1
|
First Report of Bartonella spp. in Marsupials from Brazil, with a Description of Bartonella harrusi sp. nov. and a New Proposal for the Taxonomic Reclassification of Species of the Genus Bartonella. Microorganisms 2022; 10:microorganisms10081609. [PMID: 36014025 PMCID: PMC9414547 DOI: 10.3390/microorganisms10081609] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Bartonella (Rhizobiales: Bartonellaceae) encompasses facultative intracellular Gram-negative alphaproteobacteria that parasitize mainly erythrocytes and endothelial cells, as well as macrophages, monocytes and dendritic cells. Although they can infect numerous mammal species and arthropod vectors worldwide, reports of Bartonella infections in marsupials are scarce. In fact, such agents have only been detected in marsupials and/or associated ectoparasites in Australia and the United States of America until the present moment. The present study aimed to isolate and characterize molecularly, morphologically and phenotypically Bartonella infecting free-living marsupials sampled in the Brazilian Pantanal, the largest wetland in South America. Two marsupials were captured in December 2018 and six marsupials in February 2019, totaling eight small mammals sampled: five (62.5%) Thylamys macrurus and three (37.5%) Monodelphis domestica. All blood samples were submitted to qPCR for Bartonella spp. based on the nuoG gene, a pre-enrichment liquid culture and a chocolate agar solid culture. Bartonella sp. was isolated from 3 T. macrurus and one M. domestica. One Bartonella isolate obtained from a T. macrurus blood sample (strain 117A) that showed to be closely related to the Bartonella vinsonii complex and Bartonella machadoae was selected for whole genome sequencing using a hybrid approach based on Illumina NovaSeq and Nanopore sequencing platforms. This strain showed a genome of 2.35 Mbp, with an average C + G content of 38.8%, coding for 2013 genes, and a 29 kb plasmid with an average C + G content of 34.5%. In addition, this strain exhibited an average nucleotide identity (ANI) of 85% with Bartonella species belonging to the B. vinsonii group and 91% with B. machadoae. Phylogenomic analysis based on 291 protein coding genes shared by the genomes of 53 Bartonella species positioned this strain closely to B. machadoae. This new isolated species was named Bartonella harrusi sp. nov., which was characterized as having small capnophilic, microaerophilic and aerobic rods with an absence of pili and flagella. In conclusion, the present work describes the biochemical, phenotypic and genomic characteristics of Bartonella harrusi, a new species isolated from the T. macrurus blood samples of the Brazilian Pantanal. Finally, a review of the taxonomic classification of members of the genus Bartonella is proposed, based on the ANI values accessed by whole genome sequencing analyses.
Collapse
|
2
|
Fitte B, Kosoy M. Presence of Leptospira spp. and absence of Bartonella spp. in urban rodents of Buenos Aires province, Argentina. Pathog Glob Health 2022; 116:185-192. [PMID: 34338622 PMCID: PMC9090354 DOI: 10.1080/20477724.2021.1959793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Big cities of Argentina are characterized by a strong social and economic fragmentation. This context enables the presence of urban rodents in close contact to the human population, mostly in the peripheral areas of the cities. Urban rodents can harbor a large variety of zoonotic pathogens. The aim of this study was to molecularly characterize Leptospira spp. and Bartonella spp. in urban rodents from the area of Gran La Plata, Buenos Aires province, Argentina. The species of urban rodents captured and tested were Rattus norvegicus, Rattus rattus, and Mus musculus. Leptospira interrogans and L. borgpetersenii were detected in R. norvegicus and M. musculus respectively. Bartonella spp. DNA was not detected in any of the kidney samples tested. No significant differences were observed between the prevalence of bacteria and rodent and environmental variables such as host sex, presence of stream and season by Generalized Linear Model analysis. These results confirm the role of urban rodents as infection sources of Leptospira spp., suggesting the need to implement public health measures to prevent the transmission of Leptospira spp. and other zoonotic pathogens from rodents to humans. Bartonella was not detected in this set of samples.
Collapse
Affiliation(s)
- Bruno Fitte
- Centro de Estudios Parasitológicos y de Vectores, CEPAVE (CCT La Plata CONICET UNLP), La Plata, Argentina
| | | |
Collapse
|
3
|
Liu H, Han T, Liu W, Xu G, Zheng K, Xiao F. Epidemiological characteristics and genetic diversity of Bartonella species in rodents from southeastern China. Zoonoses Public Health 2022; 69:224-234. [PMID: 35040279 DOI: 10.1111/zph.12912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/09/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022]
Abstract
Rodents are the primary hosts of Bartonella species and carry more than 22 Bartonella species. However, the information on epidemiological characteristics and genetic diversity of Bartonella species in rodents in southeastern China is limited. From 2015 to 2020, 1,137 rodents were captured. Bartonella-positive DNA was detected in 14.9% (169/1,137) of rodents by PCR for both the ssrA and gltA genes. A highest Bartonella prevalence was detected in Apodemus agrarius (33.5%) and lowest in B. indica (1.8%). The probability of Bartonella infection in summer (20.1%) was higher than in spring (14.6%; p = .011, OR = 1.756). Sequencing and phylogenetic analysis revealed that nine known Bartonella species were identified in rodents, including B. tribocorum, B. grahamii, B. rattimassiliensis, B. queenslandensis, B. elizabethae, B. phoceensis, B. coopersplainsensis, B. japonica and B. rochalimae. In our study, Bartonella species exhibited a strong association with their hosts. Zoonotic B. tribocorum, B. grahamii, B. elizabethae and B. rochalimae were found in synanthropic rodent species in southeastern China, which pose a potential threat to the public health. To prevent the spread of zoonotic Bartonella species to humans, preventive and control measures should be implemented, and more research is needed to confirm the pathogen's association with human disease.
