1
|
Aliyu GO, Ezugworie FN, Onwosi CO, Nnamchi CI, Ekwealor CC, Igbokwe VC, Sani RK. Multi-stress adaptive lifestyle of acidophiles enhances their robustness for biotechnological and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176190. [PMID: 39265677 DOI: 10.1016/j.scitotenv.2024.176190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Acidophiles are a group of organisms typically found in highly acidic environments such as acid mine drainage. These organisms have several physiological features that enable them to thrive in highly acidic environments (pH ≤3). Considering that both acid mine drainage and solfatara fields exhibit extreme and dynamic ecological conditions for acidophiles, it is crucial to gain deeper insights into the adaptive mechanisms employed by these unique organisms. The existing literature reveals a notable gap in understanding the multi-stress conditions confronting acidophiles and their corresponding coping mechanisms. Therefore, the current review aims to illuminate the intricacies of the metabolic lifestyles of acidophiles within these demanding habitats, exploring how their energy demands contribute to habitat acidification. In addition, the unique adaptive mechanisms employed by acidophiles were emphasized, especially the pivotal role of monolayer membrane-spanning lipids, and how these organisms effectively respond to a myriad of stresses. Beyond mere survival, understanding the adaptive mechanisms of these unique organisms could further enhance their use in some biotechnological and environmental applications. Lastly, this review explores the strategies used to engineer these organisms to promote their use in industrial applications.
Collapse
Affiliation(s)
- Godwin O Aliyu
- Department of Microbiology, Faculty of Natural Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Flora N Ezugworie
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Sciences, Federal College of Dental Technology and Therapy, Enugu, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
| | - Chukwudi I Nnamchi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chito C Ekwealor
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; INSERM UMR-S 1121 Biomaterial and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Rajesh K Sani
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, 57701, SD, United States; Data-Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States; Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States; BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
2
|
Bulaev A, Artykova A, Diubar A, Kolosoff A, Melamud V, Kolganova T, Beletsky A, Mardanov A. Biooxidation of a Pyrite-Arsenopyrite Concentrate Under Stressful Conditions. Microorganisms 2024; 12:2463. [PMID: 39770666 PMCID: PMC11678047 DOI: 10.3390/microorganisms12122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Gold recovery from refractory pyrite-arsenopyrite concentrates using stirred tank reactor biooxidation is widely applied worldwide. Therefore, studies to address the characteristic problem of this technology are urgent. The goal of the present work was to research the possibility of counteracting the negative effects of unfavorable conditions (increasing pulp density and temperature) on the biooxidation of pyrite-arsenopyrite concentrate in laboratory-scale stirred tank reactors using additional carbon supply in the form of CO2. A refractory concentrate containing pyrite (48%) and arsenopyrite (13%) was used in biooxidation experiments. In the control experiment, biooxidation was performed under "normal conditions": temperature 40 °C, pulp density (solid to liquid ratio, S:L) 1:10, residence time 5 days. It was shown that under "normal conditions", additional carbon dioxide supply insignificantly affected the biooxidation rate and composition of the microbial population of biooxidation reactors. In addition, the effect of "stressful conditions" was studied. In this case, either temperature or pulp density were increased (up to 50 °C and S:L 1:5, respectively), which provided unfavorable conditions for biooxidation and led to the decrease in biooxidation rate. Under "stressful conditions", additional carbon dioxide supply affected biooxidation to a greater extent and made it possible to increase both pyrite and arsenopyrite biooxidation rates. The analysis of microbial populations showed that additional carbon dioxide supply also changed their composition.
Collapse
Affiliation(s)
- Aleksandr Bulaev
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.A.); (A.D.); (A.K.); (V.M.); (T.K.); (A.B.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Golyshina OV, Lunev EA, Distaso MA, Bargiela R, Gaines MC, Daum B, Ferrer M, Bale NJ, Koenen M, Damsté JSS, Yakimov MM, Golyshin PN. Oxyplasma meridianum gen. nov., sp. nov., an extremely acidophilic organotrophic member of the order Thermoplasmatales. Int J Syst Evol Microbiol 2024; 74:006499. [PMID: 39190454 PMCID: PMC11349054 DOI: 10.1099/ijsem.0.006499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
A mesophilic, hyperacidophilic archaeon, strain M1T, was isolated from a rock sample from Vulcano Island, Italy. Cells of this organism were cocci with an average diameter of 1 µm. Some cells possessed filaments. The strain grew in the range of temperatures between 15 and 52 °C and pH 0.5-4.0 with growth optima at 40 °C and pH 1.0. Strain M1T was aerobic and chemoorganotrophic, growing on complex substrates, such as casamino acids, trypticase, tryptone, yeast and beef extracts. No growth at expenses of oxidation of elemental sulphur or reduced sulphur compounds, pyrite, or ferrous sulphate was observed. The core lipids were glycerol dibiphytanyl glycerol tetraether lipids (membrane spanning) with 0 to 4 cyclopentane moieties and archaeol, with trace amounts of hydroxy archaeol. The dominant quinone was MK-7 : 7. The genome size of M1T was 1.67 Mbp with a G+C content of 39.76 mol%, and both characteristics were well within the common range for Thermoplasmatales. The phylogenetic analysis based on 16S rRNA gene sequence placed the strain M1T within the order Thermoplasmatales with sequence identities of 90.9, 90.3 and 90.5% to the closest SSU rRNA gene sequences from organisms with validly published names, Thermoplasma acidophilum, Thermoplasma volcanium and Thermogymnomonas acidicola, respectively. Based on the results of our genomic, phylogenetic, physiological and chemotaxonomic studies, we propose that strain M1T (=DSM 116605T=JCM 36570T) represents a new genus and species, Oxyplasma meridianum gen. nov., sp. nov., within the order Thermoplasmatales.
Collapse
Affiliation(s)
- Olga V. Golyshina
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Evgenii A. Lunev
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Marco A. Distaso
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| | - Matthew C. Gaines
- Living Systems Institute and Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Bertram Daum
- Living Systems Institute and Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | | | - Peter N. Golyshin
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| |
Collapse
|
4
|
Bulaev AG, Kanygina AV, Mardanov AV. Draft genome sequence of Acidiplasma cupricumulans strain BH2 T, isolated from a pregnant leachate solution of heap bioleaching. Microbiol Resour Announc 2024; 13:e0094123. [PMID: 38063429 DOI: 10.1128/mra.00941-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024] Open
Abstract
We report the draft genome sequence of a type strain Acidiplasma cupricumulans Strain BH2T, isolated from a pregnant leachate solution of industrial-scale chalcocite bioleach heap (Monywa, Myanmar). The genome is 1.7 Mbp long with a GC content of 34.2%.
Collapse
Affiliation(s)
- Aleksandr G Bulaev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow, Russia
| | - Aleksandra V Kanygina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow, Russia
| |
Collapse
|
5
|
Chen JS, Hussain B, Tsai HC, Nagarajan V, Kumar RS, Lin IC, Hsu BM. Deciphering microbial communities and their unique metabolic repertoire across rock-soil-plant continuum in the Dayoukeng fumarolic geothermal field of the Tatun Volcano Group. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7330-7344. [PMID: 38158533 DOI: 10.1007/s11356-023-31313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
High temperature and sulfur concentrations in geothermal sulfur fumaroles host unique microbial ecosystems with niche-specific metabolic diversity and physiological functions. In this study, the microbial communities and their functionalities associated with the Dayoukeng geothermal field and the rock-soil-plant continuum were investigated to underpin the microbial modulation at different distances from the fumaroles source. At the phylum level, Bacteroidota, Planctomycetota, Armatimonadota, and Patescibacteria were abundant in plant samples; Elusimicrobiota and Desulfobacterota were in the rock samples while Nitrospirota, Micrarchaeota, and Deinococcota were dominant in the soil samples. Acidophilic thermophiles were enriched in samples within close proximity to the fumaroles, primarily at a distance of 1 m. The sulfur and iron-oxidizing acidophilic bacterial genera such as Acidothiobacillus and Sulfobacillus were abundant in the rock samples. The thermoacidophilic archaeon Acidianus and acidophilic bacteria Acidiphilium were abundant in the soil samples. Additionally, Thermosporothrix and Acidothermus were found abundant in the plant samples. The results of the functional annotation indicated that dark sulfur oxidation, iron oxidation, and hydrogen oxidation pathways were abundant in the soil samples up to 1 m from the fumaroles, while methanogenic and fermentation pathways were more prevalent in the soil samples located 10 m from the fumaroles. Interestingly, the results of this study indicated a higher microbial richness and abundance of acidophilic communities in the soils and plants compared to the rocks of the DYK fumarolic geothermal field.
