1
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
2
|
Phylogenomic analysis of a metagenome-assembled genome indicates a new taxon of an anoxygenic phototroph bacterium in the family Chromatiaceae and the proposal of “Candidatus Thioaporhodococcus” gen. nov. Arch Microbiol 2022; 204:688. [DOI: 10.1007/s00203-022-03298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
3
|
Imhoff JF, Kyndt JA, Meyer TE. Genomic Comparison, Phylogeny and Taxonomic Reevaluation of the Ectothiorhodospiraceae and Description of Halorhodospiraceae fam. nov. and Halochlorospira gen. nov. Microorganisms 2022; 10:295. [PMID: 35208750 PMCID: PMC8877833 DOI: 10.3390/microorganisms10020295] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 12/29/2022] Open
Abstract
The Ectothiorhodospiraceae family represents purple sulfur bacteria of the Gammaproteobacteria found primarily in alkaline soda lakes of moderate to extremely high salinity. The main microscopically visible characteristic separating them from the Chromatiaceae is the excretion of the intermediate elemental sulfur formed during oxidation of sulfide prior to complete oxidation to sulfate rather than storing it in the periplasm. We present a comparative study of 38 genomes of all species of phototrophic Ectothiorhodospiraceae. We also include a comparison with those chemotrophic bacteria that have been assigned to the family previously and critically reevaluate this assignment. The data demonstrate the separation of Halorhodospira species in a major phylogenetic branch distant from other Ectothiorhodospiraceae and support their separation into a new family, for which the name Halorhodospiraceae fam. nov. is proposed. In addition, the green-colored, bacteriochlorophyll-containing species Halorhodospira halochloris and Halorhodospira abdelmalekii were transferred to the new genus Halochlorospira gen. nov. of this family. The data also enable classification of several so far unclassified isolates and support the separation of Ectothiorhodospira shaposhnikovii and Ect. vacuolata as well as Ect. mobilis and Ect. marismortui as distinct species.
Collapse
Affiliation(s)
- Johannes F. Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
| | - Terrance E. Meyer
- Department of Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
4
|
Xue Q, Zhao D, Zhang S, Zhou H, Zuo Z, Zhou J, Li M, Xiang H. Highly integrated adaptive mechanisms in Spiribacter halalkaliphilus, a bacterium abundant in Chinese soda-saline lakes. Environ Microbiol 2021; 23:6463-6482. [PMID: 34587356 PMCID: PMC9292931 DOI: 10.1111/1462-2920.15794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
Soda-saline lakes are polyextreme environments inhabited by many haloalkaliphiles, including one of the most abundant Spiribacter species. However, its mechanisms of adaptation are not ecophysiologically characterized. Based on a large-scale cultivation strategy, we obtained a representative isolate of this Spiribacter species whose relative abundance was the highest (up to 15.63%) in a wide range of salinities in the soda-saline lakes in Inner Mongolia, China. This species is a chemoorganoheterotrophic haloalkaliphile. It has a small and streamlined genome and utilizes a wide variety of compatible solutes to resist osmotic pressure and multiple monovalent cation/proton antiporters for pH homeostasis. In addition to growth enhancement by light under microaerobic conditions, cell growth, organic substrate consumption and polyhydroxybutyrate biosynthesis were also improved by inorganic sulfide. Both quantitative RT-PCR and enzymatic assays verified that sulfide:quinone oxidoreductase was upregulated during this process. Metatranscriptomic analysis indicated that all genes related to environmental adaptation were transcribed in natural environments. Overall, this study has identified a novel abundant haloalkaliphile with multiple and highly integrated adaptive strategies and found that inorganic sulfide was able to improve the adaptation of a heterotroph to polyextreme environments.
