzed. Egbenema gen. nov., with three new species, as well as two new species of Albertania were differentiated from all other Oculatellaceae. Both genera belong to a supported clade within the Oculatellaceae that includes Trichotorquatus and Komarkovaea. The two new species of Albertania, A. egbensis and A. latericola, were from the same sample, but were evolutionarily separate based on 16S rRNA gene phylogenies, percent identity below the 98.7% threshold, and ITS rRNA percent dissimilarity >7.0%. Egbenema aeruginosum gen. et sp. nov. was phylogenetically separated from Trichotorquatus and Albertania but was in a clade with other strains belonging to Egbenema. The two Egbenema strains from the United States are here named Egbenema epilithicum sp. nov. and Egbenema gypsiphilum sp. nov. Our results support the hypothesis that further species discoveries of novel cyanobacteria will likely be made in soils and subaerial habitats, as these habitats continue to be studied, both in tropical and temperate biomes.
Collapse
Affiliation(s)
- Mildred U Akagha
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| | - Nicole Pietrasiak
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada, USA
- Plant & Environmental Sciences Department, New Mexico State University, Las Cruces, New Mexico, USA
| | - David F Bustos
- US DOI White Sands National Park, Alamogordo, New Mexico, USA
| | - Alžběta Vondrášková
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Sandra C Lamb
- Department of Marine Sciences, University of Lagos, Akoka, Nigeria
| | - Jeffrey R Johansen
- Department of Biology, John Carroll University, University Heights, Ohio, USA
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
3
|
Strunecký O, Ivanova AP, Mareš J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. JOURNAL OF PHYCOLOGY 2023; 59:12-51. [PMID: 36443823 DOI: 10.1111/jpy.13304] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/16/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial taxonomy is facing a period of rapid changes thanks to the ease of 16S rRNA gene sequencing and established workflows for description of new taxa. Since the last comprehensive review of the cyanobacterial system in 2014 until 2021, at least 273 species in 140 genera were newly described. These taxa were mainly placed into previously defined orders and families although several new families were proposed. However, the classification of most taxa still relied on hierarchical relationships inherited from the classical morphological taxonomy. Similarly, the obviously polyphyletic orders such as Synechococcales and Oscillatoriales were left unchanged. In this study, the rising number of genomic sequences of cyanobacteria and well-described reference strains allowed us to reconstruct a robust phylogenomic tree for taxonomic purposes. A less robust but better sampled 16S rRNA gene phylogeny was mapped to the phylogenomic backbone. Based on both these phylogenies, a polyphasic classification throughout the whole phylum of Cyanobacteria was created, with ten new orders and fifteen new families. The proposed system of cyanobacterial orders and families relied on a phylogenomic tree but still employed phenotypic apomorphies where possible to make it useful for professionals in the field. It was, however, confirmed that morphological convergence of phylogenetically distant taxa was a frequent phenomenon in cyanobacteria. Moreover, the limited phylogenetic informativeness of the 16S rRNA gene, resulting in ambiguous phylogenies above the genus level, emphasized the integration of genomic data as a prerequisite for the conclusive taxonomic placement of a vast number of cyanobacterial genera in the future.