Collapse
Affiliation(s)
- Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Minxiong, Chiayi County, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Minxiong, Chiayi County, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Minxiong, Chiayi County, Taiwan
| | - Rajendran Senthil Kumar
- Department of Earth and Environmental Sciences, National Chung Cheng University, Minxiong, Chiayi County, Taiwan
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung, Taiwan
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Chenghua, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Minxiong, Chiayi County, Taiwan.
| |
Collapse
|
6
|
Bargiela R, Korzhenkov AA, McIntosh OA, Toshchakov SV, Yakimov MM, Golyshin PN, Golyshina OV. Evolutionary patterns of archaea predominant in acidic environment. ENVIRONMENTAL MICROBIOME 2023; 18:61. [PMID: 37464403 DOI: 10.1186/s40793-023-00518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Archaea of the order Thermoplasmatales are widely distributed in natural acidic areas and are amongst the most acidophilic prokaryotic organisms known so far. These organisms are difficult to culture, with currently only six genera validly published since the discovery of Thermoplasma acidophilum in 1970. Moreover, known great diversity of uncultured Thermoplasmatales represents microbial dark matter and underlines the necessity of efforts in cultivation and study of these archaea. Organisms from the order Thermoplasmatales affiliated with the so-called "alphabet-plasmas", and collectively dubbed "E-plasma", were the focus of this study. These archaea were found predominantly in the hyperacidic site PM4 of Parys Mountain, Wales, UK, making up to 58% of total metagenomic reads. However, these archaea escaped all cultivation attempts. RESULTS Their genome-based metabolism revealed its peptidolytic potential, in line with the physiology of the previously studied Thermoplasmatales isolates. Analyses of the genome and evolutionary history reconstruction have shown both the gain and loss of genes, that may have contributed to the success of the "E-plasma" in hyperacidic environment compared to their community neighbours. Notable genes among them are involved in the following molecular processes: signal transduction, stress response and glyoxylate shunt, as well as multiple copies of genes associated with various cellular functions; from energy production and conversion, replication, recombination, and repair, to cell wall/membrane/envelope biogenesis and archaella production. History events reconstruction shows that these genes, acquired by putative common ancestors, may determine the evolutionary and functional divergences of "E-plasma", which is much more developed than other representatives of the order Thermoplasmatales. In addition, the ancestral hereditary reconstruction strongly indicates the placement of Thermogymnomonas acidicola close to the root of the Thermoplasmatales. CONCLUSIONS This study has analysed the metagenome-assembled genome of "E-plasma", which denotes the basis of their predominance in Parys Mountain environmental microbiome, their global ubiquity, and points into the right direction of further cultivation attempts. The results suggest distinct evolutionary trajectories of organisms comprising the order Thermoplasmatales, which is important for the understanding of their evolution and lifestyle.
Collapse
Affiliation(s)
- Rafael Bargiela
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | | | - Owen A McIntosh
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | - Stepan V Toshchakov
- Kurchatov Center for Genome Research, NRC Kurchatov Institute, Moscow, Russia
| | | | - Peter N Golyshin
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | - Olga V Golyshina
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK.
| |
Collapse
|
7
|
Matthews A, Lima-Zaloumis J, Debes Ii RV, Boyer G, Trembath-Reichert E. Heterotrophic Growth Dominates in the Most Extremotolerant Extremophile Cultures. ASTROBIOLOGY 2023; 23:446-459. [PMID: 36723486 DOI: 10.1089/ast.2022.0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their ability to withstand "extreme" conditions, Earth's extremophilic organisms can constrain habitability windows for other planetary systems. However, there are many other considerations to microbial growth requirements beyond environmental extremes, such as nutrient availability. Here, we conduct a literature review of the most extremotolerant extremophiles in culture, since working with cultured organisms allows environmental and nutrient variables to be constrained with a high level of specificity. We generated a database that includes the isolation environment, carbon source(s) used, and growth preferences across temperature, pressure, salinity, and pH extremes. We found that the "most extreme" conditions were primarily sustained by heterotrophs, except for hyperthermophiles. These results highlight the importance of considering organic carbon availability when using extremophiles for habitability constraints. We also interrogated polyextreme potential across temperature, pressure, salinity, and pH conditions. Our findings suggest that the investigation of growth tolerance rather than growth optimum may reveal wider habitability parameters. Overall, these results highlight the potential polyextremes, environments, nutrient requirements, and additional analyses that could improve the application of cultured investigations to astrobiology questions.
Collapse
Affiliation(s)
- Adrianna Matthews
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | | | - R Vincent Debes Ii
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Grayson Boyer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | | |
Collapse
|
8
|
Bulaev A, Melamud V. Two-Stage Oxidative Leaching of Low-Grade Copper-Zinc Sulfide Concentrate. Microorganisms 2022; 10:microorganisms10091781. [PMID: 36144382 PMCID: PMC9500903 DOI: 10.3390/microorganisms10091781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Bioleaching may be effectively used to extract nonferrous metals from sulfide ores and concentrates. At the same time, some minerals are refractory and their bioleaching rate is often comparatively low that does not allow the required metal extraction rate to be achieved. In the present work, we studied the two-stage process, which included stages of biological and chemical leaching, to improve copper extraction from low grade Cu-Zn sulfide concentrate containing chalcopyrite, tennantite, pyrite, and sphalerite. Bioleaching was conducted in the continuous mode in three laboratory scale reactors connected in series. The pulp density was 10% and the residence time was 7 days. The temperature was 40 °C in the 1st reactor and 50 °C in the 2nd and 3rd reactors. Bioleaching allowed the extraction of 29.5 and 78% of Cu and Zn, respectively. The solid bioleach residue obtained was then treated for additional Cu and Zn recovery using high temperature leaching at 90 °C for 25 h. The liquid phase of the bioleaching pulp contained Fe3+ ions, which is the strong oxidant, and the leach solution was supplemented with NaCl. In the presence of the maximal NaCl concentration (1 M), Cu and Zn extraction reached 48 and 84%. Thus, two-stage leaching may allow to increase bioleaching efficiency and may be used to improve the bioleaching rate of refractory minerals, such as chalcopyrite.
Collapse
|
9
|
Vidal P, Martínez-Martínez M, Fernandez-Lopez L, Roda S, Méndez-García C, Golyshina OV, Guallar V, Peláez AI, Ferrer M. Metagenomic Mining for Esterases in the Microbial Community of Los Rueldos Acid Mine Drainage Formation. Front Microbiol 2022; 13:868839. [PMID: 35663881 PMCID: PMC9162777 DOI: 10.3389/fmicb.2022.868839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 01/17/2023] Open
Abstract
Acid mine drainage (AMD) systems are extremely acidic and are metal-rich formations inhabited by relatively low-complexity communities of acidophiles whose enzymes remain mostly uncharacterized. Indeed, enzymes from only a few AMD sites have been studied. The low number of available cultured representatives and genome sequences of acidophiles inhabiting AMDs makes it difficult to assess the potential of these environments for enzyme bioprospecting. In this study, using naïve and in silico metagenomic approaches, we retrieved 16 esterases from the α/β-hydrolase fold superfamily with the closest match from uncultured acidophilic Acidobacteria, Actinobacteria (Acidithrix, Acidimicrobium, and Ferrimicrobium), Acidiphilium, and other Proteobacteria inhabiting the Los Rueldos site, which is a unique AMD formation in northwestern Spain with a pH of ∼2. Within this set, only two polypeptides showed high homology (99.4%), while for the rest, the pairwise identities ranged between 4 and 44.9%, suggesting that the diversity of active polypeptides was dominated not by a particular type of protein or highly similar clusters of proteins, but by diverse non-redundant sequences. The enzymes exhibited amino acid sequence identities ranging from 39 to 99% relative to homologous proteins in public databases, including those from other AMDs, thus indicating the potential novelty of proteins associated with a specialized acidophilic community. Ten of the 16 hydrolases were successfully expressed in Escherichia coli. The pH for optimal activity ranged from 7.0 to 9.0, with the enzymes retaining 33–68% of their activities at pH 5.5, which was consistent with the relative frequencies of acid residues (from 54 to 67%). The enzymes were the most active at 30–65°C, retaining 20–61% of their activity under the thermal conditions characterizing Los Rueldos (13.8 ± 0.6°C). The analysis of the substrate specificity revealed the capacity of six hydrolases to efficiently degrade (up to 1,652 ± 75 U/g at pH 8.0 and 30°C) acrylic- and terephthalic-like [including bis(2-hydroxyethyl)-terephthalate, BHET] esters, and these enzymes could potentially be of use for developing plastic degradation strategies yet to be explored. Our assessment uncovers the novelty and potential biotechnological interest of enzymes present in the microbial populations that inhibit the Los Rueldos AMD system.
