1
|
Kothe CI, Renault P. Metagenomic driven isolation of poorly culturable species in food. Food Microbiol 2025; 129:104722. [PMID: 40086981 DOI: 10.1016/j.fm.2025.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 03/16/2025]
Abstract
Although isolating microorganisms from food microbiota may appear less challenging than from the gut or environmental sources, recovering all representative species from food remains a difficult task. Here, we showed by metagenomic analysis that several abundant species had escaped isolation in a previous study of ten cheeses, including several previously uncharacterized species. This highlights the ongoing challenge of achieving a comprehensive recovery of microbes from food. To address this gap, we designed a novel strategy integrating metagenomics-based probes targeting the species of interest, coupled with an incremental culturing approach using pooled samples. As proof of concept, we applied this strategy to two cheeses containing species that were not isolated in our previous study, with the objective of isolating all species present at levels above 2% and, in particular, potential novel food species. Through this approach, we successfully performed the targeted isolation of two Psychrobacter and two Vibrio species from the first cheese, and four Halomonas and two Pseudoalteromonas species from the second one. Notably, P. undina and V. litoralis represented, as far as we know, the first cheese isolates characterized for these species. However, we were unable to isolate a novel species of Pseudoalteromonas, with no characterized representative to date, and Marinomonas foliarum, previously isolated from marine environment. Using metagenome-assembled genomes (MAGs) and metagenomic analysis, we discussed the possible reasons for their non-recovery. Finally, this strategy offers a promising approach for isolating a set of strains representative of the microbial diversity present in food ecosystems. These isolates can serve as a basis for investigating their roles in the communities, their impact on product development, safety implications and their potential in the development of starter cultures.
Collapse
Affiliation(s)
- Caroline Isabel Kothe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Pierre Renault
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Tsuchiya Y, Yokoyama U, Takahashi R, Nakagawa T. Complete genome sequence of Marinomonas sp. strain THO17 isolated from the leaf surface of the seagrass ( Thalassia hemrichii). Microbiol Resour Announc 2024; 13:e0072324. [PMID: 39535219 PMCID: PMC11636394 DOI: 10.1128/mra.00723-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Here, we report the genome sequence of the Marinomonas sp. strain THO17. The assembled genome consisted of a single circular chromosome of 3,920,899 bp, with a 43.6% G+C content. Genome analysis revealed that strain THO17 potentially interacts with marine plants.
Collapse
Affiliation(s)
- Yuki Tsuchiya
- Department of Bioscience, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Ushio Yokoyama
- Graduate school of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Reiji Takahashi
- Department of Bioscience, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Tatsunori Nakagawa
- Department of Bioscience, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
3
|
Butt M, Choi DG, Kim JM, Lee JK, Baek JH, Jeon CO. Marinomonas rhodophyticola sp. nov. and Marinomonas phaeophyticola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2024; 74:006366. [PMID: 38700924 PMCID: PMC11165874 DOI: 10.1099/ijsem.0.006366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
Two Gram-stain-negative, facultatively aerobic, and motile rod bacteria, designated as strains KJ51-3T and 15G1-11T, were isolated from marine algae collected in the Republic of Korea. Both strains exhibited catalase- and oxidase-positive activities. Optimum growth conditions for strain KJ51-3T were observed at 30 °C and pH 6.0-8.0, with 1.0-7.0 % (w/v) NaCl, whereas strain 15G1-11T exhibited optimal growth at 30 °C, pH 7.0, and 1.0-5.0 % NaCl. Major fatty acids detected in both strains included C16 : 0, C10 : 0 3-OH and summed features 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). As for polar lipids, strain KJ51-3T contained phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol, and two unidentified phospholipids, whereas strain 15G1-11T had PE, PG, and an unidentified aminolipid. Ubiquinone-8 was the predominant respiratory quinone in both strains, with minor detection of ubiquinone-9 in strain KJ51-3T. The genomic DNA G+C contents were 44.0 mol% for strain KJ51-3T and 40.5 mol% for strain 15G1-11T. Phylogenetic analyses based on both 16S rRNA gene and genome sequences placed strains KJ51-3T and 15G1-11T into distinct lineages within the genus Marinomonas, most closely related to Marinomonas arctica 328T (98.6 %) and Marinomonas algicola SM1966T (98.3 %), respectively. Strains KJ51-3T and 15G1-11T exhibited a 94.6 % 16S rRNA gene sequence similarity and a 70.7 % average nucleotide identity (ANI), with ANI values of 91.9 and 79.3 % between them and M. arctica 328T and M. algicola SM1966T, respectively, indicating that they represent novel species. In summary, based on their phenotypic, chemotaxonomic, and phylogenetic properties, strains KJ51-3T and 15G1-11T are proposed to represent novel species within the genus Marinomonas, for which the names Marinomonas rhodophyticola sp. nov. (KJ51-3T=KACC 22756T=JCM 35591T) and Marinomonas phaeophyticola sp. nov. (15G1-11T=KACC 22593T=JCM 35412T) are respectively proposed.