Collapse
Affiliation(s)
- Otakar Strunecký
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Anna Pavlovna Ivanova
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Jan Mareš
- Biology Centre of the CAS, Institute of Hydrobiology, Na Sádkách 702/7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Department of Botany, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Trichotorquatus salinus sp. nov. (Oculatellaceae, Cyanobacteria) from a Saltern of Gomso, Republic of Korea. DIVERSITY 2023. [DOI: 10.3390/d15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Six strains of subaerial cyanobacteria were isolated from a Gomso saltern in the Republic of Korea, all of which were studied using morphological and molecular traits. Trichotorquatus salinus sp. nov. was studied using a light microscope (LM), transmission electron microscope (TEM), 16S rRNA, 16S–23S ITS region, and ecological data. T. salinus is a thin and simple filament with a false branch and a firm collar sheath. The phylogenetic analyses of 16S rRNA revealed that Trichotorquatus formed a monophyletic lineage and the strains of T. salinus formed a distinct clade among the species in the genus Trichotorquatus. In the statistical analysis, the inter-species genetic distance of the five species of Trichotorquatus, including T. salinus, is shown to be greater than the distance of the previously reported species of Trichotorquatus. Additionally, 16S–23S ITS gene sequences between T. salinus and four species of Trichotorquatus showed dissimilarities of 55.3–59.4%. In the secondary structure of 16S–23S ITS region (type 2 operon), D1–D1′, Box-B, and V3 helix of T. salinus were different from the other taxa in the genus Trichotorquatus. These results demonstrate that T. salinus sp. nov. has unique morphological, ecological, and molecular traits. Therefore, we propose that T. salinus sp. nov. is a novel species belonging to the genus Trichotorquatus.
Collapse
|
5
|
Three New Plectolyngbya Species (Leptolyngbyaceae, Cyanobacteria) Isolated from Rocks and Saltern of the Republic of Korea. DIVERSITY 2022. [DOI: 10.3390/d14121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thin filamentous cyanobacteria isolated from three collection sites in the Republic of Korea were suggested as three new species belonging to the genus Plectolyngbya, mainly according to their molecular characteristics. The species of Plectolyngbya, including the type species of P. hodgsonii, were cryptic species that were difficult to distinguish morphologically from each other, and had appeared in ecologically diverse habitats. P. terrestris and P. koreana were subaerophytes collected from certain black spots and soils between stone walls in Seoul, Republic of Korea. In addition, hypersaline species collected from a saltern, P. salina, shared the same halophytic feature as the P. hodgsonii from the littoral zone of a coastal lake in the Antarctic. The 16S rRNA gene phylogeny supported the monophyly of Plectolyngbya with solid support, 99% Maximum Likelihood, 98% Neighbor-Joining bootstrap support values, and 1.0 Bayesian posterior probability. The ITS sequences of P. terrestris, P. koreana, and P. salina were unique in length and nucleotide composition, with different secondary structures of D1–D1ʹ and Box-B helices, compared with those of P. hodgsonii. These results demonstrate that the proposed new Plectolyngbya species were unique in their molecular traits. Therefore, we suggest them as new species belonging to the genus Plectolyngbya with the names P. terrestris sp. nov., P. koreana sp. nov., and P. salina sp. nov.
Collapse
|
6
|
Rzymski P, Poniedziałek B, Hippmann N, Kaczmarek Ł. Screening the Survival of Cyanobacteria Under Perchlorate Stress. Potential Implications for Mars In Situ Resource Utilization. ASTROBIOLOGY 2022; 22:672-684. [PMID: 35196144 PMCID: PMC9233533 DOI: 10.1089/ast.2021.0100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are good candidates for various martian applications as a potential source of food, fertilizer, oxygen, and biofuels. However, the increased levels of highly toxic perchlorates may be a significant obstacle to their growth on Mars. Therefore, in the present study, 17 cyanobacteria strains that belong to Chroococcales, Chroococcidiopsidales, Nostocales, Oscillatoriales, Pleurocapsales, and Synechococcales were exposed to 0.25-1.0% magnesium perchlorate concentrations (1.5-6.0 mM ClO4- ions) for 14 days. The exposure to perchlorate induced at least partial inhibition of growth in all tested strains, although five of them were able to grow at the highest perchlorate concentration: Chroococcidiopsis thermalis, Leptolyngbya foveolarum, Arthronema africanum, Geitlerinema cf. acuminatum, and Cephalothrix komarekiana. Chroococcidiopsis sp. Chroococcidiopsis cubana demonstrated growth up to 0.5%. Strains that maintained growth displayed significantly increased malondialdehyde content, indicating perchlorate-induced oxidative stress, whereas the chlorophyll a/carotenoids ratio tended to be decreased. The results show that selected cyanobacteria from different orders can tolerate perchlorate concentrations typical for the martian regolith, indicating that they may be useful in Mars exploration. Further studies are required to elucidate the biochemical and molecular basis for the perchlorate tolerance in selected cyanobacteria.