Collapse
Affiliation(s)
- Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenqiang Zuo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Ersoy Omeroglu E, Sudagidan M, Yurt MNZ, Tasbasi BB, Acar EE, Ozalp VC. Microbial community of soda Lake Van as obtained from direct and enriched water, sediment and fish samples. Sci Rep 2021; 11:18364. [PMID: 34526632 PMCID: PMC8443733 DOI: 10.1038/s41598-021-97980-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/25/2021] [Indexed: 01/21/2023] Open
Abstract
Soda lakes are saline and alkaline ecosystems that are considered to have existed since the first geological records of the world. These lakes support the growth of ecologically and economically important microorganisms due to their unique geochemistry. Microbiota members of lakes are valuable models to study the link between community structure and abiotic parameters such as pH and salinity. Lake Van is the largest endroheic lake and in this study, bacterial diversity of lake water, sediment, and pearl mullet (inci kefali; Alburnus tarichi), an endemic species of fish which are collected from different points of the lake, are studied directly and investigated meticulously using a metabarcoding approach after pre-enrichment. Bacterial community structures were identified using Next Generation Sequencing of the 16S rRNA gene. The analysis revealed that the samples of Lake Van contain high level of bacterial diversity. Direct water samples were dominated by Proteobacteria, Cyanobacteria, and Bacteroidota, on the other hand, pre-enriched water samples were dominated by Proteobacteria and Firmicutes at phylum-level. In direct sediment samples Proteobacteria, whereas in pre-enriched sediment samples Firmicutes and Proteobacteria were determined at highest level. Pre-enriched fish samples were dominated by Proteobacteria and Firmicutes at phylum-level. In this study, microbiota members of Lake Van were identified by taxonomic analysis.
Collapse
Affiliation(s)
- Esra Ersoy Omeroglu
- Biology Department, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, 35040, Bornova, Izmir, Turkey.
| | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, 42080, Meram, Konya, Turkey
| | - Mediha Nur Zafer Yurt
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, 42080, Meram, Konya, Turkey
| | - Behiye Busra Tasbasi
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, 42080, Meram, Konya, Turkey
| | - Elif Esma Acar
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, 42080, Meram, Konya, Turkey
| | - Veli Cengiz Ozalp
- Department of Medical Biology, Medical School, Atilim University, 06830, Ankara, Turkey
| |
Collapse
|
6
|
Chen J, Wei J, Ma C, Yang Z, Li Z, Yang X, Wang M, Zhang H, Hu J, Zhang C. Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirement? ENVIRONMENT INTERNATIONAL 2020; 137:105417. [PMID: 32120141 DOI: 10.1016/j.envint.2019.105417] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 05/23/2023]
Abstract
A paradigm shift is underway in wastewater treatment from pollution removal to resource or energy recovery. However, conventional activated sludge (CAS) as the core technology of wastewater treatment is confronted with severe challenges on high energy consumption, sludge disposal and inevitable greenhouse gas emission, which are posing a serious impact on the current wastewater industry. It is urgent to find new alternative methods to remedy these defects. Photosynthetic bacteria (PSB) have flexible metabolic modes and high tolerance, which enhance the removal of nutrients, heavy metals and organic contaminants efficiency in different wastewater. The unique phototrophic growth of PSB breaks the restriction of nutrient metabolism in the CAS system. Recent studies have shown that PSB-based technologies can not only achieve the recovery of nutrient and energy, but also improve the degradation efficiency of refractory substances. If the application parameters can be determined, there will be great prospects and economic effects. This review summarizes the research breakthroughs and application promotion of PSB-based wastewater treatment technology in recent years. Comparing discussed the superiority and inferiority from the perspective of application range, performance differences and recovery possibility. Pathways involved in the nutrient substance and the corresponding influencing parameters are also described in detail. The mode of PSB biodegradation processes presented a promising alternative for new wastewater treatment scheme. In the future, more mechanical and model studies, deterministic operating parameters, revolutionary process design is need for large-scale industrial promotion of PSB-based wastewater treatment.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jingjing Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mingsheng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Huaqing Zhang
- Qinglin Environmental Protection Co. Ltd., Ningbo 315000, China
| | - Jiawei Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