Collapse
Affiliation(s)
- Paula Vidal
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mónica Martínez-Martínez
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Laura Fernandez-Lopez
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sergi Roda
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Celia Méndez-García
- Área de Microbiología, Departamento Biología Funcional e Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Olga V. Golyshina
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Víctor Guallar
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Ana I. Peláez
- Área de Microbiología, Departamento Biología Funcional e Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- *Correspondence: Manuel Ferrer,
| |
Collapse
|
10
|
Draft Genome Sequence of Acidiplasma aeolicum Strain V1 T, Isolated from a Hydrothermal Pool. Microbiol Resour Announc 2022; 11:e0104621. [PMID: 35175111 PMCID: PMC8852315 DOI: 10.1128/mra.01046-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We report the draft genome sequence of Acidiplasma aeolicum strain V1T, isolated from a hydrothermal pool (Vulcano Island, Italy). The genome is 1.8 Mbp long with a GC content of 34%. The genome sequence was found to be closely related to those of other known strains of Acidiplasma genus.
Collapse
|
11
|
Ecological and Biotechnological Relevance of Mediterranean Hydrothermal Vent Systems. MINERALS 2022. [DOI: 10.3390/min12020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Marine hydrothermal systems are a special kind of extreme environments associated with submarine volcanic activity and characterized by harsh chemo-physical conditions, in terms of hot temperature, high concentrations of CO2 and H2S, and low pH. Such conditions strongly impact the living organisms, which have to develop adaptation strategies to survive. Hydrothermal systems have attracted the interest of researchers due to their enormous ecological and biotechnological relevance. From ecological perspective, these acidified habitats are useful natural laboratories to predict the effects of global environmental changes, such as ocean acidification at ecosystem level, through the observation of the marine organism responses to environmental extremes. In addition, hydrothermal vents are known as optimal sources for isolation of thermophilic and hyperthermophilic microbes, with biotechnological potential. This double aspect is the focus of this review, which aims at providing a picture of the ecological features of the main Mediterranean hydrothermal vents. The physiological responses, abundance, and distribution of biotic components are elucidated, by focusing on the necto-benthic fauna and prokaryotic communities recognized to possess pivotal role in the marine ecosystem dynamics and as indicator species. The scientific interest in hydrothermal vents will be also reviewed by pointing out their relevance as source of bioactive molecules.
Collapse
|
12
|
Carbon Sources as a Factor Determining the Activity of Microbial Oxidation of Sulfide Concentrate at Elevated Temperature. MINERALS 2022. [DOI: 10.3390/min12020110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of the present work was to evaluate the possibility of improving the efficiency of the stirred tank reactor biooxidation of sulfide gold-bearing concentrate by means of addition of carbon sources required for the constructive metabolism of microorganisms. Biooxidation experiments were performed on gold-bearing pyrite-arsenopyrite concentrate in continuous mode at 45 °C to determine the influence of additional carbon sources (carbon dioxide and molasses) on sulfide mineral oxidation. The use of CO2 allowed increasing the efficiency of the biooxidation and the extents of sulfide sulfur (Ss) oxidation and gold recovery were 79% and 84%, respectively. Biooxidation in a control experiment (without additional carbon sources) and when using molasses allowed achieving 39% and 66% oxidation of Ss as well as 73% and 81% of gold recovery. Analysis of the microbial populations formed in biooxidation reactors using NGS methods demonstrated that CO2 application led to an increase in the relative abundance of the genus Sulfobacillus. Thus, it was determined that application of additional carbon source makes it possible to manage the biooxidation process, affecting both sulfide mineral oxidation and microbial population composition.
Collapse
|
13
|
Malik L, Hedrich S. Ferric Iron Reduction in Extreme Acidophiles. Front Microbiol 2022; 12:818414. [PMID: 35095822 PMCID: PMC8790237 DOI: 10.3389/fmicb.2021.818414] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Biochemical processes are a key element of natural cycles occurring in the environment and enabling life on earth. With regard to microbially catalyzed iron transformation, research predominantly has focused on iron oxidation in acidophiles, whereas iron reduction played a minor role. Microbial conversion of ferric to ferrous iron has however become more relevant in recent years. While there are several reviews on neutrophilic iron reducers, this article summarizes the research on extreme acidophilic iron reducers. After the first reports of dissimilatory iron reduction by acidophilic, chemolithoautotrophic Acidithiobacillus strains and heterotrophic Acidiphilium species, many other prokaryotes were shown to reduce iron as part of their metabolism. Still, little is known about the exact mechanisms of iron reduction in extreme acidophiles. Initially, hypotheses and postulations for the occurring mechanisms relied on observations of growth behavior or predictions based on the genome. By comparing genomes of well-studied neutrophilic with acidophilic iron reducers (e.g., Ferroglobus placidus and Sulfolobus spp.), it became clear that the electron transport for iron reduction proceeds differently in acidophiles. Moreover, transcriptomic investigations indicated an enzymatically-mediated process in Acidithiobacillus ferrooxidans using respiratory chain components of the iron oxidation in reverse. Depending on the strain of At. ferrooxidans, further mechanisms were postulated, e.g., indirect iron reduction by hydrogen sulfide, which may form by disproportionation of elemental sulfur. Alternative scenarios include Hip, a high potential iron-sulfur protein, and further cytochromes. Apart from the anaerobic iron reduction mechanisms, sulfur-oxidizing acidithiobacilli have been shown to mediate iron reduction at low pH (< 1.3) under aerobic conditions. This presumably non-enzymatic process may be attributed to intermediates formed during sulfur/tetrathionate and/or hydrogen oxidation and has already been successfully applied for the reductive bioleaching of laterites. The aim of this review is to provide an up-to-date overview on ferric iron reduction by acidophiles. The importance of this process in anaerobic habitats will be demonstrated as well as its potential for application.
Collapse
Affiliation(s)
- Luise Malik
- Research Group Biohydrometallurgy and Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Sabrina Hedrich
- Research Group Biohydrometallurgy and Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
14
|
Abstract
In previous publications, it was hypothesized that Micrarchaeota cells are covered by two individual membrane systems. This study proves that at least the recently cultivated "Candidatus Micrarchaeum harzensis A_DKE" possesses an S-layer covering its cytoplasmic membrane. The potential S-layer protein was found to be among the proteins with the highest abundance in "Ca. Micrarchaeum harzensis A_DKE" and in silico characterisation of its primary structure indicated homologies to other known S-layer proteins. Homologues of this protein were found in other Micrarchaeota genomes, which raises the question of whether the ability to form an S-layer is a common trait within this phylum. The S-layer protein seems to be glycosylated and the Micrarchaeon expresses genes for N-glycosylation under cultivation conditions, despite not being able to synthesize carbohydrates. Electron micrographs of freeze-etched samples of a previously described co-culture, containing Micrarchaeum A_DKE and a Thermoplasmatales member as its host organism, verified the hypothesis of an S-layer on the surface of "Ca. Micrarchaeum harzensis A_DKE". Both organisms are clearly distinguishable by cell size, shape and surface structure. Importance Our knowledge about the DPANN superphylum, which comprises several archaeal phyla with limited metabolic capacities, is mostly based on genomic data derived from cultivation-independent approaches. This study examined the surface structure of a recently cultivated member "Candidatus Micrarchaeum harzensis A_DKE", an archaeal symbiont dependent on an interaction with a host organism for growth. The interaction requires direct cell contact between interaction partners, a mechanism which is also described for other DPANN archaea. Investigating the surface structure of "Ca. Micrarchaeum harzensis A_DKE" is an important step towards understanding the interaction between Micrarchaeota and their host organisms and living with limited metabolic capabilities, a trait shared by several DPANN archaea.
