1
|
Interaction between Microbes, Minerals, and Fluids in Deep-Sea Hydrothermal Systems. MINERALS 2021. [DOI: 10.3390/min11121324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery of deep-sea hydrothermal vents in the late 1970s widened the limits of life and habitability. The mixing of oxidizing seawater and reduction of hydrothermal fluids create a chemical disequilibrium that is exploited by chemosynthetic bacteria and archaea to harness energy by converting inorganic carbon into organic biomass. Due to the rich variety of chemical sources and steep physico-chemical gradients, a large array of microorganisms thrive in these extreme environments, which includes but are not restricted to chemolithoautotrophs, heterotrophs, and mixotrophs. Past research has revealed the underlying relationship of these microbial communities with the subsurface geology and hydrothermal geochemistry. Endolithic microbial communities at the ocean floor catalyze a number of redox reactions through various metabolic activities. Hydrothermal chimneys harbor Fe-reducers, sulfur-reducers, sulfide and H2-oxidizers, methanogens, and heterotrophs that continuously interact with the basaltic, carbonate, or ultramafic basement rocks for energy-yielding reactions. Here, we briefly review the global deep-sea hydrothermal systems, microbial diversity, and microbe–mineral interactions therein to obtain in-depth knowledge of the biogeochemistry in such a unique and geologically critical subseafloor environment.
Collapse
|
2
|
Genus-Specific Carbon Fixation Activity Measurements Reveal Distinct Responses to Oxygen Among Hydrothermal Vent Campylobacteria. Appl Environ Microbiol 2021; 88:e0208321. [PMID: 34788061 DOI: 10.1128/aem.02083-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular surveys of low temperature deep-sea hydrothermal vent fluids have shown that Campylobacteria (prev. Epsilonproteobacteria) often dominate the microbial community and that three genera - Arcobacter, Sulfurimonas and Sulfurovum - frequently coexist. In this study, we used replicated radiocarbon incubations of deep-sea hydrothermal fluids to investigate activity of each genus under three experimental conditions. To quantify genus-specific radiocarbon incorporation, we used newly designed oligonucleotide probes for Arcobacter, Sulfurimonas, and Sulfurovum to quantify their activity using catalyzed-reporter deposition fluorescence in-situ hybridization (CARD-FISH) combined with fluorescence-activated cell sorting. All three genera actively fixed CO2 in short-term (∼ 20 h) incubations, but responded differently to the additions of nitrate and oxygen. Oxygen additions had the largest effect on community composition, and caused a pronounced shift in community composition at the amplicon sequence variant (ASV) level after only 20 h of incubation. The effect of oxygen on carbon fixation rates appeared to depend on the initial starting community. The presented results support the hypothesis that these chemoautotrophic genera possess functionally redundant core metabolic capabilities, but also reveal finer-scale differences in growth likely reflecting adaptation of physiologically-distinct phylotypes to varying oxygen concentrations in situ. Overall, our study provides new insights into how oxygen controls community composition and total chemoautotrophic activity, and underscores how quickly deep-sea vent microbial communities respond to disturbances. Importance: Sulfidic environments worldwide are often dominated by sulfur-oxidizing, carbon-fixing Campylobacteria. Environmental factors associated with this group's dominance are now understood, but far less is known about the ecology and physiology of members of subgroups of chemoautotrophic Campylobacteria. In this study, we used a novel method to differentiate the genus-specific chemoautotrophic activity of three subtypes of Campylobacteria. In combination with evidence from microscopic counts, chemical consumption/production during incubations, and DNA-based measurements, our data show that oxygen concentration affects both community composition and chemoautotrophic function in situ. These results help us better understand factors controlling microbial diversity at deep-sea hydrothermal vents, and provide first-order insights into the ecophysiological differences between these distinct microbial taxa.
Collapse
|
3
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
4
|
Seafloor Incubation Experiment with Deep-Sea Hydrothermal Vent Fluid Reveals Effect of Pressure and Lag Time on Autotrophic Microbial Communities. Appl Environ Microbiol 2021; 87:AEM.00078-21. [PMID: 33608294 PMCID: PMC8091007 DOI: 10.1128/aem.00078-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Diverse microbial communities drive biogeochemical cycles in Earth’s ocean, yet studying these organisms and processes is often limited by technological capabilities, especially in the deep ocean. In this study, we used a novel marine microbial incubator instrument capable of in situ experimentation to investigate microbial primary producers at deep-sea hydrothermal vents. Depressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed a remotely operated vehicle (ROV)-powered incubator instrument to carry out and compare results from in situ and shipboard RNA stable isotope probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labeled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes, suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations, suggesting that depressurization induced thermal stress in the metabolically active microbes in these incubations. Together, the results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under nearly native conditions in the ocean. IMPORTANCE Diverse microbial communities drive biogeochemical cycles in Earth’s ocean, yet studying these organisms and processes is often limited by technological capabilities, especially in the deep ocean. In this study, we used a novel marine microbial incubator instrument capable of in situ experimentation to investigate microbial primary producers at deep-sea hydrothermal vents. We carried out identical stable isotope probing experiments coupled to RNA sequencing both on the seafloor and on the ship to examine thermophilic, microbial autotrophs in venting fluids from an active submarine volcano. Our results indicate that microbial communities were significantly impacted by the effects of depressurization and sample processing delays, with shipboard microbial communities being more stressed than seafloor incubations. Differences in metabolism were also apparent and are likely linked to the chemistry of the fluid at the beginning of the experiment. Microbial experimentation in the natural habitat provides new insights into understanding microbial activities in the ocean.