7
|
Khalikova E, Somersalo S, Korpela T. Metabolites Produced by Alkaliphiles with Potential Biotechnological Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:157-193. [PMID: 31240347 DOI: 10.1007/10_2019_96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alkaliphiles are a diverse group of relatively less known microorganisms living in alkaline environments. To thrive in alkaline environments, alkaliphiles require special adaptations. This adaptation may have evolved metabolites which can be useful for biotechnological processes or other applications. In fact, certain metabolites are found unique to alkaliphiles or are effectively produced by alkaliphiles. This probably aroused the interest in metabolites of alkaliphiles. During recent years, many alkaliphilic microbes have been isolated, especially in countries having alkaline environments, like soda lakes. Even if the number of such isolated alkaliphiles is large, their metabolites have not yet been extensively analyzed and exploited. This is expected to come in the years ahead. So far, the focus of interests in metabolites from alkaliphiles falls into categories such as organic acids, ingredients for foodstuffs and cosmetics, antibiotics, and substances which modify properties of other materials used in industry. This chapter deals with biotechnologically important metabolites of alkaliphiles including compatible solutes, biosurfactants, siderophores, carotenoids, exopolysaccharides, and antimicrobial agents. It also covers the promising potential of alkaliphiles as sources of bioplastic raw materials. Moreover, an overview of the patent literature related to alkaliphiles is highlighted. Graphical Abstract.
Collapse
Affiliation(s)
- Elvira Khalikova
- Joint Biotechnology Laboratory, University of Turku, Turku, Finland
| | | | - Timo Korpela
- Department of Future Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
8
|
Salah ZB, Charles CJ, Humphreys PN, Laws AP, Rout SP. Genomic Insights Into A Novel, Alkalitolerant Nitrogen Fixing Bacteria, Azonexus sp. Strain ZS02. J Genomics 2019; 7:1-6. [PMID: 30662569 PMCID: PMC6328298 DOI: 10.7150/jgen.28153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/09/2018] [Indexed: 02/03/2023] Open
Abstract
Alkaline environments represent a significant challenge to the growth of micro-organisms. Despite this, there are a number of alkaline environments which contain active microbial communities. Here we describe the genome of a diazotrophic, alkalitolerant strain of Azonexus, which was isolated from a microcosm seeded with hyperalkaline soils resulting from lime depositions. The isolate has a genome size 3.60 Mb with 3431 protein coding genes. The proteome indicated the presence of genes associated with the cycling of nitrogen, in particular the fixation of atmospheric nitrogen. Although closely related to Azonexus hydrophilus strain d8-1 by both 16S (97.9%) and in silico gDNA (84.1%) relatedness, the isolate demonstrates a pH tolerance above that reported for this strain. The proteome contained genes for the complete Na+/H+ antiporter (subunits A to G) for cytoplasmic pH regulation; this may account for the phenotypic characteristics of this strain which exhibited optimal growth conditions of pH 9 and 30°C.
Collapse
Affiliation(s)
- Zohier B Salah
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Christopher J Charles
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Paul N Humphreys
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Andrew P Laws
- Department of Chemical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Simon P Rout
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| |
Collapse
|
9
|
Benthic phototrophic community from Kiran soda lake, south-eastern Siberia. Extremophiles 2017; 22:211-220. [PMID: 29270850 DOI: 10.1007/s00792-017-0989-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Phototrophic bacterial mats from Kiran soda lake (south-eastern Siberia) were studied using integrated approach including analysis of the ion composition of water, pigments composition, bacterial diversity and the vertical distribution of phototrophic microorganisms in the mats. Bacterial diversity was investigated using microscopic examination, 16S rRNA gene Illumina sequencing and culturing methods. The mats were formed as a result of decomposition of sedimented planktonic microorganisms, among which cyanobacteria of the genus Arthrospira predominated. Cyanobacteria were the largest part of phototrophs in the mats, but anoxygenic phototrophs were significant fraction. The prevailing species of the anoxygenic phototrophic bacteria are typical for soda lakes. The mats harbored aerobic anoxygenic phototrophic bacteria, purple sulfur and non-sulfur bacteria, as well as new filamentous phototrophic Chloroflexi. New strains of Thiocapsa sp. Kir-1, Ectothiorhodospira sp. Kir-2 and Kir-4, Thiorhodospira sp. Kir-3 and novel phototrophic Chloroflexi bacterium Kir15-3F were isolated and identified.
