1
|
Kaewmee S, Mano C, Phanitchakun T, Ampol R, Yasanga T, Pattanawong U, Junkum A, Siriyasatien P, Bates PA, Jariyapan N. Natural infection with Leishmania ( Mundinia) martiniquensis supports Culicoides peregrinus (Diptera: Ceratopogonidae) as a potential vector of leishmaniasis and characterization of a Crithidia sp. isolated from the midges. Front Microbiol 2023; 14:1235254. [PMID: 37675418 PMCID: PMC10478001 DOI: 10.3389/fmicb.2023.1235254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
The prevalence of autochthonous leishmaniasis in Thailand is increasing but the natural vectors that are responsible for transmission remain unknown. Experimental in vivo infections in Culicoides spp. with Leishmania (Mundinia) martiniquensis and Leishmania (Mundinia) orientalis, the major causative pathogens in Thailand, have demonstrated that biting midges can act as competent vectors. Therefore, the isolation and detection of Leishmania and other trypanosomatids were performed in biting midges collected at a field site in an endemic area of leishmaniasis in Tha Ruea and a mixed farm of chickens, goats, and cattle in Khuan Phang, Nakhon Si Thammarat province, southern Thailand. Results showed that Culicoides peregrinus was the abundant species (>84%) found in both locations and only cow blood DNA was detected in engorged females. Microscopic examination revealed various forms of Leishmania promastigotes in the foregut of several C. peregrinus in the absence of bloodmeal remnants, indicating established infections. Molecular identification using ITS1 and 3'UTR HSP70 type I markers showed that the Leishmania parasites found in the midges were L. martiniquensis. The infection rate of L. martiniquensis in the collected flies was 2% in Tha Ruea and 6% in Khuan Phang, but no L. orientalis DNA or parasites were found. Additionally, organisms from two different clades of Crithidia, both possibly new species, were identified using SSU rRNA and gGAPDH genes. Choanomastigotes and promastigotes of both Crithidia spp. were observed in the hindgut of the dissected C. peregrinus. Interestingly, midges infected with both L. martiniquensis and Crithidia were found. Moreover, four strains of Crithidia from one of the clades were successfully isolated into culture. These parasites could grow at 37°C in the culture and infect BALB/c mice macrophages but no multiplication was observed, suggesting they are thermotolerant monoxenous trypanosomatids similar to Cr. thermophila. These findings provide the first evidence of natural infection of L. martiniquensis in C. peregrinus supporting it as a potential vector of L. martiniquensis.
Collapse
Affiliation(s)
- Saowalak Kaewmee
- Medical Parasitology Program, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chonlada Mano
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanari Phanitchakun
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rinnara Ampol
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thippawan Yasanga
- Medical Science Research Equipment Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Urassaya Pattanawong
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anuluck Junkum
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Narissara Jariyapan
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Frolov AO, Kostygov AY, Yurchenko V. Development of Monoxenous Trypanosomatids and Phytomonads in Insects. Trends Parasitol 2021; 37:538-551. [PMID: 33714646 DOI: 10.1016/j.pt.2021.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
In this review, we summarize the current data on development of monoxenous trypanosomatids and phytomonads in various insects. Of these, Diptera and Hemiptera are the main host groups, and, consequently, most available information concerns their parasites. Within the insect body, the midgut and hindgut are the predominant colonization sites; in addition, some trypanosomatids can invade the foregut, Malpighian tubules, hemolymph, and/or salivary glands. Differences in the intestinal structure and biology of the host determine the variety of parasites' developmental and transmission strategies. Meanwhile, similar mechanisms are used by unrelated trypanosomatids, reflecting the limited range of options to achieve the same goal.
Collapse
Affiliation(s)
- Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia.
| | - Alexei Y Kostygov
- Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
3
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
4
|
Kostygov AY, Frolov AO, Malysheva MN, Ganyukova AI, Chistyakova LV, Tashyreva D, Tesařová M, Spodareva VV, Režnarová J, Macedo DH, Butenko A, d'Avila-Levy CM, Lukeš J, Yurchenko V. Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol 2020; 18:187. [PMID: 33267865 PMCID: PMC7712620 DOI: 10.1186/s12915-020-00916-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
Background The family Trypanosomatidae encompasses parasitic flagellates, some of which cause serious vector-transmitted diseases of humans and domestic animals. However, insect-restricted parasites represent the ancestral and most diverse group within the family. They display a range of unusual features and their study can provide insights into the biology of human pathogens. Here we describe Vickermania, a new genus of fly midgut-dwelling parasites that bear two flagella in contrast to other trypanosomatids, which are unambiguously uniflagellate. Results Vickermania has an odd cell cycle, in which shortly after the division the uniflagellate cell starts growing a new flagellum attached to the old one and preserves their contact until the late cytokinesis. The flagella connect to each other throughout their whole length and carry a peculiar seizing structure with a paddle-like apex and two lateral extensions at their tip. In contrast to typical trypanosomatids, which attach to the insect host’s intestinal wall, Vickermania is separated from it by a continuous peritrophic membrane and resides freely in the fly midgut lumen. Conclusions We propose that Vickermania developed a survival strategy that relies on constant movement preventing discharge from the host gut due to intestinal peristalsis. Since these parasites cannot attach to the midgut wall, they were forced to shorten the period of impaired motility when two separate flagella in dividing cells interfere with each other. The connection between the flagella ensures their coordinate movement until the separation of the daughter cells. We propose that Trypanosoma brucei, a severe human pathogen, during its development in the tsetse fly midgut faces the same conditions and follows the same strategy as Vickermania by employing an analogous adaptation, the flagellar connector.