Collapse
Affiliation(s)
- Haixin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Tengwei Han
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Weijun Liu
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Guoying Xu
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Kuicheng Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Fangzhen Xiao
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Krügel M, Król N, Kempf VAJ, Pfeffer M, Obiegala A. Emerging rodent-associated Bartonella: a threat for human health? Parasit Vectors 2022; 15:113. [PMID: 35361285 PMCID: PMC8969336 DOI: 10.1186/s13071-022-05162-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 01/20/2023] Open
Abstract
Background Species of the genus Bartonella are facultative intracellular alphaproteobacteria with zoonotic potential. Bartonella infections in humans range from mild with unspecific symptoms to life threatening, and can be transmitted via arthropod vectors or through direct contact with infected hosts, although the latter mode of transmission is rare. Among the small mammals that harbour Bartonella spp., rodents are the most speciose group and harbour the highest diversity of these parasites. Human–rodent interactions are not unlikely as many rodent species live in proximity to humans. However, a surprisingly low number of clinical cases of bartonellosis related to rodent-associated Bartonella spp. have thus far been recorded in humans. Methods The main purpose of this review is to determine explanatory factors for this unexpected finding, by taking a closer look at published clinical cases of bartonellosis connected with rodent-associated Bartonella species, some of which have been newly described in recent years. Thus, another focus of this review are these recently proposed species. Conclusions Worldwide, only 24 cases of bartonellosis caused by rodent-associated bartonellae have been reported in humans. Possible reasons for this low number of cases in comparison to the high prevalences of Bartonella in small mammal species are (i) a lack of awareness amongst physicians of Bartonella infections in humans in general, and especially those caused by rodent-associated bartonellae; and (ii) a frequent lack of the sophisticated equipment required for the confirmation of Bartonella infections in laboratories that undertake routine diagnostic testing. As regards recently described Bartonella spp., there are presently 14 rodent-associated Candidatus taxa. In contrast to species which have been taxonomically classified, there is no official process for the review of proposed Candidatus species and their names before they are published. This had led to the use of malformed names that are not based on the International Code of Nomenclature of Prokaryotes. Researchers are thus encouraged to propose Candidatus names to the International Committee on Systematics of Prokaryotes for approval before publishing them, and only to propose new species of Bartonella when the relevant datasets allow them to be clearly differentiated from known species and subspecies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05162-5.
Collapse
Affiliation(s)
- Maria Krügel
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany.,National Consiliary Laboratory for Bartonella, Frankfurt am Main, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany.
| |
Collapse
|
5
|
Gutiérrez R, Shalit T, Markus B, Yuan C, Nachum-Biala Y, Elad D, Harrus S. Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov., two novel species closely related to the zoonotic Bartonella elizabethae, isolated from black rats and wild desert rodent-fleas. Int J Syst Evol Microbiol 2020; 70:1656-1665. [PMID: 32100689 DOI: 10.1099/ijsem.0.003952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genus Bartonella (Family: Bartonellaceae; Order: Rhizobiales; Class: Alphaproteobacteria) comprises facultative intracellular Gram-negative, haemotropic, slow-growing, vector-borne bacteria. Wild rodents and their fleas harbor a great diversity of species and strains of the genus Bartonella, including several zoonotic ones. This genetic diversity coupled with a fastidious nature of the organism results in a taxonomic challenge that has led to a massive collection of uncharacterized strains. Here, we report the genomic and phenotypic characterization of two strains, members of the genus Bartonella (namely Tel Aviv and OE 1-1), isolated from Rattus rattus rats and Synosternus cleopatrae fleas, respectively. Scanning electron microscopy revealed rod-shaped bacteria with polar pili, lengths ranging from 1.0 to 2.0 µm and widths ranging from 0.3 to 0.6 µm. OE 1-1 and Tel Aviv strains contained one single chromosome of 2.16 and 2.23 Mbp and one plasmid of 29.0 and 41.5 Kbp, with average DNA G+C contents of 38.16 and 38.47 mol%, respectively. These strains presented an average nucleotide identity (ANI) of 89.9 %. Bartonella elizabethae was found to be the closest phylogenetic relative of both strains (ANI=90.9-93.6 %). The major fatty acids identified in both strains were C18:1ω7c, C18 : 0 and C16 : 0. They differ from B. elizabethae in their C17 : 0 and C15 : 0 compositions. Both strains are strictly capnophilic and their biochemical profiles resembled those of species of the genus Bartonella with validly published names, whereas differences in arylamidase activities partially assisted in their speciation. Genomic and phenotypic differences demonstrate that OE 1-1 and Tel Aviv strains represent novel individual species, closely related to B. elizabethae, for which we propose the names Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Tali Shalit
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610000, Israel
| | - Barak Markus
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610000, Israel
| | - Congli Yuan
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, PR China
| | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Daniel Elad
- The Kimron Veterinary Institute, Bet Dagan, 50250, Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| |
Collapse
|
6
|
Harvey E, Rose K, Eden JS, Lawrence A, Doggett SL, Holmes EC. Identification of diverse arthropod associated viruses in native Australian fleas. Virology 2019; 535:189-199. [PMID: 31319276 DOI: 10.1016/j.virol.2019.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Fleas are important vectors of zoonotic disease. However, little is known about the natural diversity and abundance of flea viruses, particularly in the absence of disease associations, nor the evolutionary relationships among those viruses found in different parasitic vector species. Herein, we present the first virome scale study of fleas, based on the meta-transcriptomic analysis of 52 fleas collected along the eastern coast of Australia. Our analysis revealed 18 novel RNA viruses belonging to nine viral families with diverse genome organizations, although the majority (72%) possessed single-stranded positive-sense genomes. Notably, a number of the viruses identified belonged to the same phylogenetic groups as those observed in ticks sampled at the same locations, although none were likely associated with mammalian infection. Overall, we identified high levels of genomic diversity and abundance of viruses in the flea species studied, and established that fleas harbor viruses similar to those seen to other vectors.