Collapse
|
10
|
Lynn TM, Ge T, Yuan H, Wei X, Wu X, Xiao K, Kumaresan D, Yu SS, Wu J, Whiteley AS. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems. MICROBIAL ECOLOGY 2017; 73:645-657. [PMID: 27838764 DOI: 10.1007/s00248-016-0890-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/27/2016] [Indexed: 05/03/2023]
Abstract
CO2 assimilation by autotrophic microbes is an important process in soil carbon cycling, and our understanding of the community composition of autotrophs in natural soils and their role in carbon sequestration of these soils is still limited. Here, we investigated the autotrophic C incorporation in soils from three natural ecosystems, i.e., wetland (WL), grassland (GR), and forest (FO) based on the incorporation of labeled C into the microbial biomass. Microbial assimilation of 14C (14C-MBC) differed among the soils from three ecosystems, accounting for 14.2-20.2% of 14C-labeled soil organic carbon (14C-SOC). We observed a positive correlation between the cbbL (ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit gene) abundance, 14C-SOC level, and 14C-MBC concentration confirming the role of autotrophic bacteria in soil carbon sequestration. Distinct cbbL-bearing bacterial communities were present in each soil type; form IA and form IC RubisCO-bearing bacteria were most abundant in WL, followed by GR soils, with sequences from FO soils exclusively derived from the form IC clade. Phylogenetically, the diversity of CO2-fixing autotrophs and CO oxidizers differed significantly with soil type, whereas cbbL-bearing bacterial communities were similar when assessed using coxL. We demonstrate that local edaphic factors such as pH and salinity affect the C-fixation rate as well as cbbL and coxL gene abundance and diversity. Such insights into the effect of soil type on the autotrophic bacterial capacity and subsequent carbon cycling of natural ecosystems will provide information to enhance the sustainable management of these important natural ecosystems.
Collapse
Affiliation(s)
- Tin Mar Lynn
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
- Biotechnology Research Department, Ministry of Education, Kyaukse, Myanmar
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China.
- UWA-CAS Joint Laboratory in Soil System Science, Changsha, 410125, China.
| | - Hongzhao Yuan
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
| | - Xiaomeng Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
| | - Xiaohong Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
| | - Keqing Xiao
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, NyMunkegade 114, 8000, Aarhus C, Denmark
| | - Deepak Kumaresan
- UWA-CAS Joint Laboratory in Soil System Science, Changsha, 410125, China
- School of Earth and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - San San Yu
- Biotechnology Research Department, Ministry of Education, Kyaukse, Myanmar
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
- UWA-CAS Joint Laboratory in Soil System Science, Changsha, 410125, China
| | - Andrew S Whiteley
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Observation and Research Station for Agricultural Environment, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, 410125, China
- UWA-CAS Joint Laboratory in Soil System Science, Changsha, 410125, China
- School of Earth and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
11
|
Genome Sequence of the Photoarsenotrophic Bacterium Ectothiorhodospira sp. Strain BSL-9, Isolated from a Hypersaline Alkaline Arsenic-Rich Extreme Environment. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01139-16. [PMID: 27738045 PMCID: PMC5064118 DOI: 10.1128/genomea.01139-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The full genome sequence of Ectothiorhodospira sp. strain BSL-9 is reported here. This purple sulfur bacterium encodes an arxA-type arsenite oxidase within the arxB2AB1CD gene island and is capable of carrying out “photoarsenotrophy” anoxygenic photosynthetic arsenite oxidation. Its genome is composed of 3.5 Mb and has approximately 63% G+C content.