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Natalia Hippmann
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
7
|
Skoupý S, Stanojković A, Pavlíková M, Poulíčková A, Dvořák P. New cyanobacterial genus Argonema is hidding in soil crusts around the world. Sci Rep 2022; 12:7203. [PMID: 35504986 PMCID: PMC9065122 DOI: 10.1038/s41598-022-11288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are crucial primary producers in soil and soil crusts. However, their biodiversity in these habitats remains poorly understood, especially in the tropical and polar regions. We employed whole genome sequencing, morphology, and ecology to describe a novel cyanobacterial genus Argonema isolated from Antarctica. Extreme environments are renowned for their relatively high number of endemic species, but whether cyanobacteria are endemic or not is open to much current debate. To determine if a cyanobacterial lineage is endemic is a time consuming, elaborate, and expensive global sampling effort. Thus, we propose an approach that will help to overcome the limits of the sampling effort and better understand the global distribution of cyanobacterial clades. We employed a Sequencing Read Archive, which provides a rich source of data from thousands of environmental samples. We developed a framework for a characterization of the global distribution of any microbial species using Sequencing Read Archive. Using this approach, we found that Argonema is actually cosmopolitan in arid regions. It provides further evidence that endemic microbial taxa are likely to be much rarer than expected.
Collapse
Affiliation(s)
- Svatopluk Skoupý
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Aleksandar Stanojković
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Markéta Pavlíková
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Aloisie Poulíčková
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
8
|
Hong K, Beld J, Davis TD, Burkart MD, Palenik B. Screening and characterization of polyhydroxyalkanoate granules, and phylogenetic analysis of polyhydroxyalkanoate synthase gene PhaC in cyanobacteria. JOURNAL OF PHYCOLOGY 2021; 57:754-765. [PMID: 33350471 DOI: 10.1111/jpy.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/06/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Using Nile Red and BODIPY 493/503 dye-staining and fluorescence microscopy, twenty cyanobacterial strains, including ten commercially available strains and ten environmental isolates from estuaries, freshwater ponds, and lagoons, were screened for the accumulation of ecologically important and potentially biotechnologically significant carbon storage granules such as polyhydroxyalkanoates (PHA). Dye-staining granules were observed in six strains. Three Synechocystis, spp. strains WHSYN, LSNM, and CGF-1, and a Phormidium-like sp. CGFILA were isolated from environmental sources and found to produce granules of polyhydroxyalkanoate (PHA) according to PHA synthase gene (phaC) PCR screening and 1 H NMR analyses. The environmental isolate, Nodularia sp. Las Olas and commercially available Phormidium cf. iriguum CCALA 759 displayed granules but screened negative for PHA according to phaC PCR and 1 H NMR analyses. Partial polyhydroxyalkanoate synthase subunit C (phaC) and 16S rRNA gene sequences obtained from the PHA-accumulating strains and analyzed alongside publicly available phaC, phaE, 16S rRNA, and 23S rRNA data help in understanding the distribution and evolutionary history of PHA biosynthesis within the phylum Cyanobacteria. The data show that the presence of phaC is highly conserved within the genus Synechocystis, and present in at least one isolate of Phormidium. Maximum likelihood analyses and cophylogenetic modeling of PHA synthase gene sequences provide evidence of a recent horizontal gene transfer event between distant genera of cyanobacteria related to Pleurocapsa sp. PCC 7327 and Phormidium-like sp. CGFILA. These findings will help guide additional screening for PHA producers, and may explain why some Phormidium species produce PHAs, while others do not.