Collapse
Affiliation(s)
- Erin Harvey
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW, 2088, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia; Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Andrea Lawrence
- Medical Entomology, NSW Health Pathology, ICPMR, Westmead Hospital, Westmead, NSW, 2145, Australia; Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia; SpeeDx, Pty Ltd., Eveleigh, NSW, 2015, Australia
| | - Stephen L Doggett
- Department of Medical Entomology, NSWHP-ICPMR, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
7
|
Hatyoka LM, Brettschneider H, Bennett NC, Kleynhans DJ, Muteka SP, Bastos ADS. Bartonella diversity and zoonotic potential in indigenous Tete Veld rats (Aethomys ineptus) from South Africa. INFECTION GENETICS AND EVOLUTION 2019; 73:44-48. [PMID: 31004764 DOI: 10.1016/j.meegid.2019.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 11/26/2022]
Abstract
Bartonellosis is a vector-borne disease that is often misdiagnosed due to a broad range of clinical symptoms, compounded by a lack of awareness regarding the prevalence, diversity and public health impacts of regional strains. Despite recent PCR-based confirmation of Bartonella in 9.7% of non-malarial, acute febrile patients in South Africa, data regarding reservoirs of infection are limited. As the majority of Bartonella species described to date are associated with rodent species globally, including zoonotic species such as B. elizabethae, and as rodent biodiversity is high in southern Africa, we evaluated Bartonella in the Tete Veld rat (Aethomys ineptus), a highly adaptable murid rodent that thrives in both natural and commensal settings. These rodents are infested with a broad range of ectoparasite species, and often occur in sympatry with Micaelamys namaquensis, an indigenous rodent previously shown to host B. elizabethae. DNA extracts from heart samples of 75 A. ineptus trapped over an eight-month period, from the Roodeplaat Nature Reserve (RNR), were evaluated using a multi-locus sequence analysis (MLSA) approach. Nucleotide sequencing and phylogenetic analyses of individual (gltA, ribC, rpoB and nuoG) and concatenated gene datasets confirmed the presence of three discrete Bartonella lineages (I-III). Lineages I and II, are genetically distinct from all currently recognised Bartonella species but cluster with strains present in other indigenous rodents from South and East Africa, whereas lineage III contained B. elizabethae, a zoonotic species associated with Rattus species globally. Records confirming R. tanezumi presence in this nature reserve, which is situated in close proximity to Pretoria, the administrative capital of South Africa, suggests the likelihood of spill-over from invasive to indigenous species. These results together with the high levels of infection (86.7%) and co-infection (33.8%), indicate that A. ineptus is a natural reservoir for multiple Bartonella species in South Africa, including one with zoonotic potential.
Collapse
Affiliation(s)
- Luiza M Hatyoka
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
| | - Helene Brettschneider
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
| | - Nigel C Bennett
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa; South African Research Chair of Mammal Behavioral Ecology and Physiology, Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
| | - Dewald J Kleynhans
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
| | - Sachariah P Muteka
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa; Department of Animal Science, University of Namibia, Private Bag, 13301 Windhoek, Namibia
| | - Armanda D S Bastos
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa.
| |
Collapse
|
8
|
Pangjai D, Intachinda S, Maruyama S, Boonmar S, Kabeya H, Sato S, Petkanchanapong W, Wootta W, Wangroongsarb P, Boonyareth M, Saisongkorh W, Preedakoon P, Mahaprom P, Meesub C, Sawanpanyalert P. Isolation and phylogenetic analysis of Bartonella species from Rusa deer (Rusa timorensis) in Thailand. Comp Immunol Microbiol Infect Dis 2018; 56:58-62. [PMID: 29406284 DOI: 10.1016/j.cimid.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
The aim of the present study is to investigate the prevalence of Bartonella infection in deer in Thailand and to characterize the isolates by biochemical, morphological and genetic analysis. A total of 247 blood samples were collected from Rusa deer (Rusa timorensis) in a livestock breeding facility in Thailand. Bartonella bacteria were isolated in 3.6% of the blood samples. Three out of 110 (2.7%) males and 6 of 137 (4.4%) females were positive for Bartonella. A higher prevalence of Bartonella was observed in young deer under 4 years of age compared to adults over 4 years of age, but no Bartonella was isolated from deer over 8 years of age. Phylogenetic analysis of concatenated sequences of seven loci of Bartonella indicated that all the isolates from Rusa deer in Thailand were identical and formed a distinct cluster from other known Bartonella species.