Collapse
Affiliation(s)
- Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia. .,Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia.
| | - Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Anna I Ganyukova
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | | | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia
| | - Martina Tesařová
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia
| | - Viktoria V Spodareva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia.,Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Jana Režnarová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia.,Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia
| | | | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia.,Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia.,Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, 119435, Russia
| |
Collapse
|
5
|
Bernotienė R, Iezhova TA, Bukauskaitė D, Chagas CRF, Kazak M, Valkiūnas G. Development of Trypanosoma everetti in Culicoides biting midges. Acta Trop 2020; 210:105555. [PMID: 32473117 DOI: 10.1016/j.actatropica.2020.105555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
Abstract
Trypanosoma species (Trypanosomatida, Kinetoplastea) are almost exclusively heteroxenous flagellated parasites, which have been extensively studied as the causative agents of severe trypanosomiasis in humans and domestic animals. However, the biology of avian trypanosomes remains insufficiently known, particularly in wildlife, despite information that some species might be pathogenic and affect the fitness of intensively infected individuals. Avian trypanosomes are cosmopolitans. Due to regular bird seasonal migrations, this host-parasite system might provide new insight for better understanding mechanisms of transcontinental dispersal of pathogens, their ecological plasticity, specificity and speciation. Trypanosoma everetti parasitizes numerous bird species globally, but data on its biology are scarce and its vectors remain unknown. This study aimed to test experimentally whether widespread Culicoides (Diptera: Ceratopogonidae) biting midges are susceptible to infection with this parasite. Two common house martins Delichon urbicum and two sedge warblers Acrocephalus schoenobaenus naturally infected with T. everetti were caught in the wild after arrival from African wintering grounds. Laboratory reared Culicoides nubeculosus and wild-caught Culicoides impunctatus biting midges were exposed by allowing them to take infected blood meals. The experimentally infected and control insects were maintained in the laboratory and dissected at intervals to follow the development of the parasite. Infections were determined using microscopic examination and PCR-based testing. Four closely related haplotypes of T. everetti were found, and each was present in different individual parasite-donor birds. These parasites readily developed and produced metacyclic trypomastigotes in C. nubeculosus and C. impunctatus biting midges. Molecular characterisation of T. everetti was developed. According to Bayesian phylogenetic analysis using a DNA fragment encoding 18S rRNA, the five species of small avian trypanosomes were closely related. Wild caught Culicoides biting midges were also collected and screened for the presence of natural infections. In all, 6.8% of wild-caught biting midges belonging to five Culicoides species were PCR-positive for kinetoplastids, including Trypanosoma species. Culicoides biting midges are readily susceptible and likely naturally transmit avian trypanosomes and thus, should be targeted in epidemiology research of avian trypanosomiasis.
Collapse
|
6
|
Grybchuk D, Macedo DH, Kleschenko Y, Kraeva N, Lukashev AN, Bates PA, Kulich P, Leštinová T, Volf P, Kostygov AY, Yurchenko V. The First Non-LRV RNA Virus in Leishmania. Viruses 2020; 12:v12020168. [PMID: 32024293 PMCID: PMC7077295 DOI: 10.3390/v12020168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
In this work, we describe the first Leishmania-infecting leishbunyavirus-the first virus other than Leishmania RNA virus (LRV) found in trypanosomatid parasites. Its host is Leishmania martiniquensis, a human pathogen causing infections with a wide range of manifestations from asymptomatic to severe visceral disease. This virus (LmarLBV1) possesses many characteristic features of leishbunyaviruses, such as tripartite organization of its RNA genome, with ORFs encoding RNA-dependent RNA polymerase, surface glycoprotein, and nucleoprotein on L, M, and S segments, respectively. Our phylogenetic analyses suggest that LmarLBV1 originated from leishbunyaviruses of monoxenous trypanosomatids and, probably, is a result of genomic re-assortment. The LmarLBV1 facilitates parasites' infectivity in vitro in primary murine macrophages model. The discovery of a virus in L. martiniquensis poses the question of whether it influences pathogenicity of this parasite in vivo, similarly to the LRV in other Leishmania species.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; (D.G.); (D.H.M.); (N.K.)