Collapse
|
15
|
Bulaev A, Nechaeva A, Elkina Y, Melamud V. Effect of Carbon Sources on Pyrite-Arsenopyrite Concentrate Bio-oxidation and Growth of Microbial Population in Stirred Tank Reactors. Microorganisms 2021; 9:2350. [PMID: 34835475 PMCID: PMC8625546 DOI: 10.3390/microorganisms9112350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Tank bio-oxidation is a biohydrometallurgical technology widely used for metal recovery from sulfide concentrates. Since carbon availability is one of the key factors affecting microbial communities, it may also determine the rate of sulfide concentrate bio-oxidation. The goal of the present work was to evaluate the effect of carbon sources on the bio-oxidation of the concentrate containing 56% pyrite and 14% arsenopyrite at different temperatures (40 and 50 °C) in stirred tank reactors. CO2 was supplied into the pulp of the first reactor (about 0.01 L/min) and 0.02% (w/v) molasses was added to the pulp of the second one, and no additional carbon sources were used in the control tests. At 40 °C, 77% of pyrite and 98% of arsenopyrite were oxidized in the first reactor, in the second one, 73% of pyrite and 98% of arsenopyrite were oxidized, while in the control reactor, 27% pyrite and 93% arsenopyrite were oxidized. At 50 °C, in the first reactor, 94% of pyrite and 99% of arsenopyrite were oxidized, in the second one, 21% of pyrite and 94% of arsenopyrite were oxidized, while in the control reactor, 10% pyrite and 92% arsenopyrite were oxidized. The analysis of the microbial populations in the reactors revealed differences in the total number of microorganisms and their species composition. Thus, it was shown that the use of various carbon sources made it possible to increase the intensity of the concentrate bio-oxidation, since it affected microbial populations performing the process.
Collapse
Affiliation(s)
- Aleksandr Bulaev
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33 bld. 2, 119071 Moscow, Russia; (A.N.); (Y.E.); (V.M.)
| | | | | | | |
Collapse
|
16
|
Beaver RC, Engel K, Binns WJ, Neufeld JD. Microbiology of barrier component analogues of a deep geological repository. Can J Microbiol 2021; 68:73-90. [PMID: 34648720 DOI: 10.1139/cjm-2021-0225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Canada is currently implementing a site selection process to identify a location for a deep geological repository (DGR) for the long-term storage of Canada's used nuclear fuel, wherein used nuclear fuel bundles will be sealed inside copper-coated carbon steel containers, encased in highly compacted bentonite clay buffer boxes, and sealed deep underground in a stable geosphere. Because a DGR must remain functional for a million years, it is important to examine ancient natural systems that serve as analogues for planned DGR components. Specifically, studying the microbiology of natural analogue components of a DGR is important for developing an understanding of the types of microorganisms that may be able to grow and influence the long-term stability of a DGR. This study explored the abundance, viability, and composition of microorganisms in several ancient natural analogues using a combination of cultivation and cultivation-independent approaches. Samples were obtained from the Tsukinuno bentonite deposit (Japan) that formed ∼10 mya, the Opalinus Clay formation (Switzerland) that formed ∼174 mya, and Canadian shield crystalline rock from Northern Ontario that formed ∼2.7 bya. Analysis of 16S rRNA gene amplicons revealed that three of the ten Tsukinuno bentonite samples analyzed were dominated by putative aerobic heterotrophs and fermenting bacteria from the phylum Actinobacteria, whereas five of the Tsukinuno bentonite samples were dominated by sequences associated with putative acidophilic chemolithoautotrophs capable of sulfur reduction. The remaining Tsukinuno bentonite samples, the Northern Ontario rock samples, and the Opalinus Clay samples generated inconsistent replicate 16S rRNA gene profiles and were associated primarily with contaminant sequences, suggesting that the microbial profiles detected were not sample-specific but spurious. Culturable aerobic heterotroph abundances were relatively low for all Tsukinuno bentonite samples, culturable anaerobic heterotrophs were only detected in half of the Tsukinuno samples, and sulfate-reducing bacteria (SRB) were only detected in one Tsukinuno sample by cultivation. Culture-specific 16S rRNA gene profiles from Tsukinuno clay samples demonstrated the presence of phyla Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes among aerobic heterotroph cultures and additional bacteria from the phyla Actinobacteria and Firmicutes from anaerobic heterotroph plate incubations. Only one nucleic acid sequence detected from a culture was also associated with its corresponding clay sample profile, suggesting that nucleic acids from culturable bacteria were relatively rare within the clay samples. Sequencing of DNA extracted from the SRB culture revealed that the taxon present in the culture was affiliated with the genus Desulfosporosinus, which has been found in related bentonite clay analyses. Although the crystalline rock and Opalinus Clay samples were associated with inconsistent, likely spurious 16S rRNA gene profiles, we show evidence for viable and detectable microorganisms within several Tsukinuno natural analogue bentonite samples.
Collapse
Affiliation(s)
- Rachel C Beaver
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Katja Engel
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - W Jeffrey Binns
- Nuclear Waste Management Organization, Toronto, Ontario, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
17
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
18
|
Dong Y, Shan Y, Xia K, Shi L. The Proposed Molecular Mechanisms Used by Archaea for Fe(III) Reduction and Fe(II) Oxidation. Front Microbiol 2021; 12:690918. [PMID: 34276623 PMCID: PMC8280799 DOI: 10.3389/fmicb.2021.690918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Iron (Fe) is the fourth most abundant element in the Earth's crust where ferrous Fe [Fe(II)] and ferric Fe [Fe(III)] can be used by archaea for energy conservation. In these archaea-Fe interactions, Fe(III) serves as terminal electron acceptor for anaerobic respiration by a variety of archaea, while Fe(II) serves as electron donor and/or energy sources for archaeal growth. As no Fe is incorporated into the archaeal cells, these redox reactions are referred to as dissimilatory Fe(III) reduction and Fe(II) oxidation, respectively. Dissimilatory Fe(III)-reducing archaea (FeRA) and Fe(II)-oxidizing archaea (FeOA) are widespread on Earth where they play crucial roles in biogeochemical cycling of not only Fe, but also carbon and sulfur. To reduce extracellular Fe(III) (oxyhydr)oxides, some FeRA transfer electrons directly to the Fe(III) (oxyhydr)oxides most likely via multiheme c-type cytochromes (c-Cyts). These multiheme c-Cyts may form the pathways similar to those found in bacteria for transferring electrons from the quinone/quinol pool in the cytoplasmic membrane to the Fe(III) (oxyhydr)oxides external to the archaeal cells. Use of multiheme c-Cyts for extracellular Fe(III) reduction by both Domains of Archaea and Bacteria emphasizes an ancient mechanism of extracellular electron transfer, which is well conserved. Other FeRA, however, reduce Fe(III) (oxyhydr)oxides indirectly via electron shuttles. Similarly, it is proposed that FeOA use pathways to oxidize Fe(II) on the surface of the cytoplasmic membrane and then to transfer the released electrons across the cytoplasmic membrane inward to the O2 and NAD+ in the cytoplasm. In this review, we focus on the latest understandings of the molecular mechanisms used by FeRA and FeOA for Fe(III) reduction and Fe(II) oxidation, respectively.
Collapse
Affiliation(s)
- Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yawei Shan
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Kemin Xia
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
19
|
Christakis CA, Barkay T, Boyd ES. Expanded Diversity and Phylogeny of mer Genes Broadens Mercury Resistance Paradigms and Reveals an Origin for MerA Among Thermophilic Archaea. Front Microbiol 2021; 12:682605. [PMID: 34248899 PMCID: PMC8261052 DOI: 10.3389/fmicb.2021.682605] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mercury (Hg) is a highly toxic element due to its high affinity for protein sulfhydryl groups, which upon binding, can destabilize protein structure and decrease enzyme activity. Prokaryotes have evolved enzymatic mechanisms to detoxify inorganic Hg and organic Hg (e.g., MeHg) through the activities of mercuric reductase (MerA) and organomercury lyase (MerB), respectively. Here, the taxonomic distribution and evolution of MerAB was examined in 84,032 archaeal and bacterial genomes, metagenome assembled genomes, and single-cell genomes. Homologs of MerA and MerB were identified in 7.8 and 2.1% percent of genomes, respectively. MerA was identified in the genomes of 10 archaeal and 28 bacterial phyla previously unknown to code for this functionality. Likewise, MerB was identified in 2 archaeal and 11 bacterial phyla previously unknown to encode this functionality. Surprisingly, homologs of MerB were identified in a number of genomes (∼50% of all MerB-encoding genomes) that did not encode MerA, suggesting alternative mechanisms to detoxify Hg(II) once it is generated in the cytoplasm. Phylogenetic reconstruction of MerA place its origin in thermophilic Thermoprotei (Crenarchaeota), consistent with high levels of Hg(II) in geothermal environments, the natural habitat of this archaeal class. MerB appears to have been recruited to the mer operon relatively recently and likely among a mesophilic ancestor of Euryarchaeota and Thaumarchaeota. This is consistent with the functional dependence of MerB on MerA and the widespread distribution of mesophilic microorganisms that methylate Hg(II) at lower temperature. Collectively, these results expand the taxonomic and ecological distribution of mer-encoded functionalities, and suggest that selection for Hg(II) and MeHg detoxification is dependent not only on the availability and type of mercury compounds in the environment but also the physiological potential of the microbes who inhabit these environments. The expanded diversity and environmental distribution of MerAB identify new targets to prioritize for future research.