Collapse
Affiliation(s)
- Decha Pangjai
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Santaya Intachinda
- Nongkwang Livestock Breeding and Research Center, 128, Moo 10, Tambol Khaochangum, Photharam District, Ratchaburi, 70120, Thailand
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, College of Bioresource Sciences, Nihon University Fujisawa, Kanagawa, 252-0880, Japan.
| | - Sumalee Boonmar
- Rajapruk University, Bangkhanoon, Banggruay, Nonthaburi, 11130, Thailand
| | - Hidenori Kabeya
- Laboratory of Veterinary Public Health, College of Bioresource Sciences, Nihon University Fujisawa, Kanagawa, 252-0880, Japan
| | - Shingo Sato
- Laboratory of Veterinary Public Health, College of Bioresource Sciences, Nihon University Fujisawa, Kanagawa, 252-0880, Japan
| | - Wimol Petkanchanapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Wattanapong Wootta
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Piyada Wangroongsarb
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Maskiet Boonyareth
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Watcharee Saisongkorh
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Poom Preedakoon
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Panupong Mahaprom
- Faculty of Animal Science and Technology, Maejo University, Nongharn, Sansai District, Chiang Mai, 50290, Thailand
| | - Chonlada Meesub
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Pathom Sawanpanyalert
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| |
Collapse
|
9
|
Abstract
Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.
Collapse
|
10
|
Alsarraf M, Mohallal EME, Mierzejewska EJ, Behnke-Borowczyk J, Welc-Falęciak R, Bednarska M, Dziewit L, Zalat S, Gilbert F, Behnke JM, Bajer A. Description of Candidatus Bartonella fadhilae n. sp. and Candidatus Bartonella sanaae n. sp. (Bartonellaceae) from Dipodillus dasyurus and Sekeetamys calurus (Gerbillinae) from the Sinai Massif (Egypt). Vector Borne Zoonotic Dis 2017; 17:483-494. [PMID: 28541836 PMCID: PMC5512320 DOI: 10.1089/vbz.2016.2093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Bartonella spp. are parasites of mammalian erythrocytes and endothelial cells, transmitted by blood-feeding arthropod ectoparasites. Different species of rodents may constitute the main hosts of Bartonella, including several zoonotic species of Bartonella. The aim of this study was to identify and compare Bartonella species and genotypes isolated from rodent hosts from the South Sinai, Egypt. Prevalence of Bartonella infection was assessed in rodents (837 Acomys dimidiatus, 73 Acomys russatus, 111 Dipodillus dasyurus, and 65 Sekeetamys calurus) trapped in 2000, 2004, 2008, and 2012 in four dry montane wadis around St. Katherine town in the Sinai Mountains. Total DNA was extracted from blood samples, and PCR amplification and sequencing of the Bartonella-specific 860-bp gene fragment of rpoB and the 810-bp gene fragment of gltA were used for molecular and phylogenetic analyses. The overall prevalence of Bartonella in rodents was 7.2%. Prevalence differed between host species, being 30.6%, 10.8%, 9.6%, and 3.6% in D. dasyurus, S. calurus, A. russatus, and A. dimidiatus, respectively. The phylogenetic analyses of six samples of Bartonella (five from D. dasyurus and one from S. calurus) based on a fragment of the rpoB gene, revealed the existence of two distinct genetic groups (with 95–96% reciprocal sequence identity), clustering with several unidentified isolates obtained earlier from the same rodent species, and distant from species that have already been described (90–92% of sequence identity to the closest match from the GenBank reference database). Thus, molecular and phylogenetic analyses led to the description of two species: Candidatus Bartonella fadhilae n. sp. and Candidatus Bartonella sanaae n. sp. The identification of their vectors and the medical significance of these species need further investigation.
Collapse
Affiliation(s)
- Mohammed Alsarraf
- 1 Department of Parasitology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | | | - Ewa J Mierzejewska
- 1 Department of Parasitology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Jolanta Behnke-Borowczyk
- 3 Department of Forest Phytopathology, Faculty of Forestry, Poznań University of Life Sciences , Poznań, Poland
| | - Renata Welc-Falęciak
- 1 Department of Parasitology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Małgorzata Bednarska
- 1 Department of Parasitology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| | - Lukasz Dziewit
- 4 Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw , Warsaw, Poland
| | - Samy Zalat
- 5 Department of Zoology, Suez Canal University , Ismailia, Egypt
| | - Francis Gilbert
- 6 School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Jerzy M Behnke
- 6 School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Anna Bajer
- 1 Department of Parasitology, Faculty of Biology, Institute of Zoology, University of Warsaw , Warsaw, Poland
| |
Collapse
|
11
|
Detection ofBartonellaspp. in wild carnivores, hyraxes, hedgehog and rodents from Israel. Parasitology 2016; 143:1232-42. [DOI: 10.1017/s0031182016000603] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYBartonellainfection was explored in wild animals from Israel. Golden jackals (Canis aureus), red foxes (Vulpes vulpes), rock hyraxes (Procavia capensis), southern white-breasted hedgehogs (Erinaceus concolor), social voles (Microtus socialis), Tristram's jirds (Meriones tristrami), Cairo spiny mice (Acomys cahirinus), house mice (Mus musculus) and Indian crested porcupines (Hystrix indica) were sampled and screened by molecular and isolation methods.Bartonella-DNA was detected in 46 animals: 9/70 (13%) golden jackals, 2/11 (18%) red foxes, 3/35 (9%) rock hyraxes, 1/3 (33%) southern white-breasted hedgehogs, 5/57 (9%) Cairo spiny mice, 25/43 (58%) Tristram's jirds and 1/6 (16%) house mice.Bartonella rochalimaeandB. rochalimae-like were widespread among jackals, foxes, hyraxes and jirds. This report represents the first detection of this zoonoticBartonellasp. in rock hyraxes and golden jackals. Moreover, DNA ofBartonella vinsoniisubsp.berkhoffii, Bartonella acomydis, CandidatusBartonella merieuxii and other uncharacterized genotypes were identified. Three differentBartonellastrains were isolated from Tristram's jirds, and several genotypes were molecularly detected from these animals. Furthermore, this study reports the first detection ofBartonellainfection in a southern hedgehog. Our study indicates that infection with zoonotic and otherBartonellaspecies is widespread among wild animals and stresses their potential threat to public health.