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic
| | - Diego H. Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; (D.G.); (D.H.M.); (N.K.)
| | - Yulia Kleschenko
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow 119435, Russia, (A.N.L.)
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; (D.G.); (D.H.M.); (N.K.)
| | - Alexander N. Lukashev
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow 119435, Russia, (A.N.L.)
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YE, UK;
| | - Pavel Kulich
- Laboratory of Electron Microscopy, Veterinary Research Institute, 62100 Brno, Czech Republic;
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (T.L.); (P.V.)
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (T.L.); (P.V.)
| | - Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; (D.G.); (D.H.M.); (N.K.)
- Laboratory of Cellular and Molecular Protistology, Zoological Institute of the Russian Academy of Sciences, St. Petersburg 199034, Russia
- Correspondence: (A.Y.K.); (V.Y.)
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; (D.G.); (D.H.M.); (N.K.)
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow 119435, Russia, (A.N.L.)
- Correspondence: (A.Y.K.); (V.Y.)
| |
Collapse
|
7
|
Sloan MA, Brooks K, Otto TD, Sanders MJ, Cotton JA, Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genet 2019; 15:e1008452. [PMID: 31710597 PMCID: PMC6872171 DOI: 10.1371/journal.pgen.1008452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/21/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatid parasites are causative agents of important human and animal diseases such as sleeping sickness and leishmaniasis. Most trypanosomatids are transmitted to their mammalian hosts by insects, often belonging to Diptera (or true flies). These are called dixenous trypanosomatids since they infect two different hosts, in contrast to those that infect just insects (monoxenous). However, it is still unclear whether dixenous and monoxenous trypanosomatids interact similarly with their insect host, as fly-monoxenous trypanosomatid interaction systems are rarely reported and under-studied-despite being common in nature. Here we present the genome of monoxenous trypanosomatid Herpetomonas muscarum and discuss its transcriptome during in vitro culture and during infection of its natural insect host Drosophila melanogaster. The H. muscarum genome is broadly syntenic with that of human parasite Leishmania major. We also found strong similarities between the H. muscarum transcriptome during fruit fly infection, and those of Leishmania during sand fly infections. Overall this suggests Drosophila-Herpetomonas is a suitable model for less accessible insect-trypanosomatid host-parasite systems such as sand fly-Leishmania.
Collapse
Affiliation(s)
- Megan A. Sloan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Karen Brooks
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Thomas D. Otto
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Mandy J. Sanders
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - James A. Cotton
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Schoener E, Uebleis SS, Cuk C, Nawratil M, Obwaller AG, Zechmeister T, Lebl K, Rádrová J, Zittra C, Votýpka J, Fuehrer HP. Trypanosomatid parasites in Austrian mosquitoes. PLoS One 2018; 13:e0196052. [PMID: 29672618 PMCID: PMC5908168 DOI: 10.1371/journal.pone.0196052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/05/2018] [Indexed: 11/19/2022] Open
Abstract
Trypanosomatid flagellates have not been studied in Austria in any detail. In this study, specific nested PCR, targeted on the ribosomal small subunit, was used to determine the occurrence and diversity of trypanosomatids in wild-caught mosquitoes sampled across Eastern Austria in the years 2014-2015. We collected a total of 29,975 mosquitoes of 19 species divided in 1680 pools. Of these, 298 (17.7%), representing 12 different mosquito species, were positive for trypanosomatid DNA. In total, seven trypanosomatid spp. were identified (three Trypanosoma, three Crithidia and one Herpetomonas species), with the highest parasite species diversity found in the mosquito host Coquillettidia richiardii. The most frequent parasite species belonged to the mammalian Trypanosoma theileri/cervi species complex (found in 105 pools; 6.3%). The avian species T. culicavium (found in 69 pools; 4.1%) was only detected in mosquitoes of the genus Culex, which corresponds to their preference for avian hosts. Monoxenous trypanosomatids of the genus Crithidia and Herpetomonas were found in 20 (1.3%) mosquito pools. One third (n = 98) of the trypanosomatid positive mosquito pools carried more than one parasite species. This is the first large scale study of trypanosomatid parasites in Austrian mosquitoes and our results are valuable in providing an overview of the diversity of these parasites in Austria.