Collapse
Affiliation(s)
- Mahrukh Butt
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dae Gyu Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jae Kyeong Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Lucas-Elío P, ElAlami T, Martínez A, Sanchez-Amat A. Marinomonas mediterranea synthesizes an R-type bacteriocin. Appl Environ Microbiol 2024; 90:e0127323. [PMID: 38169292 PMCID: PMC10870725 DOI: 10.1128/aem.01273-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Prophages integrated into bacterial genomes can become cryptic or defective prophages, which may evolve to provide various traits to bacterial cells. Previous research on Marinomonas mediterranea MMB-1 demonstrated the production of defective particles. In this study, an analysis of the genomes of three different strains (MMB-1, MMB-2, and MMB-3) revealed the presence of a region named MEDPRO1, spanning approximately 52 kb, coding for a defective prophage in strains MMB-1 and MMB-2. This prophage seems to have been lost in strain MMB-3, possibly due to the presence of spacers recognizing this region in an I-F CRISPR array in this strain. However, all three strains produce remarkably similar defective particles. Using strain MMB-1 as a model, mass spectrometry analyses indicated that the structural proteins of the defective particles are encoded by a second defective prophage situated within the MEDPRO2 region, spanning approximately 13 kb. This finding was further validated through the deletion of this second defective prophage. Genomic region analyses and the detection of antimicrobial activity of the defective prophage against other Marinomonas species suggest that it is an R-type bacteriocin. Marinomonas mediterranea synthesizes antimicrobial proteins with lysine oxidase activity, and the synthesis of an R-type bacteriocin constitutes an additional mechanism in microbial competition for the colonization of habitats such as the surface of marine plants.IMPORTANCEThe interactions between bacterial strains inhabiting the same environment determine the final composition of the microbiome. In this study, it is shown that some extracellular defective phage particles previously observed in Marinomonas mediterranea are in fact R-type bacteriocins showing antimicrobial activity against other Marinomonas strains. The operon coding for the R-type bacteriocin has been identified.
Collapse
Affiliation(s)
- Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Tarik ElAlami
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Alicia Martínez
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | | |
Collapse
|
5
|
Xue JH, Zhang BN, Zhang F, Liu YY, Wu WJ, Wu ZM, Si Y, Yang PX, Xing X, Zhao LH. Comparative genomic analysis of the genus Marinomonas and taxonomic study of Marinomonas algarum sp. nov., isolated from red algae Gelidium amansii. Arch Microbiol 2022; 204:586. [PMID: 36048288 DOI: 10.1007/s00203-022-03215-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022]
Abstract
Members of the genus Marinomonas are known for their environmental adaptation and metabolically versatility, with abundant proteins associated with antifreeze, osmotic pressure resistance, carbohydrase and multiple secondary metabolites. Comparative genomic analysis focusing on secondary metabolites and orthologue proteins was conducted with 30 reference genome sequences in the genus Marinomonas. In this study, a Gram-stain-negative, rod-shaped, non-flagellated and strictly aerobic bacterium, designated as strain E8T, was isolated from the red algae (Gelidium amansii) in the coastal of Weihai, China. Optimal growth of the strain E8T was observed at temperatures 25-30 °C, pH 6.5-8.0 and 1-3% (w/v) NaCl. The DNA G + C content was 42.8 mol%. The predominant isoprenoid quinone was Q-8 and the major fatty acids were C16:0, summed feature 3 and summed feature 8. The major polar lipids were phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). Based on data obtained from this polyphasic taxonomic study, strain E8T should be considered as a novel species of the genus Marinomonas, for which the name Marinomonas algarum is proposed. The type strain is E8T (= KCTC 92201T = MCCC 1K07070T).