Collapse
|
5
|
Wang S, Jiang L, Hu Q, Liu X, Yang S, Shao Z. Elemental sulfur reduction by a deep-sea hydrothermal vent Campylobacterium Sulfurimonas sp. NW10. Environ Microbiol 2020; 23:965-979. [PMID: 32974951 DOI: 10.1111/1462-2920.15247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023]
Abstract
Sulfurimonas species (class Campylobacteria, phylum Campylobacterota) were globally distributed and especially predominant in deep-sea hydrothermal environments. They were previously identified as chemolithoautotrophic sulfur-oxidizing bacteria (SOB), whereas little is known about their potential in sulfur reduction. In this report, we found that the elemental sulfur reduction is quite common in different species of genus Sulfurimonas. To gain insights into the sulfur reduction mechanism, growth tests, morphology observation, as well as genomic and transcriptomic analyses were performed on a deep-sea hydrothermal vent bacterium Sulfurimonas sp. NW10. Scanning electron micrographs and dialysis tubing tests confirmed that elemental sulfur reduction occurred without direct contact of cells with sulfur particles while direct access strongly promoted bacterial growth. Furthermore, we demonstrated that most species of Sulfurimonas probably employ both periplasmic and cytoplasmic polysulfide reductases, encoded by genes psrA1 B1 CDE and psrA2 B2 , respectively, to accomplish cyclooctasulfur reduction. This is the first report showing two different sulfur reduction pathways coupled to different energy conservations could coexist in one sulfur-reducing microorganism, and demonstrates that most bacteria of Sulfurimonas could employ both periplasmic and cytoplasmic polysulfide reductases to perform cyclooctasulfur reduction. The capability of sulfur reduction coupling with hydrogen oxidation may partially explain the prevalenceof Sulfurimonas in deep-sea hydrothermal vent environments.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.,Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Qitao Hu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xuewen Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Suping Yang
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
6
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
7
|
Kruse S, Goris T, Westermann M, Adrian L, Diekert G. Hydrogen production by Sulfurospirillum species enables syntrophic interactions of Epsilonproteobacteria. Nat Commun 2018; 9:4872. [PMID: 30451902 PMCID: PMC6242987 DOI: 10.1038/s41467-018-07342-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 10/24/2018] [Indexed: 02/04/2023] Open
Abstract
Hydrogen-producing bacteria are of environmental importance, since hydrogen is a major electron donor for prokaryotes in anoxic ecosystems. Epsilonproteobacteria are currently considered to be hydrogen-oxidizing bacteria exclusively. Here, we report hydrogen production upon pyruvate fermentation for free-living Epsilonproteobacteria, Sulfurospirillum spp. The amount of hydrogen produced is different in two subgroups of Sulfurospirillum spp., represented by S. cavolei and S. multivorans. The former produces more hydrogen and excretes acetate as sole organic acid, while the latter additionally produces lactate and succinate. Hydrogen production can be assigned by differential proteomics to a hydrogenase (similar to hydrogenase 4 from E. coli) that is more abundant during fermentation. A syntrophic interaction is established between Sulfurospirillum multivorans and Methanococcus voltae when cocultured with lactate as sole substrate, as the former cannot grow fermentatively on lactate alone and the latter relies on hydrogen for growth. This might hint to a yet unrecognized role of Epsilonproteobacteria as hydrogen producers in anoxic microbial communities. Epsilonproteobacteria, such as Sulfurospirillum, can use molecular hydrogen as an electron donor for respiration. Here, the authors show that Sulfurospirillum can, in addition, release hydrogen during fermentation, allowing metabolic interactions with other hydrogen-consuming microorganisms.