Collapse
Affiliation(s)
- Ellen Schoener
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sarah Susanne Uebleis
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Cuk
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Nawratil
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Adelheid G. Obwaller
- Federal Ministry of Defence and Sports, Division of Science, Research and Development, Vienna, Austria
| | | | - Karin Lebl
- Institute for Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Rádrová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Carina Zittra
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Parasitology, Biology Centre of Czech Academy of Sciences, České Budĕjovice, Czechia
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
9
|
Svobodová M, Dolnik OV, Čepička I, Rádrová J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasit Vectors 2017; 10:224. [PMID: 28482865 PMCID: PMC5423023 DOI: 10.1186/s13071-017-2158-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/25/2017] [Indexed: 12/04/2022] Open
Abstract
Background Although avian trypanosomes are widespread parasites, the knowledge of their vectors is still incomplete. Despite biting midges (Diptera: Ceratopogonidae) are considered as potential vectors of avian trypanosomes, their role in transmission has not been satisfactorily elucidated. Our aim was to clarify the potential of biting midges to sustain the development of avian trypanosomes by testing their susceptibility to different strains of avian trypanosomes experimentally. Moreover, we screened biting midges for natural infections in the wild. Results Laboratory-bred biting midges Culicoides nubeculosus were highly susceptible to trypanosomes from the Trypanosoma bennetti and T. avium clades. Infection rates reached 100%, heavy infections developed in 55–87% of blood-fed females. Parasite stages from the insect gut were infective for birds. Moreover, midges could be infected after feeding on a trypanosome-positive bird. Avian trypanosomes can thus complete their cycle in birds and biting midges. Furthermore, we succeeded to find infected blood meal-free biting midges in the wild. Conclusions Biting midges are probable vectors of avian trypanosomes belonging to T. bennetti group. Midges are highly susceptible to artificial infections, can be infected after feeding on birds, and T. bennetti-infected biting midges (Culicoides spp.) have been found in nature. Moreover, midges can be used as model hosts producing metacyclic avian trypanosome stages infective for avian hosts.
Collapse
Affiliation(s)
- Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic.
| | - Olga V Dolnik
- Department of Parasitology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic
| | - Jana Rádrová
- Department of Parasitology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic
| |
Collapse
|
10
|
Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY. Life cycle of Blastocrithidia papi sp. n. (Kinetoplastea, Trypanosomatidae) in Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Eur J Protistol 2017; 57:85-98. [DOI: 10.1016/j.ejop.2016.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
|
11
|
An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology 2016; 145:430-442. [PMID: 27976601 DOI: 10.1017/s0031182016002092] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We propose a taxonomic revision of the dixenous trypanosomatids currently classified as Endotrypanum and Leishmania, including parasites that do not fall within the subgenera L. (Leishmania) and L. (Viannia) related to human leishmaniasis or L. (Sauroleishmania) formed by leishmanias of lizards: L. colombiensis, L. equatorensis, L. herreri, L. hertigi, L. deanei, L. enriettii and L. martiniquensis. The comparison of these species with newly characterized isolates from sloths, porcupines and phlebotomines from central and South America unveiled new genera and subgenera supported by past (RNA PolII gene) and present (V7V8 SSU rRNA, Hsp70 and gGAPDH) phylogenetic analyses of the organisms. The genus Endotrypanum is restricted to Central and South America, comprising isolates from sloths and transmitted by phlebotomines that sporadically infect humans. This genus is the closest to the new genus Porcisia proposed to accommodate the Neotropical porcupine parasites originally described as L. hertigi and L. deanei. A new subgenus Leishmania (Mundinia) is created for the L. enriettii complex that includes L. martiniquensis. The new genus Zelonia harbours trypanosomatids from Neotropical hemipterans placed at the edge of the Leishmania-Endotrypanum-Porcisia clade. Finally, attention is drawn to the status of L. siamensis and L. australiensis as nomem nudums.
Collapse
|
12
|
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 2014; 165:825-38. [PMID: 25460233 DOI: 10.1016/j.protis.2014.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022]
Abstract
Compared to their relatives, the diversity of endosymbiont-containing Trypanosomatidae remains under-investigated, with only two new species described in the past 25 years, bringing the total to six. The possible reasons for such a poor representation of this group are either their overall scarcity or susceptibility of their symbionts to antibiotics that are traditionally used for cultivation of flagellates. In this work we describe the isolation, cultivation, as well as morphological and molecular characterization of a novel endosymbiont-harboring trypanosomatid species, Kentomonas sorsogonicus sp. n. The newly erected genus Kentomonas gen. n. shares many common features with the genera Angomonas and Strigomonas, such as the presence of an extensive system of peripheral mitochondrial branches distorting the corset of subpellicular microtubules, large and loosely packed kinetoplast, and a rudimentary paraflagellar rod. Here we also propose to unite all endosymbiont-bearing trypanosomatids into the new subfamily Strigomonadinae subfam. n.