Collapse
Affiliation(s)
- Jian-Heng Xue
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Bei-Ning Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Feng Zhang
- Weihai Ecological and Environmental Monitoring Center (Weihai Motor Vehicle Emission Monitoring Center), Weihai, 264209, Shandong, People's Republic of China
| | - Ying-Ying Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Wen-Jie Wu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Zhao-Ming Wu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Yue Si
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Peng-Xi Yang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Xiang Xing
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China.
| | - Li-Hua Zhao
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Gao Y, Wei Y, Wang P. Marinomonas lutimaris sp. nov., isolated from a tidal flat sediment of the East China Sea. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative bacterial strain, designated as E165T, was isolated from a tidal flat sediment of the East China Sea. Strain E165T grew optimally at pH 6, at 32 °C and with 1–2 % (w/v) NaCl. The 16S rRNA gene sequence similarity results revealed that strain E165T was most closely related to
Marinomonas rhizomae
IVIA-Po-145T,
Marinomonas polaris
CK13T,
Marinomonas foliarum
IVIA-Po-155T,
Marinomonas hwangdonensis
HDW-15T,
Marinomonas pontica
46-16T,
Marinomonas mangrovi
B20-1T and
Marinomonas shanghaiensis
DSL-35T with values of 97.0–98.5 %. The digital DNA–DNA hybridization and average nucleotide identity values between strain E165T and the reference strains were 21.9–34.3 % and 77.6–87.3 %, respectively. The DNA G+C content of the isolate was 42.9 mol%. Strain E165T contained Q-8 as the sole ubiquinone and C16 : 0, summed feature 8 (C18 : 1
ω7c and/or C18 : 1
ω6c) and summed feature 3 (C16 : 1
ω7c and/or C16 : 1
ω6c) as the major fatty acids. The major polar lipids of strain E165T were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, aminolipid and aminophospholipid. On the basis of phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness, a novel species, Marinomonas lutimaris sp. nov., is proposed with E165T (=MCCC 1K06241T=KCTC 82809T) as the type strain.
Collapse
Affiliation(s)
- Yuxin Gao
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, PR China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Peng Wang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
7
|
Sun XM, Chen C, Xue Z, He XY, Liu NH, Chen XL, Zhang YZ, Fan SJ, Zhang XY. Marinomonas algicola sp. nov. and Marinomonas colpomeniae sp. nov., isolated from marine macroalgae. Int J Syst Evol Microbiol 2021; 71. [PMID: 33661091 DOI: 10.1099/ijsem.0.004730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, aerobic, rod-shaped bacteria, polar flagellated, designated strains SM2066T and SM1966T, were respectively isolated from the surfaces of Colpomenia sinuosa and Ulva pertusa macroalgae collected off the coastal areas of Rongcheng, PR China. Strain SM2066T grew at 8-37 °C and with 0.5-7.0 % (w/v) NaCl, while strain SM1966T grew at 5-30 °C and with 0.5-8.5% (w/v) NaCl. Both of them reduced nitrate to nitrite and required Na+ for growth but neither of them hydrolysed starch and DNA. Phylogenetic analysis based on 16S rRNA gene and single-copy orthologous cluster sequences revealed that both strains SM2066T and SM1966T were affiliated with the genus Marinomonas but formed distinct phylogenetic branches from known Marinomonas species, respectively sharing the highest 16S rRNA gene sequence similarities with type strains of Marinomonas ushuaiensis (97.9 %) and Marinomonas blandensis (96.7 %). The digital DNA-DNA hybridization and average nucleotide identity values between strains SM2066T and SM1966T and type strains of closely related Marinomonas species were all below 22.9 and 79.9 mol%, respectively. The major fatty acids of the two strains were summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c) and C16 : 0, with their predominant polar lipids being phosphatidylethanolamine and phosphatidylglycerol, and their sole respiratory quinone being Q-8. The genomic DNA G+C contents of strains SM2066T and SM1966T determined from genomic sequences were 40.3 and 41.6 mol%, respectively. On the basis of the polyphasic evidence presented in this study, strains SM2066T and SM1966T are considered to represent two novel species within the genus Marinomonas, for which the names Marinomonas colpomeniae sp. nov. and Marinomonas algicola sp. nov. are proposed. The type strains are SM2066T (=MCCC 1K04390T= KCTC 82372T) and SM1966T (=MCCC 1K04387T= KCTC 72848T), respectively.