Collapse
Affiliation(s)
- Stefan Kruse
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743, Jena, Germany
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743, Jena, Germany.
| | - Martin Westermann
- Center for Electron Microscopy of the University Hospital Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany.,Fachgebiet Geobiotechnologie, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743, Jena, Germany
| |
Collapse
|
8
|
Hydrothermal chimneys host habitat-specific microbial communities: analogues for studying the possible impact of mining seafloor massive sulfide deposits. Sci Rep 2018; 8:10386. [PMID: 29991752 PMCID: PMC6039533 DOI: 10.1038/s41598-018-28613-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/22/2018] [Indexed: 01/17/2023] Open
Abstract
To assess the risk that mining of seafloor massive sulfides (SMS) from extinct hydrothermal vent environments has for changing the ecosystem irreversibly, we sampled SMS analogous habitats from the Kairei and the Pelagia vent fields along the Indian Ridge. In total 19.8 million 16S rRNA tags from 14 different sites were analyzed and the microbial communities were compared with each other and with publicly available data sets from other marine environments. The chimneys appear to provide habitats for microorganisms that are not found or only detectable in very low numbers in other marine habitats. The chimneys also host rare organisms and may function as a vital part of the ocean’s seed bank. Many of the reads from active and inactive chimney samples were clustered into OTUs, with low or no resemblance to known species. Since we are unaware of the chemical reactions catalyzed by these unknown organisms, the impact of this diversity loss and bio-geo-coupling is hard to predict. Given that chimney structures can be considered SMS analogues, removal of sulfide deposits from the seafloor in the Kairei and Pelagia fields will most likely alter microbial compositions and affect element cycling in the benthic regions and probably beyond.
Collapse
|
9
|
Nagata R, Takaki Y, Tame A, Nunoura T, Muto H, Mino S, Sawayama S, Takai K, Nakagawa S. Lebetimonas natsushimae sp. nov., a novel strictly anaerobic, moderately thermophilic chemoautotroph isolated from a deep-sea hydrothermal vent polychaete nest in the Mid-Okinawa Trough. Syst Appl Microbiol 2017; 40:352-356. [PMID: 28690052 DOI: 10.1016/j.syapm.2017.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
A moderately thermophilic, strictly anaerobic, chemoautotrophic bacterium, designated strain HS1857T, was isolated from a deep-sea hydrothermal vent at the Noho site in the Mid-Okinawa Trough. Strain HS1857T grew between 35 and 63°C (optimum 55°C), in the presence of 10-55gl-1 NaCl (optimum 25gl-1), and pH 5.5-7.1 (optimum 6.4). Growth occurred with molecular hydrogen as the electron donor and elemental sulfur, nitrate, or selenate as the electron acceptors. Formate could serve as an alternative electron donor with nitrate as an electron acceptor. During growth with nitrate as the electron acceptor, strain HS1857T produced ammonium and formed a biofilm. CO2 was utilized as the sole carbon source. The G+C content of the genomic DNA was 33.2mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain HS1857T is a member of the order Nautiliales, showing a sequence similarity of 95.0% with Lebetimonas acidiphila Pd55T. The fatty acid composition was similar to that of L. acidiphila, which was dominated by C18:0 (47.0%) and C18:1 (23.7%). Based on the genomic, chemotaxonomic, phenotypic characteristics, the name Lebetimonas natsushimae sp. nov., is proposed. The type strain is HS1857T (=NBRC 112478T=DSM 104102T).
Collapse
Affiliation(s)
- Ryousuke Nagata
- Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Akihiro Tame
- Department of Technical Services, Marine Works Japan, Ltd., Yokosuka, Japan
| | - Takuro Nunoura
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hisashi Muto
- Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| |
Collapse
|
10
|
Keller AH, Schleinitz KM, Starke R, Bertilsson S, Vogt C, Kleinsteuber S. Metagenome-Based Metabolic Reconstruction Reveals the Ecophysiological Function of Epsilonproteobacteria in a Hydrocarbon-Contaminated Sulfidic Aquifer. Front Microbiol 2015; 6:1396. [PMID: 26696999 PMCID: PMC4674564 DOI: 10.3389/fmicb.2015.01396] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
The population genome of an uncultured bacterium assigned to the Campylobacterales (Epsilonproteobacteria) was reconstructed from a metagenome dataset obtained by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from a sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwater of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacterial phylotype has previously been detected in toluene- or benzene-mineralizing, sulfate-reducing consortia enriched from the same site. Previous stable isotope probing (SIP) experiments with 13C6-labeled benzene suggested that this phylotype assimilates benzene-derived carbon in a syntrophic benzene-mineralizing consortium that uses sulfate as terminal electron acceptor. However, the type of energy metabolism and the ecophysiological function of this epsilonproteobacterium within aromatic hydrocarbon-degrading consortia and in the sulfidic aquifer are poorly understood. Annotation of the epsilonproteobacterial population genome suggests that the bacterium plays a key role in sulfur cycling as indicated by the presence of an sqr gene encoding a sulfide quinone oxidoreductase and psr genes encoding a polysulfide reductase. It may gain energy by using sulfide or hydrogen/formate as electron donors. Polysulfide, fumarate, as well as oxygen are potential electron acceptors. Auto- or mixotrophic carbon metabolism seems plausible since a complete reductive citric acid cycle was detected. Thus the bacterium can thrive in pristine groundwater as well as in hydrocarbon-contaminated aquifers. In hydrocarbon-contaminated sulfidic habitats, the epsilonproteobacterium may generate energy by coupling the oxidation of hydrogen or formate and highly abundant sulfide with the reduction of fumarate and/or polysulfide, accompanied by efficient assimilation of acetate produced during fermentation or incomplete oxidation of hydrocarbons. The highly efficient assimilation of acetate was recently demonstrated by a pulsed 13C2-acetate protein SIP experiment. The capability of nitrogen fixation as indicated by the presence of nif genes may provide a selective advantage in nitrogen-depleted habitats. Based on this metabolic reconstruction, we propose acetate capture and sulfur cycling as key functions of Epsilonproteobacteria within the intermediary ecosystem metabolism of hydrocarbon-rich sulfidic sediments.