Collapse
Affiliation(s)
- Jan Votýpka
- Department of Parasitology, Faculty of Sciences, Charles University, Prague, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Martina Tesařová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
13
|
de Souza JI, Gleason FH, Ansari MA, López Lastra CC, Garcia JJ, Pires-Zottarelli CL, Marano AV. Fungal and oomycete parasites of Chironomidae, Ceratopogonidae and Simuliidae (Culicomorpha, Diptera). FUNGAL BIOL REV 2014. [DOI: 10.1016/j.fbr.2014.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Fokin SI, Schrallhammer M, Chiellini C, Verni F, Petroni G. Free-living ciliates as potential reservoirs for eukaryotic parasites: occurrence of a trypanosomatid in the macronucleus of Euplotes encysticus. Parasit Vectors 2014; 7:203. [PMID: 24774858 PMCID: PMC4022238 DOI: 10.1186/1756-3305-7-203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/13/2014] [Indexed: 12/27/2022] Open
Abstract
Background Flagellates of the family Trypanosomatidae are obligate endoparasites, which can be found in various hosts. Several genera infect insects and occur as monoxenous parasites especially in representatives of Diptera and Hemiptera. These trypanosomatid flagellates probably share the worldwide distribution of their hosts, which are often infested by large numbers of endoparasites. Traditionally, their taxonomy was based on morphology, host origin, and life cycle. Here we report the characterization of a trypanosomatid infection detected in a protozoan, a ciliate collected from a polluted freshwater pond in a suburb of New Delhi (India). Methods Live observations and morphological studies applying light, fluorescence and transmission electron microscopy were conducted. Molecular analyses of host and parasite were performed and used for phylogenetic reconstructions and species (host) or genus level (parasite) identification. Results Although the morphological characteristics were not revealing, a high similarity of the trypanosomatids 18S rRNA gene sequence to Herpetomonas ztiplika and Herpetomonas trimorpha (Kinetoplastida, Trypanosomatidae), both parasites of biting midges (Culicoides kibunensis and Culicoides truncorum, respectively) allowed the assignment to this genus. The majority of the host population displayed a heavy infection that significantly affected the shape of the host macronucleus, which was the main site of parasite localization. In addition, the growth rate of host cultures, identified as Euplotes encysticus according to cell morphology and 18S rRNA gene sequence, was severely impacted by the infection. Conclusions The host-parasite system described here represents a recent example of free-living protists acting as environmental reservoirs for parasitic eukaryotic microorganisms.
Collapse
Affiliation(s)
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany.
| | | | | | | |
Collapse
|
15
|
Yurchenko V, Votýpka J, Tesařová M, Klepetková H, Kraeva N, Jirků M, Lukeš J. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol (Praha) 2014. [DOI: 10.14411/fp.2014.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Slama D, Haouas N, Remadi L, Mezhoud H, Babba H, Chaker E. First detection of Leishmania infantum (Kinetoplastida: Trypanosomatidae) in Culicoides spp. (Diptera: Ceratopogonidae). Parasit Vectors 2014; 7:51. [PMID: 24460752 PMCID: PMC3906888 DOI: 10.1186/1756-3305-7-51] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 12/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Culicoides (Diptera: Ceratopogonidae) species are known to be the vectors of Bluetongue virus and African Horses Sickness virus (AHSV) in different areas of the world. Nevertheless, other researchers have hypothesized that these arthropods could be involved in the transmission of other pathogens such as Schmallenberg virus, Plasmodium and Leishmania parasites. Identification of the Culicoides' potential vector competence is crucial in understanding the worldwide Culicoides/Leishmania life cycle. FINDINGS Blood fed and parous females of biting midges Culicoides spp. were collected between 2009 and 2010 in Central Tunisia. DNA was extracted from individual blood fed Culicoides and used as a template in a genus-specific PCR. Leishmania DNA was detected in 14 Culicoides imicola specimens and one Culicoides circumscriptus. In a second step, parasite identification was performed based on a single copy Topo-isomerase II gene specific amplification and sequencing. Leishmania infantum was identified in two infected Culicoides spp. CONCLUSION This is the first report of Leishmania DNA detection from naturally infected wild caught Culicoides spp. Our finding supports the assumption that Culicoides spp. are a potential vector for L. infantum.
Collapse
Affiliation(s)
| | | | | | | | | | - Emna Chaker
- Laboratory of Parasitology and Mycology, La rabta, Tunis, Tunisia.
| |
Collapse
|
17
|
Wheeler RJ, Gluenz E, Gull K. The limits on trypanosomatid morphological diversity. PLoS One 2013; 8:e79581. [PMID: 24260255 PMCID: PMC3834336 DOI: 10.1371/journal.pone.0079581] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/02/2013] [Indexed: 01/13/2023] Open
Abstract
Cell shape is one, often overlooked, way in which protozoan parasites have adapted to a variety of host and vector environments and directional transmissions between these environments. Consequently, different parasite life cycle stages have characteristic morphologies. Trypanosomatid parasites are an excellent example of this in which large morphological variations between species and life cycle stage occur, despite sharing well-conserved cytoskeletal and membranous structures. Here, using previously published reports in the literature of the morphology of 248 isolates of trypanosomatid species from different hosts, we perform a meta-analysis of the occurrence and limits on morphological diversity of different classes of trypanosomatid morphology (trypomastigote, promastigote, etc.) in the vertebrate bloodstream and invertebrate gut environments. We identified several limits on cell body length, cell body width and flagellum length diversity which can be interpreted as biomechanical limits on the capacity of the cell to attain particular dimensions. These limits differed for morphologies with and without a laterally attached flagellum which we suggest represent two morphological superclasses, the ‘juxtaform’ and ‘liberform’ superclasses. Further limits were identified consistent with a selective pressure from the mechanical properties of the vertebrate bloodstream environment; trypanosomatid size showed limits relative to host erythrocyte dimensions. This is the first comprehensive analysis of the limits of morphological diversity in any protozoan parasite, revealing the morphogenetic constraints and extrinsic selection pressures associated with the full diversity of trypanosomatid morphology.