Collapse
|
12
|
Abstract
We collected 641 small mammals belonging to 17 species of Rodentia and four species of Soricomorpha in Japan, Korea, Russia, Taiwan, and Thailand and investigated the prevalence and genetic diversity of Bartonella species. Apodemus (field mice) and Rattus (rats) were the most-common genera captured, making up 56.0% and 23.1% of the total specimens, respectively. Bartonellae were isolated from 54.6% of the collected animals, and the prevalence varied depending on the host species and the country of origin. The isolates were identified to the species level based on gltA and rpoB sequences. Although most Bartonella species were shared by more than two host species, the distribution patterns of Bartonella species clearly differed among the four most-common host genera: Apodemus, Rattus, Myodes (voles), and Suncus (shrews). The predominant Bartonella species were Bartonella grahamii in Apodemus, Bartonella tribocorum in Rattus, B. grahamii and Bartonella taylorii in Myodes, and an unclassified Bartonella sp. in Suncus.
Collapse
|
13
|
Gutiérrez R, Krasnov B, Morick D, Gottlieb Y, Khokhlova IS, Harrus S. Bartonella infection in rodents and their flea ectoparasites: an overview. Vector Borne Zoonotic Dis 2015; 15:27-39. [PMID: 25629778 PMCID: PMC4307031 DOI: 10.1089/vbz.2014.1606] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies worldwide have reported a high prevalence and a great diversity of Bartonella species, both in rodents and their flea parasites. The interaction among Bartonella, wild rodents, and fleas reflects a high degree of adaptation among these organisms. Vertical and horizontal efficient Bartonella transmission pathways within flea communities and from fleas to rodents have been documented in competence studies, suggesting that fleas are key players in the transmission of Bartonella to rodents. Exploration of the ecological traits of rodents and their fleas may shed light on the mechanisms used by bartonellae to become established in these organisms. The present review explores the interrelations within the Bartonella-rodent-flea system. The role of the latter two components is emphasized.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Boris Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Danny Morick
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Irina S. Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
14
|
Reeves WK, Durden LA, Iwakami M, Vince KJ, Paul RR. Rickettsial diseases and ectoparasites from military bases in Japan. J Parasitol 2014; 101:150-5. [PMID: 25548900 DOI: 10.1645/14-662.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ectoparasitic arthropods are often vectors of rickettsiosis. We conducted a survey of ectoparasites on U.S. military facilities throughout Japan with the use of specimens submitted by pest control, public health, and veterinary personnel. Over 1,600 individual ectoparasites were collected. Fifteen species were identified, including several significant vectors of human diseases such as scrub typhus and rickettsial spotted fevers. These ectoparasites included Ctenocephalides felis , Haemaphysalis longicornis, Ixodes persulcatus , Leptotrombidium fuji, Leptotrombidium pallidum, and Rhipicephalus sanguineus . Rickettsial agents were detected by PCR and DNA sequencing. These included Bartonella henselae , Bartonella japonica, a novel Bartonella, Coxiella burnetii , an unnamed Coxiella, Ehrlichia canis , Orientia tsutsugamushi , Rickettsia typhi , and "Rickettsia Rf2125"/"Rickettsia cf1and5".
Collapse
Affiliation(s)
- Will K Reeves
- U.S. Air Force School of Aerospace Medicine/PHR, 2510 5th Street, Wright-Patterson Air Force Base 45433
| | | | | | | | | |
Collapse
|
15
|
Jiyipong T, Jittapalapong S, Morand S, Rolain JM. Bartonella species in small mammals and their potential vectors in Asia. Asian Pac J Trop Biomed 2014. [DOI: 10.12980/apjtb.4.2014c742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Zhu Q, Kosoy M, Olival KJ, Dittmar K. Horizontal transfers and gene losses in the phospholipid pathway of bartonella reveal clues about early ecological niches. Genome Biol Evol 2014; 6:2156-69. [PMID: 25106622 PMCID: PMC4159011 DOI: 10.1093/gbe/evu169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bartonellae are mammalian pathogens vectored by blood-feeding arthropods. Although of increasing medical importance, little is known about their ecological past, and host associations are underexplored. Previous studies suggest an influence of horizontal gene transfers in ecological niche colonization by acquisition of host pathogenicity genes. We here expand these analyses to metabolic pathways of 28 Bartonella genomes, and experimentally explore the distribution of bartonellae in 21 species of blood-feeding arthropods. Across genomes, repeated gene losses and horizontal gains in the phospholipid pathway were found. The evolutionary timing of these patterns suggests functional consequences likely leading to an early intracellular lifestyle for stem bartonellae. Comparative phylogenomic analyses discover three independent lineage-specific reacquisitions of a core metabolic gene—NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (gpsA)—from Gammaproteobacteria and Epsilonproteobacteria. Transferred genes are significantly closely related to invertebrate Arsenophonus-, and Serratia-like endosymbionts, and mammalian Helicobacter-like pathogens, supporting a cellular association with arthropods and mammals at the base of extant Bartonella spp. Our studies suggest that the horizontal reacquisitions had a key impact on bartonellae lineage specific ecological and functional evolution.