Collapse
Affiliation(s)
- Xiao-Meng Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China.,Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Cui Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China.,Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Zhao Xue
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Xiao-Yan He
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Ning-Hua Liu
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiu-Lan Chen
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, PR China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Shou-Jin Fan
- Life Science College, Shandong Normal University, Jinan 250014, PR China
| | - Xi-Ying Zhang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
8
|
Sanders-Smith R, Segovia BT, Forbes C, Hessing-Lewis M, Morien E, Lemay MA, O'Connor MI, Parfrey LW. Host-Specificity and Core Taxa of Seagrass Leaf Microbiome Identified Across Tissue Age and Geographical Regions. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.605304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The seagrass Zostera marina is a widespread foundational species in temperate coastal ecosystems that supports diverse communities of epiphytes and grazers. Bacteria link the production of seagrass to higher trophic levels and are thought to influence seagrass biology and health. Yet, we lack a clear understanding of the factors that structure the seagrass microbiome, or whether there is a consistent microbial community associated with seagrass that underpins functional roles. We sampled surface microbiome (epibiota) from new and old growth seagrass leaves and the surrounding seawater in eight meadows among four regions along the Central Coast of British Columbia, Canada to assess microbiome variability across space and as leaves age. We found that the seagrass leaf microbiome differs strongly from seawater. Microbial communities in new and old growth leaves are different from each other and from artificial seagrass leaves we deployed in one meadow. The microbiome on new leaves is less diverse and there is a small suite of core OTUs (operational taxonomic units) consistently present across regions. The overall microbial community for new leaves is more dispersed but with little regional differentiation, while the epiphytes on old leaves are regionally distinct. Many core OTUs on old leaves are commonly associated with marine biofilms. Together these observations suggest a stronger role for host filtering in new compared to old leaves, and a stronger influence of the environment and environmental colonization in old leaves. We found 11 core microbial taxa consistently present on old and new leaves and at very low relative abundance on artificial leaves and in the water column. These 11 taxa appear to be strongly associated with Z. marina. These core taxa may perform key functions important for the host such as detoxifying seagrass waste products, enhancing plant growth, and controlling epiphyte cover.
Collapse
|
9
|
Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol Lett 2020; 366:5382495. [PMID: 30883643 DOI: 10.1093/femsle/fnz057] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/16/2019] [Indexed: 12/27/2022] Open
Abstract
This review shows that the presence of seagrass microbial community is critical for the development of seagrasses; from seed germination, through to phytohormone production and enhanced nutrient availability, and defence against pathogens and saprophytes. The tight seagrass-bacterial relationship highlighted in this review supports the existence of a seagrass holobiont and adds to the growing evidence for the importance of marine eukaryotic microorganisms in sustaining vital ecosystems. Incorporating a micro-scale view on seagrass ecosystems substantially expands our understanding of ecosystem functioning and may have significant implications for future seagrass management and mitigation against human disturbance.