Collapse
Affiliation(s)
- Karl Hong
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92093-0202, USA
| | - Joris Beld
- Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0202, USA
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Tony D Davis
- Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0202, USA
| | - Michael D Burkart
- Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0202, USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92093-0202, USA
| |
Collapse
|
9
|
Malone CFDS, Genuário DB, Vaz MGMV, Fiore MF, Sant'Anna CL. Monilinema gen. nov., a homocytous genus (Cyanobacteria, Leptolyngbyaceae) from saline-alkaline lakes of Pantanal wetlands, Brazil. JOURNAL OF PHYCOLOGY 2021; 57:473-483. [PMID: 33211341 DOI: 10.1111/jpy.13106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacteria morphotypes with simple morphology, mainly thin filamentous homocytous strains, comprise a taxonomically complex group and represent a challenge in systematic studies. However, the polyphasic approach applied nowadays to investigate the cyanobacterial diversity has emerged as a powerful tool to undercover cryptic taxa and to set up a more natural classification system. Yet, studies exploring the cultured diversity of cyanobacteria from extreme tropical environments have paved the way to the discovery of new cyanobacteria taxa, enabling the description of Pantanalinema, Alkalinema, and Cephalothrix as novel genera from saline-alkaline lakes in Pantanal wetlands (Brazil). The present study investigated a set of cyanobacterial strains resembling Leptolyngbya morphotypes by means of its morphology, 16S ribosomal RNA (16S rRNA) phylogeny, and ITS secondary structures. Based on the shape and structure of their trichomes, the low levels of 16S rRNA identity coupled with the distinct phylogenetic position with regard to well establish genera, and their divergent ecological feature, these strains must be accommodated into a novel genus, named as Monilinema gen. nov., described under the provisions of the International Code of Nomenclature for algae, fungi, and plants. Accordingly, based on the singularity of the D1-D1' and V3 helixes, these strains should be considered as a single species, Monilinema alkalinum.
Collapse
Affiliation(s)
| | - Diego Bonaldo Genuário
- Laboratory of Environmental Microbiology, EMBRAPA Environment, 13820-000, Jaguariúna, São Paulo, Brazil
- Biodiversita Microbial Technology, 13087-010, Campinas, SP, Brazil
| | - Marcelo Gomes Marçal Vieira Vaz
- Laboratory of Phycology and Molecular Biology, Department of Plant Biology, University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Marli Fátima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970, Piracicaba, SP, Brazil
| | | |
Collapse
|
10
|
Nuryadi H, Sumimoto S, Teruya T, Suenaga K, Suda S. Characterization of Macroscopic Colony-Forming Filamentous Cyanobacteria from Okinawan Coasts as Potential Sources of Bioactive Compounds. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:824-835. [PMID: 33244658 DOI: 10.1007/s10126-020-10010-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Marine macroscopic colony-forming filamentous (MMCFF) cyanobacteria are considered as prolific producers of bioactive compounds. Thus, knowledge of the diversity of MMCFF cyanobacteria as related to bioactive compound production has become very important. However, basic taxonomic studies of MMCFF cyanobacteria are lacking. Many cyanobacterial taxa are still misidentified or undescribed. In this study, a total of 32 cyanobacterial colonies from nine coastal regions of Okinawa Prefecture were investigated for a diversity assessment. A polyphasic approach including morphological and molecular studies based on 16S rRNA gene sequences was performed to characterize Okinawan MMCFF cyanobacteria. Both morphological and molecular phylogenetic results showed that MMCFF cyanobacteria from Okinawan coasts are very diverse. We found morphotypes of Lyngbya-like, Phormidium-like, and Leptolyngbya-like groups among Okinawan cyanobacterial samples. Genetically, samples were distributed in various clades in the phylogenetic tree, including within Moorena, Okeania, Caldora, Neolyngbya, Dapis, as well as several unknown clades. In addition, cytotoxic activities of three samples from Kiyan coast were tested against HeLa cells. All three crude extracts of these samples showed strong cytotoxic activity with IC50 < 1 μg/ml.