Collapse
Affiliation(s)
- Christos A. Christakis
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Eric S. Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
20
|
Chen Q, He Z, Zhuo Y, Li S, Yang W, Hu L, Zhong H. Rubidium chloride modulated the fecal microbiota community in mice. BMC Microbiol 2021; 21:46. [PMID: 33588762 PMCID: PMC7885239 DOI: 10.1186/s12866-021-02095-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background The microbiota plays an important role in host health. Although rubidium (Rb) has been used to study its effects on depression and cancers, the interaction between microbial commensals and Rb is still unexplored. To gain the knowledge of the relationship between Rb and microbes, 51 mice receiving RbCl-based treatment and 13 untreated mice were evaluated for their characteristics and bacterial microbiome changes. Results The 16S ribosomal RNA gene sequencing of fecal microbiota showed that RbCl generally maintained fecal microbial community diversity, while the shifts in fecal microbial composition were apparent after RbCl exposure. RbCl significantly enhanced the abundances of Rikenellaceae, Alistipes, Clostridium XlVa and sulfate-reducing bacteria including Deltaproteobacteria, Desulfovibrionales, Desulfovibrionaceae and Desulfovibrio, but significantly inhibited the abundances of Tenericutes, Mollicutes, Anaeroplasmatales, Anaeroplasmataceae and Anaeroplasma lineages. With regarding to the archaea, we only observed two less richness archaea Sulfolobus and Acidiplasma at the genus level. Conclusions Changes of fecal microbes may in part contribute to the anticancer or anti-depressant effects of RbCl. These findings further validate that the microbiome could be a target for therapeutic intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02095-4.
Collapse
Affiliation(s)
- Qian Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yuting Zhuo
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Wenjing Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
21
|
Distaso MA, Bargiela R, Brailsford FL, Williams GB, Wright S, Lunev EA, Toshchakov SV, Yakimov MM, Jones DL, Golyshin PN, Golyshina OV. High Representation of Archaea Across All Depths in Oxic and Low-pH Sediment Layers Underlying an Acidic Stream. Front Microbiol 2020; 11:576520. [PMID: 33329440 PMCID: PMC7716880 DOI: 10.3389/fmicb.2020.576520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Abstract
Parys Mountain or Mynydd Parys (Isle of Anglesey, United Kingdom) is a mine-impacted environment, which accommodates a variety of acidophilic organisms. Our previous research of water and sediments from one of the surface acidic streams showed a high proportion of archaea in the total microbial community. To understand the spatial distribution of archaea, we sampled cores (0-20 cm) of sediment and conducted chemical analyses and taxonomic profiling of microbiomes using 16S rRNA gene amplicon sequencing in different core layers. The taxonomic affiliation of sequencing reads indicated that archaea represented between 6.2 and 54% of the microbial community at all sediment depths. Majority of archaea were associated with the order Thermoplasmatales, with the most abundant group of sequences being clustered closely with the phylotype B_DKE, followed by "E-plasma," "A-plasma," other yet uncultured Thermoplasmatales with Ferroplasma and Cuniculiplasma spp. represented in minor proportions. Thermoplasmatales were found at all depths and in the whole range of chemical conditions with their abundance correlating with sediment Fe, As, Cr, and Mn contents. The bacterial microbiome component was largely composed in all layers of sediment by members of the phyla Proteobacteria, Actinobacteria, Nitrospirae, Firmicutes, uncultured Chloroflexi (AD3 group), and Acidobacteria. This study has revealed a high abundance of Thermoplasmatales in acid mine drainage-affected sediment layers and pointed at these organisms being the main contributors to carbon, and probably to iron and sulfur cycles in this ecosystem.
Collapse
Affiliation(s)
- Marco A. Distaso
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| | - Rafael Bargiela
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Francesca L. Brailsford
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Gwion B. Williams
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| | - Samuel Wright
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| | - Evgenii A. Lunev
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | | - Michail M. Yakimov
- Institute for Biological Resources and Marine Biotechnology, CNR, Messina, Italy
| | - David L. Jones
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Peter N. Golyshin
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| | - Olga V. Golyshina
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| |
Collapse
|
22
|
Blank PN, Barnett AA, Ronnebaum TA, Alderfer KE, Gillott BN, Christianson DW, Himmelberger JA. Structural studies of geranylgeranylglyceryl phosphate synthase, a prenyltransferase found in thermophilic Euryarchaeota. Acta Crystallogr D Struct Biol 2020; 76:542-557. [PMID: 32496216 PMCID: PMC7271946 DOI: 10.1107/s2059798320004878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/05/2020] [Indexed: 12/26/2022] Open
Abstract
Archaea are uniquely adapted to thrive in harsh environments, and one of these adaptations involves the archaeal membrane lipids, which are characterized by their isoprenoid alkyl chains connected via ether linkages to glycerol 1-phosphate. The membrane lipids of the thermophilic and acidophilic euryarchaeota Thermoplasma volcanium are exclusively glycerol dibiphytanyl glycerol tetraethers. The first committed step in the biosynthetic pathway of these archaeal lipids is the formation of the ether linkage between glycerol 1-phosphate and geranylgeranyl diphosphate, and is catalyzed by the enzyme geranylgeranylglyceryl phosphate synthase (GGGPS). The 1.72 Å resolution crystal structure of GGGPS from T. volcanium (TvGGGPS) in complex with glycerol and sulfate is reported here. The crystal structure reveals TvGGGPS to be a dimer, which is consistent with the absence of the aromatic anchor residue in helix α5a that is required for hexamerization in other GGGPS homologs; the hexameric quaternary structure in GGGPS is thought to provide thermostability. A phylogenetic analysis of the Euryarchaeota and a parallel ancestral state reconstruction investigated the relationship between optimal growth temperature and the ancestral sequences. The presence of an aromatic anchor residue is not explained by temperature as an ecological parameter. An examination of the active site of the TvGGGPS dimer revealed that it may be able to accommodate longer isoprenoid substrates, supporting an alternative pathway of isoprenoid membrane-lipid synthesis.
Collapse
Affiliation(s)
- P. N. Blank
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - A. A. Barnett
- Department of Biology, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - T. A. Ronnebaum
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - K. E. Alderfer
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - B. N. Gillott
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - D. W. Christianson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - J. A. Himmelberger
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| |
Collapse
|
23
|
Muravyov MI, Melamud VS, Fomchenko NV. Biooxidation of High-Sulfur Products of Ferric Leaching of a Zinc Concentrate. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720020095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Diversity of " Ca. Micrarchaeota" in Two Distinct Types of Acidic Environments and Their Associations with Thermoplasmatales. Genes (Basel) 2019; 10:genes10060461. [PMID: 31208064 PMCID: PMC6627985 DOI: 10.3390/genes10060461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 01/31/2023] Open
Abstract
“Candidatus Micrarchaeota” are widely distributed in acidic environments; however, their cultivability and our understanding of their interactions with potential hosts are very limited. Their habitats were so far attributed with acidic sites, soils, peats, freshwater systems, and hypersaline mats. Using cultivation and culture-independent approaches (16S rRNA gene clonal libraries, high-throughput amplicon sequencing of V3-V4 region of 16S rRNA genes), we surveyed the occurrence of these archaea in geothermal areas on Kamchatka Peninsula and Kunashir Island and assessed their taxonomic diversity in relation with another type of low-pH environment, acid mine drainage stream (Wales, UK). We detected “Ca. Micrarchaeota” in thermophilic heterotrophic enrichment cultures of Kunashir and Kamchatka that appeared as two different phylotypes, namely “Ca. Mancarchaeum acidiphilum”-, and ARMAN-2-related, alongside their potential hosts, Cuniculiplasma spp. and other Thermoplasmatales archaea without defined taxonomic position. These clusters of “Ca. Micrarchaeota” together with three other groups were also present in mesophilic acid mine drainage community. Present work expands our knowledge on the diversity of “Ca. Micrarchaeota” in thermophilic and mesophilic acidic environments, suggests cultivability patterns of acidophilic archaea and establishes potential links between low-abundance species of thermophilic “Ca. Micrarchaeota” and certain Thermoplasmatales, such as Cuniculiplasma spp. in situ.