Collapse
Affiliation(s)
- Qiyun Zhu
- Department of Biological Sciences, University at Buffalo, State University of New York
| | - Michael Kosoy
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Foothills Research Campus, Fort Collins, Colorado
| | | | - Katharina Dittmar
- Department of Biological Sciences, University at Buffalo, State University of New York Graduate Program of Evolution, Ecology, and Behavior, University at Buffalo, State University of New York
| |
Collapse
|
17
|
Minnick MF, Anderson BE, Lima A, Battisti JM, Lawyer PG, Birtles RJ. Oroya fever and verruga peruana: bartonelloses unique to South America. PLoS Negl Trop Dis 2014; 8:e2919. [PMID: 25032975 PMCID: PMC4102455 DOI: 10.1371/journal.pntd.0002919] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bartonella bacilliformis is the bacterial agent of Carrión's disease and is presumed to be transmitted between humans by phlebotomine sand flies. Carrión's disease is endemic to high-altitude valleys of the South American Andes, and the first reported outbreak (1871) resulted in over 4,000 casualties. Since then, numerous outbreaks have been documented in endemic regions, and over the last two decades, outbreaks have occurred at atypical elevations, strongly suggesting that the area of endemicity is expanding. Approximately 1.7 million South Americans are estimated to be at risk in an area covering roughly 145,000 km2 of Ecuador, Colombia, and Peru. Although disease manifestations vary, two disparate syndromes can occur independently or sequentially. The first, Oroya fever, occurs approximately 60 days following the bite of an infected sand fly, in which infection of nearly all erythrocytes results in an acute hemolytic anemia with attendant symptoms of fever, jaundice, and myalgia. This phase of Carrión's disease often includes secondary infections and is fatal in up to 88% of patients without antimicrobial intervention. The second syndrome, referred to as verruga peruana, describes the endothelial cell-derived, blood-filled tumors that develop on the surface of the skin. Verrugae are rarely fatal, but can bleed and scar the patient. Moreover, these persistently infected humans provide a reservoir for infecting sand flies and thus maintaining B. bacilliformis in nature. Here, we discuss the current state of knowledge regarding this life-threatening, neglected bacterial pathogen and review its host-cell parasitism, molecular pathogenesis, phylogeny, sand fly vectors, diagnostics, and prospects for control.
Collapse
Affiliation(s)
- Michael F. Minnick
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Burt E. Anderson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Amorce Lima
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - James M. Battisti
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Phillip G. Lawyer
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Birtles
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| |
Collapse
|
18
|
Prevalence of zoonotic Bartonella species among rodents and shrews in Thailand. Comp Immunol Microbiol Infect Dis 2013; 37:109-14. [PMID: 24393304 DOI: 10.1016/j.cimid.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/14/2013] [Accepted: 12/07/2013] [Indexed: 11/23/2022]
Abstract
We investigated the prevalence of Bartonella species in 10 rodent and one shrew species in Thailand. From February 2008 to May 2010, a total of 375 small animals were captured in 9 provinces in Thailand. Bartonella strains were isolated from 57 rodents (54 from Rattus species and 3 from Bandicota indica) and one shrew (Suncus murinus) in 7 of the 9 provinces, and identified to the species level. Sequence analysis of the citrate synthase and RNA polymerase β subunit genes identified the 58 isolates from each Bartonella-positive animal as B. tribocorum in 27 (46.6%) animals, B. rattimassiliensis in 17 (29.3%) animals, B. elizabethae in 10 (17.2%) animals and B. queenslandensis in 4 (6.9%) animals. R. norvegicus, R. rattus, and Suncus murinus carried B. elizabethae, which causes endocarditis in humans. The prevalence of Bartonella bacteremic animals by province was 42.9% of the animals collected in Phang Nga, 26.8% in Chiang Rai, 20.4% in Sa Kaeo, 16.7% in Nakhon Si Thammarat, 12.0% in Surat Thani, 9.1% in Mae Hong Son and Loei Provinces. These results indicate that Bartonella organisms are widely distributed in small mammals in Thailand and some animal species may serve as important reservoirs of zoonotic Bartonella species in the country.
Collapse
|
19
|
Mediannikov O, El Karkouri K, Robert C, Fournier PE, Raoult D. Non-contiguous finished genome sequence and description of Bartonella florenciae sp. nov. Stand Genomic Sci 2013; 9:185-96. [PMID: 24501655 PMCID: PMC3910550 DOI: 10.4056/sigs.4358060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bartonella florenciae sp. nov. strain R4T is the type strain of B. florenciae sp. nov., a new species within the genus Bartonella. This strain, whose genome is described here, was isolated in France from the spleen of the shrew Crocidura russula. B. florenciae is an aerobic, rod-shaped, Gram-negative bacterium. Here we describe the features of this organism, together with the complete genome sequence and its annotation. The 2,010,844 bp-long genome contains 1,909 protein-coding and 46 RNA genes, including two rRNA operons.