Collapse
Affiliation(s)
- Handung Nuryadi
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Shimpei Sumimoto
- Department of Material and Life Chemistry, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Keio University, Yokohama, Kanagawa, Japan
| | - Shoichiro Suda
- Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan.
| |
Collapse
|
11
|
Strunecky O, Raabova L, Bernardova A, Ivanova AP, Semanova A, Crossley J, Kaftan D. Diversity of cyanobacteria at the Alaska North Slope with description of two new genera: Gibliniella and Shackletoniella. FEMS Microbiol Ecol 2019; 96:5645229. [DOI: 10.1093/femsec/fiz189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/26/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
The diversity of cyanobacteria along the Alaskan North Slope was investigated. We isolated and cultivated 57 strains of cyanobacteria and sequenced a section of their rRNA operon containing a fragment of the 16S rRNA gene. Here, we describe 17 found species belonging mainly to families Coleofasciculaceae, Microcoleaceae, Oculatellaceae, Leptolyngbyaceae and to the order Synechococcales. In pursuing a conservative polyphasic approach, we utilized suggested thresholds in 16S rRNA gene differences in parallel with morphological differences between new and already described taxa for the description of new species and genera. Based on a combination of morphological, molecular and ecological analysis of collected and cultured strains we describe two genera Gibliniella and Shackletoniella as well as six cyanobacterial species; Cephalothrix alaskaensis, Tildeniella alaskaensis, Pseudophormidium americanum, Leptodesmis alaskaensis, Albertania alaskaensis and Nodosilinea alaskaensis. Here, a polyphasic approach was used to identify eight novel and nine established cyanobacterial taxa from a previously non–investigated region that uncovered a high degree of biodiversity in extreme polar environments.
Collapse
Affiliation(s)
- Otakar Strunecky
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Lenka Raabova
- Department of Biology, University of Ss. Cyril and Methodius, J. Herdu 2, 917 01 Trnava, Slovak Republic
| | - Alexandra Bernardova
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Anna Pavlovna Ivanova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Alexandra Semanova
- Department of Biology, University of Ss. Cyril and Methodius, J. Herdu 2, 917 01 Trnava, Slovak Republic
| | - Joel Crossley
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - David Kaftan
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
12
|
D.C. Oliveira E, Castelo-Branco R, Silva L, Silva N, Azevedo J, Vasconcelos V, Faustino S, Cunha A. First Detection of Microcystin-LR in the Amazon River at the Drinking Water Treatment Plant of the Municipality of Macapá, Brazil. Toxins (Basel) 2019; 11:E669. [PMID: 31731712 PMCID: PMC6891726 DOI: 10.3390/toxins11110669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/03/2022] Open
Abstract
Human poisoning by microcystin has been recorded in many countries, including Brazil, where fatal cases have already occurred. The Amazon River is the main source of drinking water in municipalities such as Macapá, where there is no monitoring of cyanobacteria and cyanotoxins. This study investigated the presence of cyanobacteria and cyanotoxins in samples from a drinking water treatment plant (DWTP) that catches water from the Amazon River. The toxin analyses employed ELISA, LC/MS, and molecular screening for genes involved in the production of cyanotoxins. The sampling was carried out monthly from April 2015 to April 2016 at the intake (raw water) and exit (treated water) of the DWTP. This study reports the first detection of microcystin-LR (MC-LR) in the Amazon River, the world's largest river, and in its treated water destined for drinking water purposes in Macapá, Brazil. The cyanobacterial density and MC-LR concentration were both low during the year. However, Limnothrix planctonica showed a density peak (± 900 cells mL-1) in the quarter of June-August 2015, when MC-LR was registered (2.1 µg L-1). Statistical analyses indicate that L. planctonica may produce the microcystin.