Collapse
Affiliation(s)
- Andreas H Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany ; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Kathleen M Schleinitz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Robert Starke
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University Uppsala, Sweden
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| |
Collapse
|
11
|
Grosche A, Sekaran H, Pérez-Rodríguez I, Starovoytov V, Vetriani C. Cetia pacifica gen. nov., sp. nov., a chemolithoautotrophic, thermophilic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2015; 65:1144-1150. [DOI: 10.1099/ijs.0.000070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thermophilic, anaerobic, chemolithoautotrophic bacterium, strain TB-6T, was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at 9° N. The cells were Gram-staining-negative and rod-shaped with one or more polar flagella. Cell size was approximately 1–1.5 µm in length and 0.5 µm in width. Strain TB-6T grew between 45 and 70 °C (optimum 55–60 °C), 0 and 35 g NaCl l−1 (optimum 20–30 g l−1) and pH 4.5 and 7.5 (optimum pH 5.5–6.0). Generation time under optimal conditions was 2 h. Growth of strain TB-6T occurred with H2 as the energy source, CO2 as the carbon source and nitrate or sulfur as electron acceptors, with formation of ammonium or hydrogen sulfide, respectively. Acetate, (+)-d-glucose, Casamino acids, sucrose and yeast extract were not used as carbon and energy sources. Inhibition of growth occurred in the presence of lactate, peptone and tryptone under a H2/CO2 (80 : 20; 200 kPa) gas phase. Thiosulfate, sulfite, arsenate, selenate and oxygen were not used as electron acceptors. The G+C content of the genomic DNA was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene of strain TB-6T showed that this organism branched separately from the three most closely related genera,
Caminibacter
,
Nautilia
and
Lebetimonas
, within the family
Nautiliaceae
. Strain TB-6T contained several unique fatty acids in comparison with other members of the family
Nautiliaceae
. Based on experimental evidence, it is proposed that the organism represents a novel species and genus within the family
Nautiliaceae
, Cetia pacifica, gen. nov., sp. nov. The type strain is TB-6T ( = DSM 27783T = JCM 19563T).
Collapse
Affiliation(s)
- Ashley Grosche
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hema Sekaran
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ileana Pérez-Rodríguez
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Valentin Starovoytov
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Costantino Vetriani
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
12
|
Joshi KB. Microbes: mini iron factories. Indian J Microbiol 2014; 54:483-5. [PMID: 25320452 DOI: 10.1007/s12088-014-0497-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 11/26/2022] Open
Abstract
Microbes have flourished in extreme habitats since beginning of the Earth and have played an important role in geological processes like weathering, mineralization, diagenesis, mineral formation and destruction. Biotic mineralization is one of the most fascinating examples of how microbes have been influencing geological processes. Iron oxidizing and reducing bacteria are capable of precipitating wide varieties of iron oxides (magnetite), carbonates (siderite) and sulphides (greigite) via controlled or induced mineralization processes. Microbes have also been considered to play an important role in the history of evolution of sedimentary rocks on Earth from the formation of banded iron formations during the Archean to modern biotic bog iron and ochre deposits. Here, we discuss the role that microbes have been playing in precipitation of iron and the role and importance of interdisciplinary studies in the field of geology and biology in solving some of the major geological mysteries.