Collapse
|
25
|
|
26
|
Zhang Q, Li Y, Xing J, Brookes PC, Xu J. Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:723-731. [PMID: 30583167 DOI: 10.1016/j.scitotenv.2018.12.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Archaea play crucial roles in geochemical cycles and influence the emission of greenhouse gases in acidic soils. However, little is known about the distribution pattern of total archaeal diversity and community composition with increasing elevation, especially in acidic agricultural ecosystems. Terraces, characterized by vertical climate changes and unique hydrological properties, are "natural experiments" to explore the spatial distribution of microorganisms along elevation in paddy soils. Here we investigated the diversity and structure of soil archaeal communities in nine increasingly elevated acidic paddy soils of the Yunhe terrace, China. Archaeal communities were dominated by Methanomicrobia of Euryarchaeota (38.5%), Group 1.1a-associated cluster (SAGSCG-1) of Thaumarchaeota (22.0%) and Subgroup-6 (previously described as crenarchaeotal group 1.3b) of Bathyarchaeota (17.8%). The archaeal phylotype richness decreased with increasing elevation. Both the species richness and phylogenetic diversity of the archaeal communities were significantly negatively correlated with soil available phosphorus (AP) content according to linear regression analyses. The archaeal communities differed greatly between soils of increasing elevation, and were roughly clustered into three groups, mostly in relation to AP contents. A variation partitioning analysis further confirmed that edaphic factors including the content of AP (17.1%), nitrate (7.83%), soil organic carbon (4.69%), dissolved organic carbon (4.22%) and soil pH (4.07%) shaped the archaeal community. The variation of soil properties were probably induced by elevation. The co-occurrence network indicated a modular structure of the archaeal community. Overall, our results emphasized that soil AP content was the best predictor of archaeal diversity and community structure, and the impacts of elevation on soil archaeal communities were not diminished by long-term rice cultivation, although minor compared with the effects of soil properties.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xing
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Crognale S, Venturi S, Tassi F, Rossetti S, Rashed H, Cabassi J, Capecchiacci F, Nisi B, Vaselli O, Morrison HG, Sogin ML, Fazi S. Microbiome profiling in extremely acidic soils affected by hydrothermal fluids: the case of the Solfatara Crater (Campi Flegrei, southern Italy). FEMS Microbiol Ecol 2018; 94:5105751. [DOI: 10.1093/femsec/fiy190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Simona Crognale
- IRSA - CNR Water Research Institute, Via Salaria km 29.300 – CP10, 00015 Monterotondo, Rome, Italy
| | - Stefania Venturi
- IGG − CNR Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Florence, Italy
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy
| | - Franco Tassi
- IGG − CNR Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Florence, Italy
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy
| | - Simona Rossetti
- IRSA - CNR Water Research Institute, Via Salaria km 29.300 – CP10, 00015 Monterotondo, Rome, Italy
| | - Heba Rashed
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy
| | - Jacopo Cabassi
- IGG − CNR Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Florence, Italy
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy
| | - Francesco Capecchiacci
- IGG − CNR Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Florence, Italy
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy
| | - Barbara Nisi
- IGG – CNR Institute of Geosciences and Earth Resources, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Orlando Vaselli
- IGG − CNR Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Florence, Italy
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy
| | | | | | - Stefano Fazi
- IRSA - CNR Water Research Institute, Via Salaria km 29.300 – CP10, 00015 Monterotondo, Rome, Italy
| |
Collapse
|
28
|
Bulaev AG, Chernyshov AN. Effect of Light Metal Ions and Chloride on Activity of Moderately Thermophilic Acidophilic Iron-Oxidizing Microorganisms. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718050053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Bulaev AG, Erofeeva TV, Labyrich MV, Mel’nikova EA. Resistance of Acidiplasma archaea to heavy metal ions. Microbiology (Reading) 2017. [DOI: 10.1134/s002626171705006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
An Adaptation To Life In Acid Through A Novel Mevalonate Pathway. Sci Rep 2016; 6:39737. [PMID: 28004831 PMCID: PMC5177888 DOI: 10.1038/srep39737] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/28/2016] [Indexed: 11/23/2022] Open
Abstract
Extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previously identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.
Collapse
|
31
|
Golyshina OV, Kublanov IV, Tran H, Korzhenkov AA, Lünsdorf H, Nechitaylo TY, Gavrilov SN, Toshchakov SV, Golyshin PN. Biology of archaea from a novel family Cuniculiplasmataceae (Thermoplasmata) ubiquitous in hyperacidic environments. Sci Rep 2016; 6:39034. [PMID: 27966672 PMCID: PMC5155288 DOI: 10.1038/srep39034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022] Open
Abstract
The order Thermoplasmatales (Euryarchaeota) is represented by the most acidophilic organisms known so far that are poorly amenable to cultivation. Earlier culture-independent studies in Iron Mountain (California) pointed at an abundant archaeal group, dubbed ‘G-plasma’. We examined the genomes and physiology of two cultured representatives of a Family Cuniculiplasmataceae, recently isolated from acidic (pH 1–1.5) sites in Spain and UK that are 16S rRNA gene sequence-identical with ‘G-plasma’. Organisms had largest genomes among Thermoplasmatales (1.87–1.94 Mbp), that shared 98.7–98.8% average nucleotide identities between themselves and ‘G-plasma’ and exhibited a high genome conservation even within their genomic islands, despite their remote geographical localisations. Facultatively anaerobic heterotrophs, they possess an ancestral form of A-type terminal oxygen reductase from a distinct parental clade. The lack of complete pathways for biosynthesis of histidine, valine, leucine, isoleucine, lysine and proline pre-determines the reliance on external sources of amino acids and hence the lifestyle of these organisms as scavengers of proteinaceous compounds from surrounding microbial community members. In contrast to earlier metagenomics-based assumptions, isolates were S-layer-deficient, non-motile, non-methylotrophic and devoid of iron-oxidation despite the abundance of methylotrophy substrates and ferrous iron in situ, which underlines the essentiality of experimental validation of bioinformatic predictions.
Collapse
Affiliation(s)
- Olga V Golyshina
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312, Russia
| | - Hai Tran
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK
| | | | - Heinrich Lünsdorf
- Central Unit of Microscopy, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Taras Y Nechitaylo
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, 07745, Germany
| | - Sergey N Gavrilov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312, Russia
| | | | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK
| |
Collapse
|
32
|
Fashola MO, Ngole-Jeme VM, Babalola OO. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111047. [PMID: 27792205 PMCID: PMC5129257 DOI: 10.3390/ijerph13111047] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment.
Collapse
Affiliation(s)
- Muibat Omotola Fashola
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Veronica Mpode Ngole-Jeme
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA, Florida, Private Bag X6 Florida, Roodepoort 1710, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
33
|
Yoshinaga MY, Kellermann MY, Valentine DL, Valentine RC. Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes. Prog Lipid Res 2016; 64:1-15. [PMID: 27448687 DOI: 10.1016/j.plipres.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/29/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
Proton bioenergetics provides the energy for growth and survival of most organisms in the biosphere ranging from unicellular marine phytoplankton to humans. Chloroplasts harvest light and generate a proton electrochemical gradient (proton motive force) that drives the production of ATP needed for carbon dioxide fixation and plant growth. Mitochondria, bacteria and archaea generate proton motive force to energize growth and other physiologies. Energy transducing membranes are at the heart of proton bioenergetics and are responsible for catalyzing the conversion of energy held in high-energy electrons→electron transport chain→proton motive force→ATP. Whereas the electron transport chain is understood in great detail there are major gaps in understanding mechanisms of proton transfer or circulation during proton bioenergetics. This paper is built on the proposition that phospho- and glyco-glycerolipids form proton transport circuitry at the membrane's surface. By this proposition, an emergent membrane property, termed the hyducton, confines active/unbound protons or hydronium ions to a region of low volume close to the membrane surface. In turn, a von Grotthuß mechanism rapidly moves proton substrate in accordance with nano-electrochemical poles on the membrane surface created by powerful proton pumps such as ATP synthase.