Collapse
|
12
|
Imhoff JF. New Dimensions in Microbial Ecology-Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment. Microorganisms 2016; 4:microorganisms4020019. [PMID: 27681913 PMCID: PMC5029485 DOI: 10.3390/microorganisms4020019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022] Open
Abstract
During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5'phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane monooxygenase (pmoA) for methane oxidizing bacteria.
Collapse
Affiliation(s)
- Johannes F Imhoff
- GEOMAR Helmholtz-Zentrum für Ozeanforschung, Düsternbrooker Weg 20, D-24105 Kiel, Germany.
| |
Collapse
|
13
|
Grover S, Gupta P, Kahlon PS, Goyal S, Grover A, Dalal K, Sabeeha, Ehtesham NZ, Hasnain SE. Analyses of methyltransferases across the pathogenicity spectrum of different mycobacterial species point to an extremophile connection. MOLECULAR BIOSYSTEMS 2016; 12:1615-25. [PMID: 26983646 DOI: 10.1039/c5mb00810g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis is a devastating disease, taking one human life every 20 seconds globally. We hypothesize that professional pathogens such as M.tb have acquired specific features that might assist in causing infection, persistence and transmissible pathology in their host. We have identified 121 methyltransferases (MTases) in the M.tb proteome, which use a variety of substrates - DNA, RNA, protein, intermediates of mycolic acid biosynthesis and other fatty acids - that are involved in cellular maintenance within the host. A comparative analysis of the proteome of the virulent strain H37Rv and the avirulent strain H37Ra identified 3 MTases, which displayed significant variations in terms of N-terminal extension/deletion and point mutations, possibly impacting various physicochemical properties. The cross-proteomic comparison of MTases of M.tb H37Rv with 15 different Mycobacterium species revealed the acquisition of novel MTases in a MTB complex as a function of evolution. Phylogenetic analysis revealed that these newly acquired MTases showed common roots with certain extremophiles such as halophilic and acidophilic organisms. Our results establish an evolutionary relationship of M.tb with halotolerant organisms and also the role of MTases of M.tb in withstanding the host osmotic stress, thereby pointing to their likely role in pathogenesis, virulence and niche adaptation.
Collapse
Affiliation(s)
- Sonam Grover
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Edwardson CF, Planer-Friedrich B, Hollibaugh JT. Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria. FEMS Microbiol Ecol 2014; 90:858-68. [PMID: 25318694 DOI: 10.1111/1574-6941.12440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 10/24/2022] Open
Abstract
Thioarsenates are the dominant arsenic species in arsenic-rich, alkaline, and sulfidic waters, but bacterial interactions with these compounds have only recently been examined. Previous studies have shown that microorganisms play a role in the transformation of monothioarsenate to arsenate, including use of monothioarsenate as a chemolithotrophic electron donor coupled with oxygen as an electron acceptor. We obtained enrichment cultures from two saline, alkaline lakes (Mono Lake, CA and Big Soda Lake, NV) that are able to use monothioarsenate as the sole electron donor for anoxygenic photosynthesis. These anoxic cultures were able to convert a 1 mM mixture of thioarsenates completely to arsenate in c. 13 days and 4 mM monothioarsenate to arsenate in c. 17 days. This conversion was light dependent; thus, monothioarsenate can be used as the sole electron donor for anoxygenic photosynthesis. Both of the Mono Lake and Big Soda Lake enrichment cultures were dominated by an organism closely related to Ectothiorhodospira species. We tested additional strains of purple sulfur bacteria and found widespread ability to use monothioarsenate as an electron donor. The ability of bacteria to transform thioarsenates directly via anoxygenic photosynthesis adds a new perspective to the well-studied arsenic and sulfur cycles.