Collapse
Affiliation(s)
- Oleg Mediannikov
- URMITE, Aix-Marseille Université, Faculté de médecine, Marseille, France ; URMITE, Campus commun UCAD-IRD d'Hann, Dakar, Senegal
| | - Khalid El Karkouri
- URMITE, Aix-Marseille Université, Faculté de médecine, Marseille, France
| | - Catherine Robert
- URMITE, Aix-Marseille Université, Faculté de médecine, Marseille, France
| | | | - Didier Raoult
- URMITE, Aix-Marseille Université, Faculté de médecine, Marseille, France ; King Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Buffet JP, Kosoy M, Vayssier-Taussat M. Natural history of Bartonella-infecting rodents in light of new knowledge on genomics, diversity and evolution. Future Microbiol 2013; 8:1117-28. [DOI: 10.2217/fmb.13.77] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Among the 33 confirmed Bartonella species to date, more than half are hosted by rodent species, and at least five of them have been involved in human illness causing diverse symptoms including fever, myocarditis, endocarditis, lymphadenitis and hepatitis. In almost all countries, wild rodents are infected by extremely diverse Bartonella strains with a high prevalence. In the present paper, in light of new knowledge on rodent-adapted Bartonella species genomics, we bring together knowledge gained in recent years to have an overview of the impact of rodent-adapted Bartonella infection on humans and to determine how diversity of Bartonella helps to understand their mechanisms of adaptation to rodents and the consequences on human health.
Collapse
Affiliation(s)
- Jean-Philippe Buffet
- USC Bipar, Bartonella et Tiques, INRA, Anses, 23 Avenue du Général de Gaulle, 94 700 Maisons-Alfort, France
| | - Michael Kosoy
- Centers for Diseases Control & Prevention, Division of Vector Borne Infections, Fort Collins, CO 80521, USA
| | - Muriel Vayssier-Taussat
- USC Bipar, Bartonella et Tiques, INRA, Anses, 23 Avenue du Général de Gaulle, 94 700 Maisons-Alfort, France
| |
Collapse
|
21
|
Molecular typing of "Candidatus Bartonella ancashi," a new human pathogen causing verruga peruana. J Clin Microbiol 2013; 51:3865-8. [PMID: 23985925 DOI: 10.1128/jcm.01226-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recently described clinical isolate, "Candidatus Bartonella ancashi," was obtained from a blood sample of a patient presenting with verruga peruana in the Ancash region of Peru. This sample and a second isolate obtained 60 days later from the same patient were molecularly typed using multilocus sequence typing (MLST) and multispacer sequence typing (MST). The isolates were 100% indistinguishable from each other but phylogenetically distant from Bartonella bacilliformis and considerably divergent from other known Bartonella species, confirming their novelty.
Collapse
|
22
|
Mediannikov O, El Karkouri K, Diatta G, Robert C, Fournier PE, Raoult D. Non-contiguous finished genome sequence and description of Bartonella senegalensis sp. nov. Stand Genomic Sci 2013; 8:279-89. [PMID: 23991259 PMCID: PMC3746424 DOI: 10.4056/sigs.3807472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bartonella senegalensis sp. nov. strain OS02T is the type strain of B. senegalensis sp. nov., a new species within the genus Bartonella. This strain, whose genome is described here, was isolated in Senegal from the soft tick Ornithodoros sonrai, the vector of relapsing fever. B. senegalensis is an aerobic, rod-shaped, Gram-negative bacterium. Here we describe the features of this organism, together with the complete genome sequence and its annotation. The 1,966,996 bp-long genome contains 1,710 protein-coding and 46 RNA genes, including 6 rRNA genes.
Collapse
Affiliation(s)
- Oleg Mediannikov
- URMITE, Aix-Marseille Université, Marseille, France, and Campus commun UCAD-IRD d'Hann, Dakar, Senegal
| | | | | | | | | | | |
Collapse
|
23
|
Sato S, Kabeya H, Fujinaga Y, Inoue K, Une Y, Yoshikawa Y, Maruyama S. Bartonella jaculi sp. nov., Bartonella callosciuri sp. nov., Bartonella pachyuromydis sp. nov. and Bartonella acomydis sp. nov., isolated from wild Rodentia. Int J Syst Evol Microbiol 2012; 63:1734-1740. [PMID: 22941296 DOI: 10.1099/ijs.0.041939-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four novel strains of members of the genus Bartonella, OY2-1(T), BR11-1(T), FN15-2(T) and KS2-1(T), were isolated from the blood of wild-captured greater Egyptian jerboa (Jaculus orientalis), plantain squirrel (Callosciurus notatus), fat-tailed gerbil (Pachyuromys duprasi) and golden spiny mouse (Acomys russatus). All the animals were imported to Japan as pets from Egypt, Thailand and the Netherlands. The phenotypic characterization (growth conditions, incubation periods, biochemical properties and cell morphologies), DNA G+C contents (37.4 mol% for strain OY2-1(T), 35.5 mol% for strain BR11-1(T), 35.7 mol% for strain FN15-2(T) and 37.2 mol% for strain KS2-1(T)), and sequence analyses of the 16S rRNA genes indicated that those strains belong to the genus Bartonella. Sequence comparisons of gltA and rpoB genes suggested that all of the strains should be classified as novel species of the genus Bartonella. In phylogenetic trees based on the concatenated sequences of five loci, including the 16S rRNA, ftsZ, gltA and rpoB genes and the ITS region, and on the concatenated deduced amino acid sequences of three housekeeping genes (ftsZ, gltA and rpoB), all strains formed distinct clades and had unique mammalian hosts that could be discriminated from other known species of the genus Bartonella. These data strongly support the hypothesis that strains OY2-1(T), BR11-1(T), FN15-2(T) and KS2-1(T) should be classified as representing novel species of the genus Bartonella. The names Bartonella jaculi sp. nov., Bartonella callosciuri sp. nov., Bartonella pachyuromydis sp. nov. and Bartonella acomydis sp. nov. are proposed for these novel species. Type strains of Bartonella jaculi sp. nov., Bartonella callosciuri sp. nov., Bartonella pachyuromydis sp. nov. and Bartonella acomydis sp. nov. are OY2-1(T) ( = JCM 17712(T) = KCTC 23655(T)), BR11-1(T) ( = JCM 17709(T) = KCTC 23909(T)), FN15-2(T) ( = JCM 17714(T) = KCTC 23657(T)) and KS2-1(T) ( = JCM 17706(T) = KCTC 23907(T)), respectively.