Collapse
Affiliation(s)
- Marcos Y Yoshinaga
- University of Bremen, MARUM - Center for Marine and Environmental Sciences, Germany.
| | - Matthias Y Kellermann
- University of California Santa Barbara - Department of Earth Science and Marine Science Institute, USA
| | - David L Valentine
- University of California Santa Barbara - Department of Earth Science and Marine Science Institute, USA
| | | |
Collapse
|
34
|
|
35
|
Harrison JP, Dobinson L, Freeman K, McKenzie R, Wyllie D, Nixon SL, Cockell CS. Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains. J R Soc Interface 2016; 12:0658. [PMID: 26354829 DOI: 10.1098/rsif.2015.0658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division.
Collapse
Affiliation(s)
- Jesse P Harrison
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Luke Dobinson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Kenneth Freeman
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Ross McKenzie
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Dale Wyllie
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Sophie L Nixon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| |
Collapse
|
36
|
Chen LX, Huang LN, Méndez-García C, Kuang JL, Hua ZS, Liu J, Shu WS. Microbial communities, processes and functions in acid mine drainage ecosystems. Curr Opin Biotechnol 2016; 38:150-8. [DOI: 10.1016/j.copbio.2016.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
37
|
Bulaev AG, Sukhacheva MV, Kuznetsov BB. Typing of the closely related strains of euryarchaeal genus Acidiplasma (Thermoplasmatales) using REP-PCR DNA fingerprinting. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Golyshina OV, Lünsdorf H, Kublanov IV, Goldenstein NI, Hinrichs KU, Golyshin PN. The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the order Thermoplasmatales. Int J Syst Evol Microbiol 2016; 66:332-340. [PMID: 26518885 PMCID: PMC4806541 DOI: 10.1099/ijsem.0.000725] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Two novel cell-wall-less, acidophilic, mesophilic, organotrophic and facultatively anaerobic archaeal strains were isolated from acidic streamers formed on the surfaces of copper-ore-containing sulfidic deposits in south-west Spain and North Wales, UK. Cells of the strains varied from 0.1 to 2 μm in size and were pleomorphic, with a tendency to form filamentous structures. The optimal pH and temperature for growth for both strains were 1.0-1.2 and 37-40 °C, with the optimal substrates for growth being beef extract (3 g l- 1) for strain S5T and beef extract with tryptone (3 and 1 g l- 1, respectively) for strain PM4. The lipid composition was dominated by intact polar lipids consisting of a glycerol dibiphytanyl glycerol tetraether (GDGT) core attached to predominantly glycosidic polar headgroups. In addition, free GDGT and small relative amounts of intact and core diether lipids were present. Strains S5T and PM4 possessed mainly menaquinones with minor fractions of thermoplasmaquinones. The DNA G+C content was 37.3 mol% in strain S5T and 37.16 mol% for strain PM4. A similarity matrix of 16S rRNA gene sequences (identical for both strains) showed their affiliation to the order Thermoplasmatales, with 73.9-86.3 % identity with sequences from members of the order with validly published names. The average nucleotide identity between genomes of the strains determined in silico was 98.75 %, suggesting, together with the 16S rRNA gene-based phylogenetic analysis, that the strains belong to the same species. A novel family, Cuniculiplasmataceae fam. nov., genus Cuniculiplasma gen. nov. and species Cuniculiplasma divulgatum sp. nov. are proposed based on the phylogenetic, chemotaxonomic analyses and physiological properties of the two isolates, S5T and PM4 ( = JCM 30641 = VKM B-2940). The type strain of Cuniculiplasma divulgatum is S5T ( = JCM 30642T = VKM B-2941T).
Collapse
Affiliation(s)
- Olga V. Golyshina
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK
| | - Heinrich Lünsdorf
- Central Unit of Microscopy, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow 117312, Russia
| | - Nadine I. Goldenstein
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str., Bremen 28359, Germany
| | - Kai-Uwe Hinrichs
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str., Bremen 28359, Germany
| | - Peter N. Golyshin
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK
| |
Collapse
|
39
|
Martinez P, Vera M, Bobadilla-Fazzini RA. Omics on bioleaching: current and future impacts. Appl Microbiol Biotechnol 2015; 99:8337-50. [PMID: 26278538 PMCID: PMC4768214 DOI: 10.1007/s00253-015-6903-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022]
Abstract
Bioleaching corresponds to the microbial-catalyzed process of conversion of insoluble metals into soluble forms. As an applied biotechnology globally used, it represents an extremely interesting field of research where omics techniques can be applied in terms of knowledge development, but moreover in terms of process design, control, and optimization. In this mini-review, the current state of genomics, proteomics, and metabolomics of bioleaching and the major impacts of these analytical methods at industrial scale are highlighted. In summary, genomics has been essential in the determination of the biodiversity of leaching processes and for development of conceptual and functional metabolic models. Proteomic impacts are mostly related to microbe-mineral interaction analysis, including copper resistance and biofilm formation. Early steps of metabolomics in the field of bioleaching have shown a significant potential for the use of metabolites as industrial biomarkers. Development directions are given in order to enhance the future impacts of the omics in biohydrometallurgy.
Collapse
Affiliation(s)
- Patricio Martinez
- BioSigma 'S.A.', Parque Industrial Los Libertadores, Lote 106, Colina, Chile
| | - Mario Vera
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Universitätstraße 5, 45141, Essen, Germany
| | | |
Collapse
|
40
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
41
|
Zhang RY, Neu TR, Bellenberg S, Kuhlicke U, Sand W, Vera M. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms. Microb Biotechnol 2014; 8:448-61. [PMID: 25488256 PMCID: PMC4408177 DOI: 10.1111/1751-7915.12188] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/23/2014] [Indexed: 01/28/2023] Open
Abstract
Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms.
Collapse
Affiliation(s)
- R Y Zhang
- Aquatische Biotechnologie, Biofilm Centre, Universität Duisburg - Essen, Universitätsstraße 5, 45141, Essen, Germany
| | | | | | | | | | | |
Collapse
|
42
|
The Geoglobus acetivorans genome: Fe(III) reduction, acetate utilization, autotrophic growth, and degradation of aromatic compounds in a hyperthermophilic archaeon. Appl Environ Microbiol 2014; 81:1003-12. [PMID: 25416759 DOI: 10.1128/aem.02705-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geoglobus acetivorans is a hyperthermophilic anaerobic euryarchaeon of the order Archaeoglobales isolated from deep-sea hydrothermal vents. A unique physiological feature of the members of the genus Geoglobus is their obligate dependence on Fe(III) reduction, which plays an important role in the geochemistry of hydrothermal systems. The features of this organism and its complete 1,860,815-bp genome sequence are described in this report. Genome analysis revealed pathways enabling oxidation of molecular hydrogen, proteinaceous substrates, fatty acids, aromatic compounds, n-alkanes, and organic acids, including acetate, through anaerobic respiration linked to Fe(III) reduction. Consistent with the inability of G. acetivorans to grow on carbohydrates, the modified Embden-Meyerhof pathway encoded by the genome is incomplete. Autotrophic CO2 fixation is enabled by the Wood-Ljungdahl pathway. Reduction of insoluble poorly crystalline Fe(III) oxide depends on the transfer of electrons from the quinone pool to multiheme c-type cytochromes exposed on the cell surface. Direct contact of the cells and Fe(III) oxide particles could be facilitated by pilus-like appendages. Genome analysis indicated the presence of metabolic pathways for anaerobic degradation of aromatic compounds and n-alkanes, although an ability of G. acetivorans to grow on these substrates was not observed in laboratory experiments. Overall, our results suggest that Geoglobus species could play an important role in microbial communities of deep-sea hydrothermal vents as lithoautotrophic producers. An additional role as decomposers would close the biogeochemical cycle of carbon through complete mineralization of various organic compounds via Fe(III) respiration.