Collapse
Affiliation(s)
- Christian F Edwardson
- Department of Marine Sciences, University of Georgia, Athens, GA, USA; Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
15
|
Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014; 18:791-809. [PMID: 25156418 PMCID: PMC4158274 DOI: 10.1007/s00792-014-0670-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 01/26/2023]
Abstract
Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art 'meta-omic' techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, RAS, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tom Berben
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emily Denise Melton
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Lex Overmars
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte D. Vavourakis
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerard Muyzer
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Jiang Y, Sorokin DY, Junicke H, Kleerebezem R, van Loosdrecht MCM. Plasticicumulans lactativorans sp. nov., a polyhydroxybutyrate-accumulating gammaproteobacterium from a sequencing-batch bioreactor fed with lactate. Int J Syst Evol Microbiol 2014; 64:33-38. [DOI: 10.1099/ijs.0.051045-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial consortium that accumulated more than 90 % (w/w) polyhydroxybutyrate (PHB) from lactate was selected in a laboratory-scale bioreactor with a ‘feast–famine’ regime. Bacterial strain YDT, representing a dominant species in this enrichment, was isolated and characterized. Analysis of the 16S rRNA gene sequence revealed that the isolate is a member of the class
Gammaproteobacteria
, forming an independent phylogenetic lineage. The closest relative of the isolate was
Plasticicumulans acidivorans
TUD-YJ37T, with 94 % 16S rRNA gene sequence similarity. Strain YDT was an obligate aerobe with large, ovoid, Gram-negative cells, motile by means of a polar flagellum. It utilized a relatively broad spectrum of substrates (e.g. carbohydrates, fatty acids) as carbon and energy sources. The temperature range for growth was 20–45 °C, with an optimum at 40 °C; the pH range was pH 6.0–8.0, with an optimum at pH 7.0. The major respiratory lipoquinones were Q-8 (91 %) and Q-7 (9 %). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and an unidentified aminolipid. The predominant fatty acids in the membrane polar lipids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The G+C content of the genomic DNA was 68.5 mol%. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, the isolate is proposed to represent a novel species in the genus
Plasticicumulans
, for which the name Plasticicumulans lactativorans sp. nov. is proposed. The type strain is YDT ( = DSM 25287T = NCCB 100398T).
Collapse
Affiliation(s)
- Yang Jiang
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Helena Junicke
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Mark C. M. van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
17
|
Li G, Lai Q, Liu X, Sun F, Du Y, Li G, Shao Z. Maricoccus atlantica gen. nov. sp. nov., isolated from deep sea sediment of the Atlantic Ocean. Antonie van Leeuwenhoek 2013; 104:1073-81. [DOI: 10.1007/s10482-013-0029-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
|
18
|
Yousuf B, Sanadhya P, Keshri J, Jha B. Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol 2012; 12:150. [PMID: 22834535 PMCID: PMC3438102 DOI: 10.1186/1471-2180-12-150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/06/2012] [Indexed: 11/10/2022] Open
Abstract
Background Soils harbour high diversity of obligate as well as facultative chemolithoautotrophic bacteria that contribute significantly to CO2 dynamics in soil. In this study, we used culture dependent and independent methods to assess the community structure and diversity of chemolithoautotrophs in agricultural and coastal barren saline soils (low and high salinity). We studied the composition and distribution of chemolithoautotrophs by means of functional marker gene cbbL encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and a phylogenetic marker 16S rRNA gene. The cbbL form IA and IC genes associated with carbon fixation were analyzed to gain insight into metabolic potential of chemolithoautotrophs in three soil types of coastal ecosystems which had a very different salt load and sulphur content. Results In cbbL libraries, the cbbL form IA was retrieved only from high saline soil whereas form IC was found in all three soil types. The form IC cbbL was also amplified from bacterial isolates obtained from all soil types. A number of novel monophyletic lineages affiliated with form IA and IC phylogenetic trees were found. These were distantly related to the known cbbL sequences from agroecosystem, volcanic ashes and marine environments. In 16S rRNA clone libraries, the agricultural soil was dominated by chemolithoautotrophs (Betaproteobacteria) whereas photoautotrophic Chloroflexi and sulphide oxidizers dominated saline ecosystems. Environmental specificity was apparently visible at both higher taxonomic levels (phylum) and lower taxonomic levels (genus and species). The differentiation in community structure and diversity in three soil ecosystems was supported by LIBSHUFF (P = 0.001) and UniFrac. Conclusion This study may provide fundamentally new insights into the role of chemolithoautotrophic and photoautotrophic bacterial diversity in biochemical carbon cycling in barren saline soils. The bacterial communities varied greatly among the three sites, probably because of differences in salinity, carbon and sulphur contents. The cbbL form IA-containing sulphide-oxidizing chemolithotrophs were found only in high saline soil clone library, thus giving the indication of sulphide availability in this soil ecosystem. This is the first comparative study of the community structure and diversity of chemolithoautotrophic bacteria in coastal agricultural and saline barren soils using functional (cbbL) and phylogenetic (16S rDNA) marker genes.