Collapse
Affiliation(s)
- Flavia Tarquinio
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia.,Commonwealth Scientific and Industrial Research Organization, Crawley, 6009, Western Australia, Australia
| | - Glenn A Hyndes
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Bonnie Laverock
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, 2007, Australia.,School of Science, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Annette Koenders
- Centre for Ecosystem Management, Edith Cowan University, Joondalup, 6027, Western Australia, Australia
| | - Christin Säwström
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
10
|
Kristyanto S, Chaudhary DK, Lee SS, Kim J. Characterization of Marinomonas algicida sp. nov., a novel algicidal marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2017; 67:4777-4784. [DOI: 10.1099/ijsem.0.002374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sylvia Kristyanto
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sang-Seob Lee
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
11
|
Ojha AK, Verma A, Pal Y, Bhatt D, Mayilraj S, Krishnamurthi S. Marinomonas epiphytica sp. nov., isolated from a marine intertidal macroalga. Int J Syst Evol Microbiol 2017; 67:2746-2751. [PMID: 28771118 DOI: 10.1099/ijsem.0.002014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, aerobic marine bacterial strain, SAB-3T, was isolated from brown macroalgae (Dictyota sp.) growing in the Arabian sea, Goa, India. The strain grew optimally at 30 °C, with 2.0-4.0 % (w/v) NaCl and at pH 7.0 on marine agar medium. Strain SAB-3T was unable to hydrolyse aesculin and did not grow in the presence of rifamycin but showed resistance to antibiotics such as cefadroxil and co-trimoxazole. The major fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and C16 : 0, and Q-8 was the major ubiquinone. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 41.0 mol%. 16S rRNA gene sequencing and phylogenetic analysis indicated that the strain was a member of the genus Marinomonas with Marinomonas aquiplantarum IVIA-Po-159T (97.6 % similarity), Marinomonas posidonica IVIA-Po-181T (97.5 %) and Marinomonas dokdonensis DSM 17202T (97.4 %) as the closest relatives. Whole genome relatedness determined through DNA-DNA hybridization revealed values of 40-50 % (below the 70 % threshold recommended for species delineation) with the above three species, thus confirming it as representing a distinct and novel species of the genus Marinomonas for which the name Marinomonas epiphytica sp. nov. is proposed. The type strain is SAB-3T (=JCM 31365T=KCTC 52293T=MTCC 12569T).
Collapse
Affiliation(s)
- Anup Kumar Ojha
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Ashish Verma
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Yash Pal
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Deepak Bhatt
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| |
Collapse
|
12
|
Lucena T, Mesa J, Rodriguez-Llorente ID, Pajuelo E, Caviedes MÁ, Ruvira MA, Pujalte MJ. Marinomonas spartinae sp. nov., a novel species with plant-beneficial properties. Int J Syst Evol Microbiol 2016; 66:1686-1691. [PMID: 26821806 DOI: 10.1099/ijsem.0.000929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains of Gram-stain-negative, chemo-organotrophic, aerobic and halophilic gammaproteobacteria, isolated from within the stem and roots of Spartina maritima in salt marshes from the south Atlantic Spanish coast, were found to represent a novel species in the genus Marinomonas through phylogenetic analysis of their 16S rRNA genes and phenotypic characterization. 16S rRNA gene sequences of the two strains shared < 96.2% similarity with other Marinomonas species, with Marimonas alcarazii being the most similar in sequence. They required sodium ions for growth, were able to thrive at low (4 °C) temperatures and at salinities of 12-15%, were unable to hydrolyse any tested macromolecule except casein, and grew with different monosaccharides, disaccharides, sugar alcohols, organic acids and amino acids. The novel species differed from other Marinomonas species in the use of several sole carbon sources, its temperature and salinity ranges for growth, ion requirements and cellular fatty acid composition, which included C16:0, C16:1 and C18:1 as major components and C10:0 3-OH, C12:0 and C12:0 3-OH as minor components. The name Marinomonas spartinae sp. nov. is proposed, with SMJ19T (=CECT 8886T=KCTC 42958T) as the type strain.