Collapse
|
13
|
Winkel M, Pjevac P, Kleiner M, Littmann S, Meyerdierks A, Amann R, Mußmann M. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems. FEMS Microbiol Ecol 2014; 90:731-46. [DOI: 10.1111/1574-6941.12429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Matthias Winkel
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Petra Pjevac
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Manuel Kleiner
- Department of Symbiosis; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Sten Littmann
- Department of Biogeochemistry; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Anke Meyerdierks
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Rudolf Amann
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Marc Mußmann
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| |
Collapse
|
14
|
Vetriani C, Voordeckers JW, Crespo-Medina M, O'Brien CE, Giovannelli D, Lutz RA. Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME JOURNAL 2014; 8:1510-21. [PMID: 24430487 DOI: 10.1038/ismej.2013.246] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022]
Abstract
Despite the frequent isolation of nitrate-respiring Epsilonproteobacteria from deep-sea hydrothermal vents, the genes coding for the nitrate reduction pathway in these organisms have not been investigated in depth. In this study we have shown that the gene cluster coding for the periplasmic nitrate reductase complex (nap) is highly conserved in chemolithoautotrophic, nitrate-reducing Epsilonproteobacteria from deep-sea hydrothermal vents. Furthermore, we have shown that the napA gene is expressed in pure cultures of vent Epsilonproteobacteria and it is highly conserved in microbial communities collected from deep-sea vents characterized by different temperature and redox regimes. The diversity of nitrate-reducing Epsilonproteobacteria was found to be higher in moderate temperature, diffuse flow vents than in high temperature black smokers or in low temperatures, substrate-associated communities. As NapA has a high affinity for nitrate compared with the membrane-bound enzyme, its occurrence in vent Epsilonproteobacteria may represent an adaptation of these organisms to the low nitrate concentrations typically found in vent fluids. Taken together, our findings indicate that nitrate reduction is widespread in vent Epsilonproteobacteria and provide insight on alternative energy metabolism in vent microorganisms. The occurrence of the nap cluster in vent, commensal and pathogenic Epsilonproteobacteria suggests that the ability of these bacteria to respire nitrate is important in habitats as different as the deep-sea vents and the human body.
Collapse
Affiliation(s)
- Costantino Vetriani
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - James W Voordeckers
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Melitza Crespo-Medina
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Charles E O'Brien
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Donato Giovannelli
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA [3] Institute of Marine Science - ISMAR, National Research Council of Italy, CNR, Ancona, Italy
| | - Richard A Lutz
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Meyer JL, Huber JA. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. ISME JOURNAL 2013; 8:867-80. [PMID: 24257443 DOI: 10.1038/ismej.2013.206] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/02/2013] [Accepted: 10/13/2013] [Indexed: 11/09/2022]
Abstract
Chemolithoautotrophic Epsilonproteobacteria are ubiquitous in sulfidic, oxygen-poor habitats, including hydrothermal vents, marine oxygen minimum zones, marine sediments and sulfidic caves and have a significant role in cycling carbon, hydrogen, nitrogen and sulfur in these environments. The isolation of diverse strains of Epsilonproteobacteria and the sequencing of their genomes have revealed that this group has the metabolic potential to occupy a wide range of niches, particularly at dynamic deep-sea hydrothermal vents. We expand on this body of work by examining the population genomics of six strains of Lebetimonas, a vent-endemic, thermophilic, hydrogen-oxidizing Epsilonproteobacterium, from a single seamount in the Mariana Arc. Using Lebetimonas as a model for anaerobic, moderately thermophilic organisms in the warm, anoxic subseafloor environment, we show that genomic content is highly conserved and that recombination is limited between closely related strains. The Lebetimonas genomes are shaped by mobile genetic elements and gene loss as well as the acquisition of novel functional genes by horizontal gene transfer, which provide the potential for adaptation and microbial speciation in the deep sea. In addition, these Lebetimonas genomes contain two operons of nitrogenase genes with different evolutionary origins. Lebetimonas expressed nifH during growth with nitrogen gas as the sole nitrogen source, thus providing the first evidence of nitrogen fixation in any Epsilonproteobacteria from deep-sea hydrothermal vents. In this study, we provide a comparative overview of the genomic potential within the Nautiliaceae as well as among more distantly related hydrothermal vent Epsilonproteobacteria to broaden our understanding of microbial adaptation and diversity in the deep sea.
Collapse
Affiliation(s)
- Julie L Meyer
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA
| | - Julie A Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA
| |
Collapse
|
16
|
Pérez-Rodríguez I, Bohnert KA, Cuebas M, Keddis R, Vetriani C. Detection and phylogenetic analysis of the membrane-bound nitrate reductase (Nar) in pure cultures and microbial communities from deep-sea hydrothermal vents. FEMS Microbiol Ecol 2013; 86:256-67. [PMID: 23889124 DOI: 10.1111/1574-6941.12158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 05/17/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022] Open
Abstract
Over the past few years the relevance of nitrate respiration in microorganisms from deep-sea hydrothermal vents has become evident. In this study, we surveyed the membrane-bound nitrate reductase (Nar) encoding gene in three different deep-sea vent microbial communities from the East Pacific Rise and the Mid-Atlantic Ridge. Additionally, we tested pure cultures of vent strains for their ability to reduce nitrate and for the presence of the NarG-encoding gene in their genomes. By using the narG gene as a diagnostic marker for nitrate-reducing bacteria, we showed that nitrate reductases related to Gammaproteobacteria of the genus Marinobacter were numerically prevalent in the clone libraries derived from a black smoker and a diffuse flow vent. In contrast, NarG sequences retrieved from a community of filamentous bacteria located about 50 cm above a diffuse flow vent revealed the presence of a yet to be identified group of enzymes. 16S rRNA gene-inferred community compositions, in accordance with previous studies, showed a shift from Alpha- and Gammaproteobacteria to Epsilonproteobacteria as the vent fluids become warmer and more reducing. Based on these findings, we argue that Nar-catalyzed nitrate reduction is likely relevant in temperate and less reducing environments where Alpha- and Gammaproteobacteria are more abundant and where nitrate concentrations reflect that of background deep seawater.