Collapse
Affiliation(s)
- Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Diversity of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and description of a new genus Blechomonas gen. n. Protist 2013; 164:763-81. [PMID: 24113136 DOI: 10.1016/j.protis.2013.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 11/22/2022]
Abstract
To further investigate the diversity of Trypanosomatidae we have examined the species present within the flea (Siphonaptera) population in the Czech Republic. Out of 1549 fleas, 239 were found to be infected by trypanosomatids. Axenic cultures were established from 90 infected specimens and 29 of them were further characterized. Molecular phylogenetic analysis of the SL RNA, gGAPDH, and SSU rRNA genes revealed a striking diversity within this group and analyzed isolates were classified into 16 Typing units (TUs) of which 15 typified new species. In addition to one Trypanosoma species, two TUs grouped within the sub-family Leishmaniinae, two clustered together with Herpetomonas, wheras 11 TUs formed a novel clade branching off between Trypanosoma spp. and remaining trypanosomatids. We propose to recognize this clade as a new genus Blechomonas and a new subfamily Blechomonadinae, and provide molecular and morphological description of 11 TUs representing this genus. Our finding of such an ancient host-specific group sheds new light at the origin of Trypanosomatidae and the roots of dixenous parasitism. The strict host restriction of Blechomonas to Siphonaptera with adult fleas' dependence on blood meal may reflect passing of parasites from larvae through pupae to adults and implies potential transmission to the warm-blooded vertebrates.
Collapse
|
19
|
Týč J, Votýpka J, Klepetková H, Suláková H, Jirků M, Lukeš J. Growing diversity of trypanosomatid parasites of flies (Diptera: Brachycera): frequent cosmopolitism and moderate host specificity. Mol Phylogenet Evol 2013; 69:255-64. [PMID: 23747522 DOI: 10.1016/j.ympev.2013.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 05/31/2013] [Indexed: 11/30/2022]
Abstract
Widely distributed, highly prevalent and speciose, trypanosomatid flagellates represent a convenient model to address topics such as host specificity, diversity and distribution of parasitic protists. Recent studies dealing with insect parasites of the class Kinetoplastea have been focused mainly on trypanosomatids from true bugs (Heteroptera), even though flies (Diptera, Brachycera) are also known as their frequent hosts. Phylogenetic position, host specificity and geographic distribution of trypanosomatids parasitizing dipteran hosts collected in nine countries on four continents (Bulgaria, Czech Republic, Ecuador, Ghana, Kenya, Madagascar, Mongolia, Papua New Guinea and Turkey) are presented. Spliced leader (SL) RNA gene repeats and small subunit (SSU) rRNA genes were PCR amplified from trypanosomatids infecting the gut of a total of forty fly specimens belonging to nine families. While SL RNA was mainly used for barcoding, SSU rRNA was utilized in phylogenetic analyses. Thirty-six different typing units (TUs) were revealed, of which 24 are described for the first time and represent potential new species. Multiple infections with several TUs are more common among brachyceran hosts than in true bugs, reaching one third of cases. When compared to trypanosomatids from heteropteran bugs, brachyceran flagellates are more host specific on the genus level. From seven previously recognized branches of monoxenous trypanosomatids, the Blastocrithidia and "jaculum" clades accommodate almost solely parasites of Heteroptera; two other clades (Herpetomonas and Angomonas) are formed primarily by flagellates found in dipteran hosts, with the most species-rich Leishmaniinae and the small Strigomonas and "collosoma" clades remaining promiscuous. Furthermore, two new clades of trypanosomatids from brachyceran flies emerged in this study. While flagellates from brachyceran hosts have moderate to higher host specificity, geographic distribution of at least some of them seems to be cosmopolitan. Moreover, the genus Angomonas, so far known only from South America, is present on other continents as well.