Collapse
Affiliation(s)
- Elane D.C. Oliveira
- Institute of Scientific and Technological Research of the State of Amapá, Macapá, 68.903-197 Amapá, Brazil (L.S.); (N.S.)
- Bionorte Post-Graduate Program, UNIFAP, Federal University of Amapá, Macapá, 68903-419 Amapá, Brazil; (S.F.); (A.C.)
| | - Raquel Castelo-Branco
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal; (R.C.-B.); (J.A.)
| | - Luis Silva
- Institute of Scientific and Technological Research of the State of Amapá, Macapá, 68.903-197 Amapá, Brazil (L.S.); (N.S.)
| | - Natalina Silva
- Institute of Scientific and Technological Research of the State of Amapá, Macapá, 68.903-197 Amapá, Brazil (L.S.); (N.S.)
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal; (R.C.-B.); (J.A.)
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal; (R.C.-B.); (J.A.)
- Department of Biology, Faculty of Sciences of University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| | - Silvia Faustino
- Bionorte Post-Graduate Program, UNIFAP, Federal University of Amapá, Macapá, 68903-419 Amapá, Brazil; (S.F.); (A.C.)
| | - Alan Cunha
- Bionorte Post-Graduate Program, UNIFAP, Federal University of Amapá, Macapá, 68903-419 Amapá, Brazil; (S.F.); (A.C.)
| |
Collapse
|
13
|
Martins MD, Machado-de-Lima NM, Branco LHZ. Polyphasic approach using multilocus analyses supports the establishment of the new aerophytic cyanobacterial genus Pycnacronema (Coleofasciculaceae, Oscillatoriales). JOURNAL OF PHYCOLOGY 2019; 55:146-159. [PMID: 30362579 DOI: 10.1111/jpy.12805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
A new Phormidium-like genus was found during an investigation of Oscillatoriales diversity in Brazil. Eight aerophytic populations from south and southeastern regions were isolated in monospecific cultures and submitted to polyphasic evaluation. The populations presented homogeneous morphology with straight trichomes, not attenuated, and apical cell with thickened cell wall. Phylogenetic analyses based on 16S rRNA gene sequences showed that these populations, plus the Brazilian strain Phomidium sp. B-Tom from GenBank, formed a highly supported and distinctive clade, which corresponds to the new genus Pycnacronema, comprising six new species: P. brasiliensis (type species), P. arboriculum, P. conicum, P. marmoreum, P. rubrum, and P. savannensis. These results were confirmed and supported by rpoC1 and rbcL genes evaluated independently and by the concatenated analysis of 16S rRNA, rpoC1 and rbcL genes (for all species but P. savannensis). Secondary structures of the D1-D1', box-B, and V3 regions of the internal transcribed spacer were informative at specific level, being conserved in P. brasiliensis and variable among the other strains, also confirming the phylogenetic analyses. The generic name and specific epithets of the new taxa are proposed under the provisions of the International Code of Nomenclature of algae, fungi, and plants.