Collapse
Affiliation(s)
- Ileana Pérez-Rodríguez
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA; Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | | | | | | | | |
Collapse
|
17
|
Zhang C, Suzuki D, Li Z, Ye L, Katayama A. Polyphasic characterization of two microbial consortia with wide dechlorination spectra for chlorophenols. J Biosci Bioeng 2012; 114:512-7. [DOI: 10.1016/j.jbiosc.2012.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/12/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
|
18
|
Flores GE, Shakya M, Meneghin J, Yang ZK, Seewald JS, Geoff Wheat C, Podar M, Reysenbach AL. Inter-field variability in the microbial communities of hydrothermal vent deposits from a back-arc basin. GEOBIOLOGY 2012; 10:333-346. [PMID: 22443386 DOI: 10.1111/j.1472-4669.2012.00325.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Diverse microbial communities thrive on and in deep-sea hydrothermal vent mineral deposits. However, our understanding of the inter-field variability in these communities is poor, as limited sampling and sequencing efforts have hampered most previous studies. To explore the inter-field variability in these communities, we used barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA gene to characterize the archaeal and bacterial communities of over 30 hydrothermal deposit samples from six vent fields located along the Eastern Lau Spreading Center. Overall, the bacterial and archaeal communities of the Eastern Lau Spreading Center are similar to other active vent deposits, with a high diversity of Epsilonproteobacteria and thermophilic Archaea. However, the archaeal and bacterial communities from the southernmost vent field, Mariner, were significantly different from the other vent fields. At Mariner, the epsilonproteobacterial genus Nautilia and the archaeal family Thermococcaceae were prevalent in most samples, while Lebetimonas and Thermofilaceae were more abundant at the other vent fields. These differences appear to be influenced in part by the unique geochemistry of the Mariner fluids resulting from active degassing of a subsurface magma chamber. These results show that microbial communities associated with hydrothermal vent deposits in back-arc basins are taxonomically similar to those from mid-ocean ridge systems, but differences in geologic processes between vent fields in a back-arc basin can influence microbial community structure.
Collapse
Affiliation(s)
- G E Flores
- Department of Biology, Portland State University, Portland, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Makita H, Nakagawa S, Miyazaki M, Nakamura KI, Inagaki F, Takai K. Thiofractor thiocaminus gen. nov., sp. nov., a novel hydrogen-oxidizing, sulfur-reducing epsilonproteobacterium isolated from a deep-sea hydrothermal vent chimney in the Nikko Seamount field of the northern Mariana Arc. Arch Microbiol 2012; 194:785-94. [PMID: 22526267 DOI: 10.1007/s00203-012-0814-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022]
Abstract
A novel chemolithoautotrophic hydrogen-oxidizing and sulfur-reducing bacterium, strain 496Chim(T), was isolated from a deep-sea hydrothermal vent chimney collected from the hydrothermal field at the summit of Nikko Seamount field, in the Mariana Arc. Cells were rods or curved rods, motile by means of a single polar flagellum. Growth was observed between 15 and 45 °C (optimum 37 °C; doubling time, 2.1 h) and between pH 5.3 and 8.0 (optimum pH 6.0). The isolate was a strictly anaerobic, obligate chemolithoautotroph capable of growth using molecular hydrogen as the sole energy source, carbon dioxide as the sole carbon source, ammonium or nitrate as the sole nitrogen source, and elemental sulfur as the electron acceptor. The G+C content of genomic DNA was 35 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the new isolate belonged to the class Epsilonproteobacteria, but the isolate was distantly related to the previously described Epsilonproteobacteria species potentially at the genus level (<90 %). On the basis of its physiological and molecular characteristics, strain 496Chim(T) (=DSM 22050(Τ) = JCM 15747(Τ) = NBRC 105224(Τ)) represents the sole species of a new genus, Thiofractor, for which the name Thiofractor thiocaminus is proposed.
Collapse
Affiliation(s)
- Hiroko Makita
- Subsurface Geobiology and Advanced Research Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Sylvan JB, Pyenson BC, Rouxel O, German CR, Edwards KJ. Time-series analysis of two hydrothermal plumes at 9°50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations. GEOBIOLOGY 2012; 10:178-192. [PMID: 22221398 DOI: 10.1111/j.1472-4669.2011.00315.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known.