Collapse
Affiliation(s)
- Teresa Lucena
- Departamento de Microbiología y Ecología & Colección Española de Cultivos Tipo (CECT), Universitat de València, Spain
| | - Jennifer Mesa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | | | - Eloisa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Miguel Ángel Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - María A Ruvira
- Departamento de Microbiología y Ecología & Colección Española de Cultivos Tipo (CECT), Universitat de València, Spain
| | - María J Pujalte
- Departamento de Microbiología y Ecología & Colección Española de Cultivos Tipo (CECT), Universitat de València, Spain
| |
Collapse
|
13
|
Martin M, Barbeyron T, Martin R, Portetelle D, Michel G, Vandenbol M. The Cultivable Surface Microbiota of the Brown Alga Ascophyllum nodosum is Enriched in Macroalgal-Polysaccharide-Degrading Bacteria. Front Microbiol 2015; 6:1487. [PMID: 26734000 PMCID: PMC4690005 DOI: 10.3389/fmicb.2015.01487] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022] Open
Abstract
Bacteria degrading algal polysaccharides are key players in the global carbon cycle and in algal biomass recycling. Yet the water column, which has been studied largely by metagenomic approaches, is poor in such bacteria and their algal-polysaccharide-degrading enzymes. Even more surprisingly, the few published studies on seaweed-associated microbiomes have revealed low abundances of such bacteria and their specific enzymes. However, as macroalgal cell-wall polysaccharides do not accumulate in nature, these bacteria and their unique polysaccharidases must not be that uncommon. We, therefore, looked at the polysaccharide-degrading activity of the cultivable bacterial subpopulation associated with Ascophyllum nodosum. From A. nodosum triplicates, 324 bacteria were isolated and taxonomically identified. Out of these isolates, 78 (~25%) were found to act on at least one tested algal polysaccharide (agar, ι- or κ-carrageenan, or alginate). The isolates “active” on algal-polysaccharides belong to 11 genera: Cellulophaga, Maribacter, Algibacter, and Zobellia in the class Flavobacteriia (41) and Pseudoalteromonas, Vibrio, Cobetia, Shewanella, Colwellia, Marinomonas, and Paraglaceciola in the class Gammaproteobacteria (37). A major part represents likely novel species. Different proportions of bacterial phyla and classes were observed between the isolated cultivable subpopulation and the total microbial community previously identified on other brown algae. Here, Bacteroidetes and Gammaproteobacteria were found to be the most abundant and some phyla (as Planctomycetes and Cyanobacteria) frequently encountered on brown algae weren't identified. At a lower taxonomic level, twelve genera, well-known to be associated with algae (with the exception for Colwellia), were consistently found on all three A. nosodum samples. Even more interesting, 9 of the 11 above mentioned genera containing polysaccharolytic isolates were predominant in this common core. The cultivable fraction of the bacterial community associated with A. nodosum is, thus, significantly enriched in macroalgal-polysaccharide-degrading bacteria and these bacteria seem important for the seaweed holobiont even though they are under-represented in alga-associated microbiome studies.
Collapse
Affiliation(s)
- Marjolaine Martin
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
| | - Tristan Barbeyron
- Sorbonne Université, UPMC, Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models Roscoff, France
| | - Renee Martin
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
| | - Daniel Portetelle
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
| | - Gurvan Michel
- Sorbonne Université, UPMC, Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models Roscoff, France
| | - Micheline Vandenbol
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
| |
Collapse
|
14
|
Zhang DC, Margesin R. Marinomonas mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2015; 65:1537-1541. [DOI: 10.1099/ijs.0.000136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, Na+-requiring bacterial strain, designated B20-1T, was isolated from soil of the root system of mangrove forest. Cells were curved rods and motile by means of a polar flagellum. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B20-1T belonged to the genus
Marinomonas
, sharing highest sequence similarities with
Marinomonas rhizomae
IVIA-Po-145T (97.6 %),
Marinomonas dokdonensis
DSW10-10T (97.0 %) and
Marinomonas foliarum
IVIA-Po-155T (96.9 %). The predominant cellular fatty acids of strain B20-1T were C10 : 0 3-OH, C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C16 : 0. Phosphatidylethanolamine and phosphatidylglycerol were identified as the predominant phospholipids. The predominant ubiquinone was Q-8. The genomic DNA G+C content of strain B20-1T was 46.6 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness, a novel species, Marinomonas mangrovi sp. nov., is proposed with B20-1T ( = DSM 28136T = LMG 28077T) as the type strain.