Collapse
Affiliation(s)
- Basit Yousuf
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, GB Marg, Bhavnagar, Gujarat, India
| | | | | | | |
Collapse
|
19
|
Jiang Y, Sorokin DY, Kleerebezem R, Muyzer G, van Loosdrecht M. Plasticicumulans acidivorans gen. nov., sp. nov., a polyhydroxyalkanoate-accumulating gammaproteobacterium from a sequencing-batch bioreactor. Int J Syst Evol Microbiol 2011; 61:2314-2319. [DOI: 10.1099/ijs.0.021410-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we describe a novel bacterium, strain TUD-YJ37T, which can accumulate polyhydroxybutyrate (PHB) to more than 85 % (w/w) dry cell weight. The bacterium was isolated from a mixed-culture bioreactor by using a feast–famine regime and its properties were characterized. Phylogenetic analysis based on full 16S rRNA gene sequences revealed that the isolate is a member of the Gammaproteobacteria, forming an independent, deep phylogenetic lineage. It is most closely related to members of the genera Methylocaldum, Methylococcus and Natronocella, with sequence similarities below 91 %. Strain TUD-YJ37T was an obligately aerobic, ovoid, Gram-negative bacterium, motile by means of a polar flagellum. It utilized C2–C10 fatty acids as carbon and energy sources. The temperature range for growth was 20–35 °C, with an optimum of 30 °C; the pH range was 6.0–8.0, without a clear optimum. The major respiratory quinone was Q-8. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids, an unidentified aminolipid and another unidentified lipid. The predominant fatty acids in the membrane polar lipids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The G+C content of the genomic DNA was 67.4 mol%. On the basis of phenotypic, chemotaxonomic and molecular data, the isolate is proposed to represent a novel genus and species, for which the name Plasticicumulans acidivorans gen. nov., sp. nov. is proposed. The type strain of Plasticicumulans acidivorans is TUD-YJ37T ( = DSM 23606T = CBS 122990T).
Collapse
Affiliation(s)
- Yang Jiang
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Dimitry Yu. Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Gerard Muyzer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
20
|
Bryantseva IA, Tourova TP, Kovaleva OL, Kostrikina NA, Gorlenko VM. Ectothiorhodospira magna sp. nov., a new large alkaliphilic purple sulfur bacterium. Microbiology (Reading) 2010. [DOI: 10.1134/s002626171006010x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Thiel V, Tank M, Neulinger SC, Gehrmann L, Dorador C, Imhoff JF. Unique communities of anoxygenic phototrophic bacteria in saline lakes of Salar de Atacama (Chile): evidence for a new phylogenetic lineage of phototrophic Gammaproteobacteria from pufLM gene analyses. FEMS Microbiol Ecol 2010; 74:510-22. [DOI: 10.1111/j.1574-6941.2010.00966.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Venkata Ramana V, Sasikala C, Veera Venkata Ramaprasad E, Venkata Ramana C. Description of Ectothiorhodospira salini sp. nov. J GEN APPL MICROBIOL 2010; 56:313-9. [DOI: 10.2323/jgam.56.313] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Boldareva EN, Moskalenko AA, Makhneva ZK, Tourova TP, Kolganova TV, Gorlenko VM. Rubribacterium polymorphum gen. nov., sp. nov., a novel alkaliphilic nonsulfur purple bacterium from an Eastern Siberian soda lake. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709060101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|