Collapse
Affiliation(s)
- J B Sylvan
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
21
|
Anderson I, Sikorski J, Zeytun A, Nolan M, Lapidus A, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Huntemann M, Mavromatis K, Ovchinikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Brambilla EM, Ngatchou-Djao OD, Rohde M, Tindall BJ, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. Complete genome sequence of Nitratifractor salsuginis type strain (E9I37-1). Stand Genomic Sci 2011; 4:322-30. [PMID: 21886859 PMCID: PMC3156401 DOI: 10.4056/sigs.1844518] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nitratifractor salsuginis Nakagawa et al. 2005 is the type species of the genus Nitratifractor, a member of the family Nautiliaceae. The species is of interest because of its high capacity for nitrate reduction via conversion to N2 through respiration, which is a key compound in plant nutrition. The strain is also of interest because it represents the first mesophilic and facultatively anaerobic member of the Epsilonproteobacteria reported to grow on molecular hydrogen. This is the first completed genome sequence of a member of the genus Nitratifractor and the second sequence from the family Nautiliaceae. The 2,101,285 bp long genome with its 2,121 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
22
|
Saini R, Kapoor R, Kumar R, Siddiqi TO, Kumar A. CO2 utilizing microbes — A comprehensive review. Biotechnol Adv 2011; 29:949-60. [PMID: 21856405 DOI: 10.1016/j.biotechadv.2011.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Rashmi Saini
- Department of Botany, North Campus, University of Delhi, New Delhi-110007, India
| | | | | | | | | |
Collapse
|
23
|
Srinivasan V, Morowitz HJ, Huber H. What is an autotroph? Arch Microbiol 2011; 194:135-40. [DOI: 10.1007/s00203-011-0755-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 07/24/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
24
|
Giovannelli D, Ferriera S, Johnson J, Kravitz S, Pérez-Rodríguez I, Ricci J, O’Brien C, Voordeckers JW, Bini E, Vetriani C. Draft genome sequence of Caminibacter mediatlanticus strain TB-2, an epsilonproteobacterium isolated from a deep-sea hydrothermal vent. Stand Genomic Sci 2011; 5:135-43. [PMID: 22180817 PMCID: PMC3236049 DOI: 10.4056/sigs.2094859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Caminibacter mediatlanticus strain TB-2T [1], is a thermophilic, anaerobic, chemolithoautotrophic bacterium, isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge and the type strain of the species. C. mediatlanticus is a Gram-negative member of the Epsilonproteobacteria (order Nautiliales) that grows chemolithoautotrophically with H2 as the energy source and CO2 as the carbon source. Nitrate or sulfur is used as the terminal electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. In view of the widespread distribution, importance and physiological characteristics of thermophilic Epsilonproteobacteria in deep-sea geothermal environments, it is likely that these organisms provide a relevant contribution to both primary productivity and the biogeochemical cycling of carbon, nitrogen and sulfur at hydrothermal vents. Here we report the main features of the genome of C. mediatlanticus strain TB-2T.
Collapse
Affiliation(s)
- Donato Giovannelli
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
- Institute for Marine Science - ISMAR, National Research Council of Italy, Ancona, ITALY
| | - Steven Ferriera
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Justin Johnson
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Saul Kravitz
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, USA
| | - Ileana Pérez-Rodríguez
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Jessica Ricci
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Charles O’Brien
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - James W. Voordeckers
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK, USA
| | - Elisabetta Bini
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Costantino Vetriani
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
25
|
Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 2011; 75:361-422. [PMID: 21646433 PMCID: PMC3122624 DOI: 10.1128/mmbr.00039-10] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The majority of life on Earth--notably, microbial life--occurs in places that do not receive sunlight, with the habitats of the oceans being the largest of these reservoirs. Sunlight penetrates only a few tens to hundreds of meters into the ocean, resulting in large-scale microbial ecosystems that function in the dark. Our knowledge of microbial processes in the dark ocean-the aphotic pelagic ocean, sediments, oceanic crust, hydrothermal vents, etc.-has increased substantially in recent decades. Studies that try to decipher the activity of microorganisms in the dark ocean, where we cannot easily observe them, are yielding paradigm-shifting discoveries that are fundamentally changing our understanding of the role of the dark ocean in the global Earth system and its biogeochemical cycles. New generations of researchers and experimental tools have emerged, in the last decade in particular, owing to dedicated research programs to explore the dark ocean biosphere. This review focuses on our current understanding of microbiology in the dark ocean, outlining salient features of various habitats and discussing known and still unexplored types of microbial metabolism and their consequences in global biogeochemical cycling. We also focus on patterns of microbial diversity in the dark ocean and on processes and communities that are characteristic of the different habitats.