Collapse
|
43
|
Panyushkina AE, Tsaplina IA, Grigor’eva NV, Kondrat’eva TF. Thermoacidophilic microbial community oxidizing the gold-bearing flotation concentrate of a pyrite-arsenopyrite ore. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714040146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki KI, Igarashi Y, Haruta S. Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 2013; 28:244-50. [PMID: 23524372 PMCID: PMC4070666 DOI: 10.1264/jsme2.me12189] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The class Thermoplasmata harbors huge uncultured archaeal lineages at the order level, so-called Groups E2 and E3. A novel archaeon Kjm51a affiliated with Group E2 was enriched from anaerobic sludge in the present study. Clone library analysis of the archaeal 16S rRNA and mcrA genes confirmed a unique archaeal population in the enrichment culture. The 16S rRNA gene-based phylogeny revealed that the enriched archaeon Kjm51a formed a distinct cluster within Group E2 in the class Thermoplasmata together with Methanomassiliicoccus luminyensis B10T and environmental clone sequences derived from anaerobic digesters, bovine rumen, and landfill leachate. Archaeon Kjm51a showed 87.7% 16S rRNA gene sequence identity to the closest cultured species, M. luminyensis B10T, indicating that archaeon Kjm51a might be phylogenetically novel at least at the genus level. In fluorescence in situ hybridization analysis, archaeon Kjm51a was observed as coccoid cells completely corresponding to the archaeal cells detected, although bacterial rod cells still coexisted. The growth of archaeon Kjm51a was dependent on the presence of methanol and yeast extract, and hydrogen and methane were produced in the enrichment culture. The addition of 2-bromo ethanesulfonate to the enrichment culture completely inhibited methane production and increased hydrogen concentration, which suggested that archaeon Kjm51a is a methanol-reducing hydrogenotrophic methanogen. Taken together, we propose the provisional taxonomic assignment, named Candidatus Methanogranum caenicola, for the enriched archaeon Kjm51a belonging to Group E2. We also propose to place the methanogenic lineage of the class Thermoplasmata in a novel order, Methanomassiliicoccales ord. nov.
Collapse
Affiliation(s)
- Takao Iino
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ahn JH, Song J, Kim BY, Kim MS, Joa JH, Weon HY. Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. J Microbiol 2012; 50:754-65. [PMID: 23124742 DOI: 10.1007/s12275-012-2409-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/26/2012] [Indexed: 12/23/2022]
Abstract
The bacterial and archaeal communities in rice field soils subjected to different fertilization regimes for 57 years were investigated in two different seasons, a non-planted, drained season (April) and a rice-growing, flooded season (August), by performing soil dehydrogenase assay, real-time PCR assay and pyrosequencing analysis. All fertilization regimes increased the soil dehydrogenase activity while the abundances of bacteria and archaea increased in the plots receiving inorganic fertilizers plus compost and not in those receiving inorganic fertilizers only. Rice-growing and flooding decreased the soil dehydrogenase activity while they increased the bacterial diversity in rice field soils. The bacterial communities were dominated by Chloroflexi, Proteobacteria, and Actinobacteria and the archaeal communities by Crenarchaeota at the phylum level. In principal coordinates analysis based on the weighted Fast UniFrac metric, the bacterial and archaeal communities were separated primarily by season, and generally distributed along with soil pH, the variation of which had been caused by long-term fertilization. Variations in the relative abundance according to the season or soil pH were observed for many bacterial and archaeal groups. In conclusion, the microbial activity, prokaryotic abundance and diversity, and prokaryotic community structure in the rice field soils were changed by season and long-term fertilization.
Collapse
Affiliation(s)
- Jae-Hyung Ahn
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Blake RC, Griff MN. In situ Spectroscopy on Intact Leptospirillum ferrooxidans Reveals that Reduced Cytochrome 579 is an Obligatory Intermediate in the Aerobic Iron Respiratory Chain. Front Microbiol 2012; 3:136. [PMID: 22518111 PMCID: PMC3324778 DOI: 10.3389/fmicb.2012.00136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/21/2012] [Indexed: 11/01/2022] Open
Abstract
Electron transfer reactions among colored cytochromes in intact bacterial cells were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scatter light. The aerobic iron respiratory chain of Leptospirillum ferrooxidans was dominated by the redox status of an abundant cellular cytochrome that had an absorbance peak at 579 nm in the reduced state. Intracellular cytochrome 579 was reduced within the time that it took to mix a suspension of the bacteria with soluble ferrous iron at pH 1.7. Steady state turnover experiments were conducted where the initial concentrations of ferrous iron were less than or equal to that of the oxygen concentration. Under these conditions, the initial absorbance spectrum of the bacterium observed under air-oxidized conditions was always regenerated from that of the bacterium observed in the presence of Fe(II). The kinetics of aerobic respiration on soluble iron by intact L. ferrooxidans conformed to the Michaelis-Menten formalism, where the reduced intracellular cytochrome 579 represented the Michaelis complex whose subsequent oxidation appeared to be the rate-limiting step in the overall aerobic respiratory process. The velocity of formation of ferric iron at any time point was directly proportional to the concentration of the reduced cytochrome 579. Further, the integral over time of the concentration of the reduced cytochrome was directly proportional to the total concentration of ferrous iron in each reaction mixture. These kinetic data obtained using whole cells were consistent with the hypothesis that reduced cytochrome 579 is an obligatory steady state intermediate in the iron respiratory chain of this bacterium. The capability of conducting visible spectroscopy in suspensions of intact cells comprises a powerful post-reductionist means to study cellular respiration in situ under physiological conditions for the organism.
Collapse
Affiliation(s)
- Robert C. Blake
- College of Pharmacy, Xavier University of LouisianaNew Orleans, LA, USA
| | - Megan N. Griff
- College of Pharmacy, Xavier University of LouisianaNew Orleans, LA, USA
| |
Collapse
|
47
|
Johnson DB, Kanao T, Hedrich S. Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects. Front Microbiol 2012; 3:96. [PMID: 22438853 PMCID: PMC3305923 DOI: 10.3389/fmicb.2012.00096] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/27/2012] [Indexed: 11/23/2022] Open
Abstract
Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed.
Collapse
|
48
|
Environmental, biogeographic, and biochemical patterns of archaea of the family Ferroplasmaceae. Appl Environ Microbiol 2011; 77:5071-8. [PMID: 21685165 DOI: 10.1128/aem.00726-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 10 years ago, a new family of cell wall-deficient, iron-oxidizing archaea, Ferroplasmaceae, within the large archaeal phylum Euryarchaeota, was described. In this minireview, I summarize the research progress achieved since then and report on the current status of taxonomy, biogeography, physiological diversity, biochemistry, and other research areas involving this exciting group of acidophilic archaea.
Collapse
|
49
|
Autotrophic, sulfur-oxidizing actinobacteria in acidic environments. Extremophiles 2011; 15:155-63. [PMID: 21308384 DOI: 10.1007/s00792-011-0358-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
Abstract
Some novel actinobacteria from geothermal environments were shown to grow autotrophically with sulfur as an energy source. These bacteria have not been formally named and are referred to here as "Acidithiomicrobium" species, as the first of the acidophilic actinobacteria observed to grow on sulfur. They are related to Acidimicrobium ferrooxidans with which they share a capacity for ferrous iron oxidation. Ribulose bisphosphate carboxylase/oxygenase (RuBisCO) is active in CO(2) fixation by Acidimicrobium ferrooxidans, which appears to have acquired its RuBisCO-encoding genes from the proteobacterium Acidithiobacillus ferrooxidans or its ancestor. This lateral transfer of RuBisCO genes between a proteobacterium and an actinobacterium would add to those noted previously among proteobacteria, between proteobacteria and cyanobacteria and between proteobacteria and plastids. "Acidithiomicrobium" has RuBisCO-encoding genes which are most closely related to those of Acidimicrobium ferrooxidans and Acidithiobacillus ferrooxidans, and has additional RuBisCO genes of a different lineage. 16S rRNA gene sequences from "Acidithiomicrobium" species dominated clone banks of the genes extracted from mixed cultures of moderate thermophiles growing on copper sulfide and polymetallic sulfide ores in ore leaching columns.
Collapse
|
50
|
Abstract
We are becoming increasingly aware of the role played by archaea in the biogeochemical cycling of the elements. Metabolism of metals is linked to fundamental metabolic functions, including nitrogen fixation, energy production, and cellular processes based on oxidoreductions. Comparative genomic analyses have shown that genes for metabolism, resistance, and detoxification of metals are widespread throughout the archaeal domain. Archaea share with other organisms strategies allowing them to utilize essential metals and maintain metal ions within a physiological range, although comparative proteomics show, in a few cases, preferences for specific genetic traits related to metals. A more in-depth understanding of the physiology of acidophilic archaea might lead to the development of new strategies for the bioremediation of metal-polluted sites and other applications, such as biomining.
Collapse
Affiliation(s)
- Elisabetta Bini
- Department of Biochemistry and Microbiology, Rutgers-The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|