Collapse
Affiliation(s)
- Jiří Týč
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | | | | | | | | | | |
Collapse
|
20
|
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 2012; 29:43-52. [PMID: 23246083 DOI: 10.1016/j.pt.2012.11.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
Monoxenous trypanosomatids, which are usually regarded as benign dwellers of the insect alimentary tract, represent a relatively obscure group within the family Trypanosomatidae. This field of study has long been in disarray with the genus level taxonomy of this group remaining artificial, species criteria elusive, host specificity and occurrence poorly known, and their diversity mostly unexplored. The time has arrived to remedy this situation: a phylogenetic approach has been applied to taxa recognition and description, and a culture-independent (PCR-based) approach for detection and identification of organisms in nature has made it feasible to study the diversity of the group. Although more than 100 typing units have been discovered recently, these appear to represent a small segment of trypanosomatid biodiversity, which still remains to be uncovered.
Collapse
Affiliation(s)
- Dmitri A Maslov
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
21
|
Borghesan TC, Ferreira RC, Takata CSA, Campaner M, Borda CC, Paiva F, Milder RV, Teixeira MMG, Camargo EP. Molecular phylogenetic redefinition of Herpetomonas (Kinetoplastea, Trypanosomatidae), a genus of insect parasites associated with flies. Protist 2012; 164:129-52. [PMID: 22938923 DOI: 10.1016/j.protis.2012.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 11/18/2022]
Abstract
In order to review the taxonomy of the genus Herpetomonas through phylogenetic and morphological analyses we barcoded 527 insect trypanosomatids by sequencing the V7V8 region of the small subunit ribosomal RNA (SSU rRNA) gene. Fifty two flagellates, 90% of them from Diptera, revealed to be related to known species of Herpetomonas. Sequences of entire glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and SSU rRNA genes were employed for phylogenetic inferences including representatives of all genera of Trypanosomatidae. In the resulting phylogenetic trees, the selected flagellates clustered into a monophyletic assemblage that we are considering as the redefined genus Herpetomonas. Internal transcribed spacer 1 (ITS1) rDNA sequences and putative secondary structures of this region were compared for evaluation of inter- and intraspecific variability. The flagellates were classified in six already known species and five new species. In addition, two Leptomonas spp. were moved to Herpetomonas, now comprising 13 valid species, while four species were excluded from the genus. Light and electron microscopy revealed the extreme polymorphism of Herpetomonas, hindering genus and species identification by morphological characteristics. Our findings also showed that some species of Herpetomonas are generalist parasites of flies and appear to be as cosmopolitan as their hosts.
Collapse
MESH Headings
- Animals
- Cluster Analysis
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Diptera/parasitology
- Genes, rRNA
- Glyceraldehyde-3-Phosphate Dehydrogenases/genetics
- Microscopy
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA, Protozoan/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
- Trypanosomatina/classification
- Trypanosomatina/cytology
- Trypanosomatina/genetics
- Trypanosomatina/isolation & purification
Collapse
Affiliation(s)
- Tarcilla C Borghesan
- Department of Parasitology, ICB, University of São Paulo (USP), São Paulo, 05508-000, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Votýpka J, Klepetková H, Jirků M, Kment P, Lukeš J. Phylogenetic relationships of trypanosomatids parasitising true bugs (Insecta: Heteroptera) in sub-Saharan Africa. Int J Parasitol 2012; 42:489-500. [DOI: 10.1016/j.ijpara.2012.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/24/2012] [Accepted: 03/26/2012] [Indexed: 11/28/2022]
|
23
|
Votýpka J, Klepetková H, Yurchenko VY, Horák A, Lukeš J, Maslov DA. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist 2012; 163:616-31. [PMID: 22341645 DOI: 10.1016/j.protis.2011.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 10/28/2022]
Abstract
A trypanosomatid species, designated as Typing Unit 1 (TU1) by sequences of SL RNA gene repeats, has been found in the intestine of pyrrhocorids (Insecta: Heteroptera) in Europe, Mediterranean, Central America and some parts of Asia and Africa. Phylogenetic analysis of the SL repeat sequences has shown that the isolates group in the tree according to their geographic origin. The maximal sequence divergence was observed in parasites from Neotropics suggesting the origin within and subsequent migrations from this region. The global distribution of the parasite could have been facilitated by ubiquity of its hosts that include several genera of the family Pyrrhocoridae. In Europe the TU1 flagellates frequently occur in Pyrrhocoris apterus, the host of Leptomonas pyrrhocorisZotta, 1912, a species that had been insufficiently defined by host and light microscopy level morphology. Herein, the Zotta's species description has been amended to include the TU1 SL RNA repeat, SSU rRNA, glycosomal GAPDH gene sequences, as well as ultrastructure. In addition, Leptomonas scantii n. sp. with an overlapping host range has been described. Moreover, 10 typing units of trypanosomatids found in the pyrrhocorid hosts demonstrate the extent of variability of trypanosomatids occurring in one host family.