Collapse
Affiliation(s)
- Mariéllen Dornelles Martins
- Zoology and Botany Department, São José do Rio Preto campus (IBILCE), São Paulo State University (UNESP), R. Cristóvão Colombo, 2265 - BR15054-000, S. J. Rio Preto (SP), Brazil
| | - Náthali Maria Machado-de-Lima
- Microbiology Graduate Program (IBILCE/UNESP), Zoology and Botany Department, São José do Rio Preto campus (IBILCE), São Paulo State University (UNESP), R. Cristóvão Colombo, 2265 - BR15054-000, S. J. Rio Preto (SP), Brazil
| | - Luis Henrique Zanini Branco
- Zoology and Botany Department, São José do Rio Preto campus (IBILCE), São Paulo State University (UNESP), R. Cristóvão Colombo, 2265 - BR15054-000, S. J. Rio Preto (SP), Brazil
| |
Collapse
|
14
|
Buch B, Martins MD, Branco LHZ. A widespread cyanobacterium supported by polyphasic approach: proposition of Koinonema pervagatum gen. & sp. nov. (Oscillatoriales) 1. JOURNAL OF PHYCOLOGY 2017; 53:1097-1105. [PMID: 28736815 DOI: 10.1111/jpy.12568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Several new genera originally classified as the genus Phormidium, a polyphyletic and taxonomically complex genus within the Oscillatoriales, were recently described. The simple morphology of Phormidium does not reflect its genetic diversity and the delimitation of a natural group is not possible with traditional classification systems based on morphology alone. Therefore, this study used morphological, ecological, and molecular approaches to evaluate four populations morphologically similar to Ammassolinea, Kamptonema, and Ancylothrix (simple, curved, and gradually attenuated at the ends trichome), found in subtropical and tropical Brazilian regions. 16S rRNA gene sequences grouped all the strains in a highly supported clade with other two European strains isolated from thermal springs surrounding areas. The 16S-23S ITS secondary structure corroborated the phylogenetic analysis with all the strains having similar structures. Consequently, a genetically well-defined and cryptic new genus, Koinonema gen. nov., is proposed containing the aquatic, mesophilic, and morphologically homogeneous new species, Koinonema pervagatum sp. nov.
Collapse
Affiliation(s)
- Bruna Buch
- Zoology and Botany Department, São José do Rio Preto campus (IBILCE), São Paulo State University (UNESP), R. Cristóvão Colombo, S. J. Rio Preto, SP, 2265 - BR15054-000, Brazil
| | - Mariéllen Dornelles Martins
- Zoology and Botany Department, São José do Rio Preto campus (IBILCE), São Paulo State University (UNESP), R. Cristóvão Colombo, S. J. Rio Preto, SP, 2265 - BR15054-000, Brazil
| | - Luis Henrique Z Branco
- Zoology and Botany Department, São José do Rio Preto campus (IBILCE), São Paulo State University (UNESP), R. Cristóvão Colombo, S. J. Rio Preto, SP, 2265 - BR15054-000, Brazil
| |
Collapse
|
15
|
Genuário DB, Vaz MGMV, Melo ISD. Phylogenetic insights into the diversity of homocytous cyanobacteria from Amazonian rivers. Mol Phylogenet Evol 2017; 116:120-135. [PMID: 28830829 DOI: 10.1016/j.ympev.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/05/2017] [Accepted: 08/17/2017] [Indexed: 01/23/2023]
Abstract
The Amazon Rainforest holds great tropical biodiversity, mainly because of its favourable climatic conditions. The high temperatures, luminosity and humidity coupled with the nutritional simplicity of cyanobacteria allow undiscovered diversity to flourish within this group of microorganisms. Some efforts to reveal this diversity have been attempted; however, most were focused on the microscopic observation of environmental samples without any genetic information. Very few studies focusing on morphological, ecological and molecular criteria have been conducted, and none have been devoted to homocytous cyanobacteria forms in Amazonia region. Therefore, the genetic relationships amongst strains retrieved from this ecosystem with regard to other environments from Brazil and the world have not been tested and, consequently, the Amazonian strains would naturally be assumed as novel to science. To examine these relationships, cultured homocytous cyanobacteria isolated from two Amazonian rivers (Amazonas and Solimões) were evaluated using a phylogenetic perspective, considering the 16S rRNA gene sequence. A total of eleven homocytous cyanobacterial strains were isolated. Morphologically, they were identified as Pseudanabaena, Leptolyngbya, Planktothrix and Phormidium, but genetically they were included in the typical clusters of Planktothrix, Pseudanabaena, Cephalothrix, Pantanalinema and Alkalinema. These three latter genera have been detected in other Brazilian ecosystems only (Pantanal, Atlantic Rainforest and Pampa), while those remaining have been extensively found in many parts of the world. The data provided here indicate that Amazonian rivers support a homocytous cyanobacterial diversity previously reported from other geographical and ecological environments.