Collapse
Affiliation(s)
- De-Chao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, PR China
| | - Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
15
|
Kumari P, Poddar A, Das SK. Marinomonas fungiae sp. nov., isolated from the coral Fungia echinata from the Andaman Sea. Int J Syst Evol Microbiol 2014; 64:487-494. [DOI: 10.1099/ijs.0.054809-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel aerobic marine bacterium, strain AN44T, was isolated from the coral Fungia echinata sampled from the Andaman Sea, India. Cells were Gram-negative, motile and rod-shaped. Oxidase and catalase tests were positive. Heterotrophic growth was observed at pH 5.5–10 and at 16–42 °C, with optimum growth at pH 7–8 and 28 °C. Strain AN44T grew in the presence of 0.5–11 % (w/v) NaCl; the optimal NaCl concentration for growth was 3–5 %. The DNA G+C content was 47.8 mol%. Predominant cellular fatty acids of strain AN44T were C18 : 1ω7c, C16 : 1ω7c/C16 : 1ω6c, C16 : 0, C10 : 0 3-OH, C12 : 0, C10 : 0, C14 : 0 and C18 : 0. The sole isoprenoid ubiquinone was Q-8. The polar lipids were an unidentified phospholipid, an unidentified aminophospholipid and two unidentified glycolipids. 16S rRNA gene sequence comparisons revealed that strain AN44T clustered within the radiation of the genus
Marinomonas
and showed similarity of 97.9 % with
Marinomonas ostreistagni
UST010306-043T, 97.8 % with
Marinomonas aquimarina
11SM4T, 97.1 % with
Marinomonas brasilensis
R-40503T and 97.0 % with
Marinomonas communis
8T. However, DNA–DNA relatedness between strain AN44T and closely related type strains was well below 70 %. On the basis of the data from the present polyphasic taxonomic study, strain AN44T is considered to represent a novel species of the genus
Marinomonas
, for which the name
Marinomonas
fungiae sp. nov. is proposed. The type strain is AN44T ( = JCM 18476T = LMG 27065T).
Collapse
Affiliation(s)
- Prabla Kumari
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar – 751 023, India
| | - Abhijit Poddar
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar – 751 023, India
| | - Subrata K. Das
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar – 751 023, India
| |
Collapse
|
16
|
Abstract
Members of the genus Marinomonas in the Gammaproteobacteria are broadly distributed in marine environments where they could be infected by bacteriophages. Here we report the genome sequence of bacteriophage P12026 that can lytically infect bacterial strain IMCC12026, a member of the genus Marinomonas. To our knowledge, this is the first genome sequence of a lytic bacteriophage infecting the genus Marinomonas.
Collapse
|
17
|
Lucas-Elío P, Goodwin L, Woyke T, Pitluck S, Nolan M, Kyrpides NC, Detter JC, Copeland A, Lu M, Bruce D, Detter C, Tapia R, Han S, Land ML, Ivanova N, Mikhailova N, Johnston AWB, Sanchez-Amat A. Complete genome sequence of Marinomonas posidonica type strain (IVIA-Po-181(T)). Stand Genomic Sci 2012; 7:31-43. [PMID: 23458837 PMCID: PMC3577112 DOI: 10.4056/sigs.2976373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Marinomonas posidonica IVIA-Po-181(T) Lucas-Elío et al. 2011 belongs to the family Oceanospirillaceae within the phylum Proteobacteria. Different species of the genus Marinomonas can be readily isolated from the seagrass Posidonia oceanica. M. posidonica is among the most abundant species of the genus detected in the cultured microbiota of P. oceanica, suggesting a close relationship with this plant, which has a great ecological value in the Mediterranean Sea, covering an estimated surface of 38,000 Km(2). Here we describe the genomic features of M. posidonica. The 3,899,940 bp long genome harbors 3,544 protein-coding genes and 107 RNA genes and is a part of the GenomicEncyclopedia ofBacteriaandArchaea project.