Collapse
Affiliation(s)
- Shingo Sato
- Laboratories of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hidenori Kabeya
- Laboratories of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuta Fujinaga
- Laboratories of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Kai Inoue
- Laboratories of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Yumi Une
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Yasuhiro Yoshikawa
- Laboratory of Zoonoses, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Soichi Maruyama
- Laboratories of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
24
|
Brettschneider H, Bennett NC, Chimimba CT, Bastos ADS. Bartonellae of the Namaqua rock mouse, Micaelamys namaquensis (Rodentia: Muridae) from South Africa. Vet Microbiol 2011; 157:132-6. [PMID: 22204791 DOI: 10.1016/j.vetmic.2011.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine Bartonella prevalence and diversity in Namaqua rock mice, Micaelamys namaquensis, a species endemic to South Africa, which can attain pest status. A total of 100 heart samples collected monthly from March to December were screened for Bartonella genome presence using three primer sets targeting the citrate synthase (gltA) gene, the NADH dehydrogenase gamma subunit (nuoG) gene and the RNA polymerase β-subunit-encoding gene (rpoB). An overall prevalence of 44% was obtained, with no statistically significant differences or correlations between infection rates and rodent sex, month of capture or season of capture. Phylogenetic analysis of 34 unambiguous gltA sequences revealed the presence of three discrete Bartonella lineages in M. namaquensis, one of which corresponds to Bartonella elizabethae, a species with known zoonotic potential.
Collapse
Affiliation(s)
- H Brettschneider
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028 South Africa.
| | | | | | | |
Collapse
|
25
|
Lin JW, Hsu YM, Chomel BB, Lin LK, Pei JC, Wu SH, Chang CC. Identification of novel Bartonella spp. in bats and evidence of Asian gray shrew as a new potential reservoir of Bartonella. Vet Microbiol 2011; 156:119-26. [PMID: 22005177 PMCID: PMC7126237 DOI: 10.1016/j.vetmic.2011.09.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/20/2011] [Accepted: 09/27/2011] [Indexed: 11/09/2022]
Abstract
Many studies indicated that small mammals are important reservoirs for Bartonella species. Using molecular methods, several studies have documented that bats could harbor Bartonella. This study was conducted to investigate the relationship of Bartonella spp. identified in bats and small mammals living in the same ecological environment. During May 2009 and March 2010, a total of 102 blood specimens were collected. By whole blood culture and molecular identification, a total of 6 bats, 1 rodent and 9 shrews were shown to be infected by Bartonella species. After sequencing and phylogenetic analyses of the sequences of gltA, ftsZ, rpoB and ribC genes, these specific isolates from bats were not similar to the known Bartonella species (the similarity values were less than 91.2%, 90.5%, 88.8%, and 82.2%, respectively); these isolates formed an independent clade away from other known Bartonella type strains. The Bartonella spp. isolated from small mammals, which were closely related to Bartonella tribocorum, Bartonella elizabethae, Bartonella grahamii, Bartonella rattimassiliensis and Bartonella queenslandensis, were similar to the findings in previous studies worldwide. Therefore, the results implied that the species of Bartonella strains isolated from small mammals were different from those identified in bats. Our results strongly suggested that the bat isolate could be a new Bartonella species. This study is also the first one to isolate Bartonella organisms from Asian gray shrews, Crocidura attenuata tanakae.
Collapse
Affiliation(s)
- Jen-Wei Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
26
|
Kaewmongkol G, Kaewmongkol S, Burmej H, Bennett MD, Fleming PA, Adams PJ, Wayne AF, Ryan U, Irwin PJ, Fenwick SG. Diversity of Bartonella species detected in arthropod vectors from animals in Australia. Comp Immunol Microbiol Infect Dis 2011; 34:411-7. [DOI: 10.1016/j.cimid.2011.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
|
27
|
Abstract
In order to study which Bartonella genotypes are circulating among small mammals in Spain, we analyzed the spleens of 395 animals from three different areas-247 animals from the Basque Country (northern Spain), 121 animals from Catalonia (northeastern Spain), and 27 animals from Madrid (central Spain)-by a triplex PCR combined with a reverse line blot previously described by our group. The prevalence of Bartonella was 26.8% (106/395), and in 4.8% (19/395) of the animals more than one Bartonella genotype was detected. The study of gltA and the intergenic transcribed spacer in the positive samples demonstrated a large diversity, allowing the assignation of them into 22 genotypes. The most prevalent genotypes were 2 and 3, which are closely related to Bartonella taylorii. In addition, nine genotypes were associated with specific mammal species. Genotypes close to the zoonotic Bartonella grahamii, Bartonella elizabethae, and Bartonella rochalimae were also detected. Ten genotypes showed a percentage of similarity with known Bartonella species lower than 96%, suggesting the presence of potential new species. Further studies of the impact of these pathogens on human health and especially in cases of febrile illness in Spain are strongly recommended. Furthermore, our method has been updated with 21 new probes in a final panel of 36, which represents a robust molecular tool for clinical and environmental Bartonella studies.
Collapse
|