Collapse
Affiliation(s)
- Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
24
|
Zídková L, Cepicka I, Szabová J, Svobodová M. Biodiversity of avian trypanosomes. INFECTION GENETICS AND EVOLUTION 2011; 12:102-12. [PMID: 22080850 DOI: 10.1016/j.meegid.2011.10.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
We have studied the biodiversity of trypanosomes from birds and bloodsucking Diptera on a large number of isolates. We used two molecular approaches, random amplification of polymorphic DNA (RAPD) method, and sequence analysis of the small subunit ribosomal RNA (SSU rRNA) gene. RAPD method divided the isolates into 11 separate lineages. Phylogenetic analysis of the SSU rRNA gene was congruent with the RAPD. Morphometric analysis of kinetoplast width and cell length was in agreement with molecular data. Avian trypanosomes appeared polyphyletic on SSU rDNA tree; thus, they do not represent a taxonomic group. We propose that all lineages recovered by SSU analysis probably represent distinct species of avian trypanosomes. We discuss possible transmission ways and geographical distribution of new avian trypanosome lineages. Finally, we recommend methods that should be used for species determination of avian trypanosomes.
Collapse
Affiliation(s)
- Lenka Zídková
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague 128 44, Czech Republic.
| | | | | | | |
Collapse
|
25
|
Votýpka J, Szabová J, Rádrová J, Zídková L, Svobodová M. Trypanosoma culicavium sp. nov., an avian trypanosome transmitted by Culex mosquitoes. Int J Syst Evol Microbiol 2011; 62:745-754. [PMID: 21515704 DOI: 10.1099/ijs.0.032110-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel avian trypanosome, Trypanosoma culicavium sp. nov., isolated from Culex mosquitoes, is described on the basis of naturally and experimentally infected vectors and bird hosts, localization in the vector, morphological characters and molecular data. This study provides the first comprehensive description of a trypanosome species transmitted by mosquitoes, in which parasites form plugs and rosettes on the stomodeal valve. Trypanosomes occurred as long epimastigotes and short trypomastigotes in vectors and culture and as long trypomastigotes in birds. Transmission of parasites to bird hosts was achieved exclusively by ingestion of experimentally infected Culex mosquito females by canaries (Serinus canaria), but not by Japanese quails (Coturnix japonica), nor by the bite of infected vectors, nor by ingestion of parasites from laboratory cultures. Transmission experiments and the identity of isolates from collared flycatchers (Ficedula albicollis) and Culex mosquitoes suggests that the natural hosts of T. culicavium are insectivorous songbirds (Passeriformes). Phylogenetic analyses of small-subunit rRNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase gene sequences demonstrated that T. culicavium sp. nov. is more related to Trypanosoma corvi than to other avian trypanosomes (e.g. Trypanosoma avium and Trypanosoma bennetti).
Collapse
Affiliation(s)
- Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice, CZ 370 05, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, CZ 128 44, Czech Republic
| | - Jana Szabová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, CZ 128 44, Czech Republic
| | - Jana Rádrová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, CZ 128 44, Czech Republic
| | - Lenka Zídková
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, CZ 128 44, Czech Republic
| | - Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, CZ 128 44, Czech Republic
| |
Collapse
|
26
|
Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int J Parasitol 2011; 41:571-9. [PMID: 21251914 DOI: 10.1016/j.ijpara.2010.12.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 11/24/2022]
Abstract
The first autochthonous Leishmania infection in Australia was reported by Rose et al. (2004) and the parasite was characterised as a unique species. The host was the red kangaroo (Macropus rufus) but the transmitting vector was unknown. To incriminate the biological vector, insect trapping by a variety of methods was undertaken at two field sites of known Leishmania transmission. Collected sand flies were identified to species level and were screened for Leishmania DNA using a semi-quantitative real-time PCR. Collections revealed four species of sand fly, with a predominance of the reptile biter Sergentomyia queenslandi (Hill). However, no Leishmania-positive flies were detected. Therefore, alternative vectors were investigated for infection, giving startling results. Screening revealed that an undescribed species of day-feeding midge, subgenus Forcipomyia (Lasiohelea) Kieffer, had a prevalence of up to 15% for Leishmania DNA, with high parasitemia in some individuals. Manual gut dissections confirmed the presence of promastigotes and in some midges material similar to promastigote secretory gel, including parasites with metacyclic-like morphology. Parasites were cultured from infected midges and sequence analysis of the Leishmania RNA polymerase subunit II gene confirmed infections were identical to the original isolated Leishmania sp. Phylogenetic analysis revealed the closest known species to be Leishmania enriettii, with this and the Australian species confirmed as members of Leishmania sensu stricto. Collectively the results strongly suggest that the day-feeding midge (F. (Lasiohelea) sp. 1) is a potential biological vector of Leishmania in northern Australia, which is to our knowledge the first evidence of a vector other than a phlebotomine sand fly anywhere in the world. These findings have considerable implications in the understanding of the Leishmania life cycle worldwide.
Collapse
|