Collapse
Affiliation(s)
- Patricia Lucas-Elío
- Department of Genetics and Microbiology, Regional Campus of International Excellence “Campus Mare Nostrum”,University of Murcia, Murcia, Spain
| | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Matt Nolan
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Megan Lu
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - David Bruce
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Chris Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Roxanne Tapia
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Shunsheng Han
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Miriam L. Land
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | - Andrew W. B. Johnston
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich,UK
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, Regional Campus of International Excellence “Campus Mare Nostrum”,University of Murcia, Murcia, Spain
| |
Collapse
|
18
|
Ni B, Zhang Y, Chen DW, Wang BJ, Liu SJ. Assimilation of aromatic compounds by Comamonas testosteroni: characterization and spreadability of protocatechuate 4,5-cleavage pathway in bacteria. Appl Microbiol Biotechnol 2012; 97:6031-41. [DOI: 10.1007/s00253-012-4402-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/25/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
19
|
Garcias-Bonet N, Arrieta JM, de Santana CN, Duarte CM, Marbà N. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Front Microbiol 2012; 3:342. [PMID: 23049528 PMCID: PMC3448135 DOI: 10.3389/fmicb.2012.00342] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/04/2012] [Indexed: 11/24/2022] Open
Abstract
Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes, and leaves) by Denaturing Gradient Gel Electrophoresis (DGGE). A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units) were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ, and δ subclasses) and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types.
Collapse
|
20
|
Jung YT, Oh TK, Yoon JH. Marinomonas hwangdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:2062-2067. [DOI: 10.1099/ijs.0.036582-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, motile, rod-shaped bacterial strain, designated HDW-15T, was isolated from seawater of the Yellow Sea, Korea, and subjected to a polyphasic taxonomic study. Strain HDW-15T grew optimally at pH 7.0–8.0, at 25 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain HDW-15T fell within the clade comprising
Marinomonas
species, joining the type strain of
Marinomonas arctica
, with which it exhibited highest 16S rRNA gene sequence similarity (97.7 %). The 16S rRNA gene sequence similarity values between strain HDW-15T and the type strains of other
Marinomonas
species were in the range 93.7–97.2 %. Mean DNA–DNA relatedness values between strain HDW-15T and the type strains of
M. arctica
,
Marinomonas polaris
and
Marinomonas pontica
were 5.0–9.9 %. The DNA G+C content of the isolate was 48.7 mol%. Strain HDW-15T contained Q-8 as the predominant ubiquinone and C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C16 : 0 as the major fatty acids. The major polar lipids found in strain HDW-15T were phosphatidylglycerol and phosphatidylethanolamine. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, showed that strain HDW-15T can be differentiated from other
Marinomonas
species. On the basis of the data presented, strain HDW-15T is considered to represent a novel species of the genus
Marinomonas
, for which the name Marinomonas hwangdonensis sp. nov. is proposed. The type strain is HDW-15T ( = KCTC 23661T = CCUG 61321T).
Collapse
Affiliation(s)
- Yong-Taek Jung
- University of Science and Technology (UST), 217 Gajungro, Yuseong, Daejeon 305-350, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), PO Box 115, Yuseong, Daejeon, Republic of Korea
| | - Tae-Kwang Oh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), PO Box 115, Yuseong, Daejeon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
21
|
Lucas-Elío P, Goodwin L, Woyke T, Pitluck S, Nolan M, Kyrpides NC, Detter JC, Copeland A, Teshima H, Bruce D, Detter C, Tapia R, Han S, Land ML, Ivanova N, Mikhailova N, Johnston AWB, Sanchez-Amat A. Complete genome sequence of the melanogenic marine bacterium Marinomonas mediterranea type strain (MMB-1(T)). Stand Genomic Sci 2012; 6:63-73. [PMID: 22675599 PMCID: PMC3368407 DOI: 10.4056/sigs.2545743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Marinomonas mediterranea MMB-1(T) Solano & Sanchez-Amat 1999 belongs to the family Oceanospirillaceae within the phylum Proteobacteria. This species is of interest because it is the only species described in the genus Marinomonas to date that can synthesize melanin pigments, which is mediated by the activity of a tyrosinase. M. mediterranea expresses other oxidases of biotechnological interest, such as a multicopper oxidase with laccase activity and a novel L-lysine-epsilon-oxidase. The 4,684,316 bp long genome harbors 4,228 protein-coding genes and 98 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
Affiliation(s)
- Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Matt Nolan
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Hazuki Teshima
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - David Bruce
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Chris Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Roxanne Tapia
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Shunsheng Han
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Miriam L. Land
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | - Andrew W. B. Johnston
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|