Collapse
Affiliation(s)
- Diego Bonaldo Genuário
- Laboratory of Environmental Microbiology, EMBRAPA Environment, 13820-000 Jaguariúna, São Paulo, Brazil
| | - Marcelo Gomes Marçal Vieira Vaz
- Laboratório de Ficologia e Biologia Molecular, Unidade de Crescimento de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Itamar Soares de Melo
- Laboratory of Environmental Microbiology, EMBRAPA Environment, 13820-000 Jaguariúna, São Paulo, Brazil.
| |
Collapse
|
16
|
Shalygin S, Shalygina R, Johansen JR, Pietrasiak N, Berrendero Gómez E, Bohunická M, Mareš J, Sheil CA. Cyanomargarita gen. nov. (Nostocales, Cyanobacteria): convergent evolution resulting in a cryptic genus. JOURNAL OF PHYCOLOGY 2017; 53:762-777. [PMID: 28403525 DOI: 10.1111/jpy.12542] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/04/2017] [Indexed: 05/25/2023]
Abstract
Two populations of Rivularia-like cyanobacteria were isolated from ecologically distinct and biogeographically distant sites. One population was from an unpolluted stream in the Kola Peninsula of Russia, whereas the other was from a wet wall in the Grand Staircase-Escalante National Monument, a desert park-land in Utah. Though both were virtually indistinguishable from Rivularia in field and cultured material, they were both phylogenetically distant from Rivularia and the Rivulariaceae based on both 16S rRNA and rbcLX phylogenies. We here name the new cryptic genus Cyanomargarita gen. nov., with type species C. melechinii sp. nov., and additional species C. calcarea sp. nov. We also name a new family for these taxa, the Cyanomargaritaceae.
Collapse
Affiliation(s)
- Sergei Shalygin
- Department of Biology, John Carroll University, University Heights, Ohio, 44118, USA
- Polar-Alpine Botanical Garden-Institute, Kola Science Center, Russian Academy of Science, Kirovsk-6, 184230, Russia
| | - Regina Shalygina
- Institute of Industrial Ecology Problems of the North, Kola Science Center, Russian Academy of Science, Akademgorodok 14a, Apatity, 184209, Russia
| | - Jeffrey R Johansen
- Department of Biology, John Carroll University, University Heights, Ohio, 44118, USA
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Nicole Pietrasiak
- Department of Plant and Environmental Sciences, New Mexico State University, 945 College Drive, Las Cruces, New Mexico, 88003, USA
| | - Esther Berrendero Gómez
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Markéta Bohunická
- Institute of Botany of the Academy of Sciences of the Czech Republic, Dukelská 135, Třeboň, 379 82, Czech Republic
- Research and Breeding Institute of Pomology, Holovousy 129, Hořice, 508 01, Czech Republic
| | - Jan Mareš
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
- Institute of Botany of the Academy of Sciences of the Czech Republic, Dukelská 135, Třeboň, 379 82, Czech Republic
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Hydrobiology, Na Sádkách 702/7, České Budějovice, 37005, Czech Republic
| | - Christopher A Sheil
- Department of Biology, John Carroll University, University Heights, Ohio, 44118, USA
| |
Collapse
|
17
|
Genuário DB, Andreote APD, Vaz MGMV, Fiore MF. Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes. Mol Phylogenet Evol 2017; 109:105-112. [DOI: 10.1016/j.ympev.2016.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
|
18
|
Potamolinea gen. nov. (Oscillatoriales, Cyanobacteria): a phylogenetically and ecologically coherent cyanobacterial genus. Int J Syst Evol Microbiol 2016; 66:3632-3641. [DOI: 10.1099/ijsem.0.001243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|