Collapse
Affiliation(s)
- Beth N. Orcutt
- Center for Geomicrobiology, Aarhus University, 8000 Aarhus, Denmark
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Jason B. Sylvan
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Nina J. Knab
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Katrina J. Edwards
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
26
|
Flores GE, Campbell JH, Kirshtein JD, Meneghin J, Podar M, Steinberg JI, Seewald JS, Tivey MK, Voytek MA, Yang ZK, Reysenbach AL. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ Microbiol 2011; 13:2158-71. [PMID: 21418499 DOI: 10.1111/j.1462-2920.2011.02463.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.
Collapse
Affiliation(s)
- Gilberto E Flores
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Forget NL, Murdock SA, Juniper SK. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes. GEOBIOLOGY 2010; 8:417-432. [PMID: 20533949 DOI: 10.1111/j.1472-4669.2010.00247.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms.
Collapse
Affiliation(s)
- N L Forget
- Department of Biology, University of Victoria, Petch Building 116, 3800 Finnerty Rd, Victoria, BC, Canada.
| | | | | |
Collapse
|
28
|
Pérez-Rodríguez I, Ricci J, Voordeckers JW, Starovoytov V, Vetriani C. Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2009; 60:1182-1186. [PMID: 19667392 DOI: 10.1099/ijs.0.013904-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thermophilic, anaerobic, chemosynthetic bacterium, designated strain MB-1(T), was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at degrees 50' N 10 degrees 17' W. The cells were Gram-negative-staining rods, approximately 1-1.5 mum long and 0.3-0.5 mum wide. Strain MB-1(T) grew at 25-65 degrees C (optimum 55 degrees C), with 10-35 g NaCl l(-1) (optimum 20 g l(-1)) and at pH 4.5-8.5 (optimum pH 7.0). Generation time under optimal conditions was 45.6 min. Growth occurred under chemolithoautotrophic conditions with H(2) as the energy source and CO(2) as the carbon source. Nitrate was used as the electron acceptor, with resulting production of ammonium. Thiosulfate, sulfur and selenate were also used as electron acceptors. No growth was observed in the presence of lactate, peptone or tryptone. Chemo-organotrophic growth occurred in the presence of acetate, formate, Casamino acids, sucrose, galactose and yeast extract under a N(2)/CO(2) gas phase. The G+C content of the genomic DNA was 36.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Nautilia profundicola AmH(T), Nautilia abyssi PH1209(T) and Nautilia lithotrophica 525(T) (95, 94 and 93 % sequence identity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Nautilia, Nautilia nitratireducens sp. nov. The type strain is MB-1(T) (=DSM 22087(T) =JCM 15746(T)).
Collapse
Affiliation(s)
- Ileana Pérez-Rodríguez
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jessica Ricci
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - James W Voordeckers
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Valentin Starovoytov
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Costantino Vetriani
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
29
|
Alain K, Callac N, Guégan M, Lesongeur F, Crassous P, Cambon-Bonavita MA, Querellou J, Prieur D. Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 2009; 59:1310-5. [PMID: 19502307 DOI: 10.1099/ijs.0.005454-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strictly anaerobic, thermophilic, sulfur-reducing bacterium, designated PH1209(T), was isolated from an East Pacific Rise hydrothermal vent (1 degrees N) sample and studied using a polyphasic taxonomic approach. Cells were Gram-negative, motile rods (approx. 1.60 x 0.40 microm) with a single polar flagellum. Strain PH1209(T) grew at temperatures between 33 and 65 degrees C (optimum 60 degrees C), from pH 5.0 to 8.0 (optimum 6.0-6.5), and between 2 and 4 % (w/v) NaCl (optimum 3 %). Cells grew chemolithoautotrophically with H(2) as an energy source, S(0) as an electron acceptor and CO(2) as a carbon source. Strain PH1209(T) was also able to use peptone and yeast extract as carbon sources. The G+C content of the genomic DNA was 35 mol%. Phylogenetic analyses based on 16S rRNA gene sequencing showed that strain PH1209(T) fell within the order Nautiliales, in the class Epsilonproteobacteria. Comparative 16S rRNA gene sequence analysis indicated that strain PH1209(T) belonged to the genus Nautilia and shared 97.2 and 98.7 % 16S rRNA gene sequence identity, respectively, with the type strains of Nautilia lithotrophica and Nautilia profundicola. It is proposed, from the polyphasic evidence, that the strain represents a novel species, Nautilia abyssi sp. nov.; the type strain is PH1209(T) (=DSM 21157(T)=JCM 15390(T)).
Collapse
Affiliation(s)
- Karine Alain
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Perner M, Bach W, Hentscher M, Koschinsky A, Garbe-Schönberg D, Streit WR, Strauss H. Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5 degrees S on the Mid-Atlantic Ridge. Environ Microbiol 2009; 11:2526-41. [PMID: 19558512 DOI: 10.1111/j.1462-2920.2009.01978.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examines the representativeness of low-temperature hydrothermal fluid samples with respect to their chemical and microbiological characteristics. Within this scope, we investigated short-term temporal chemical and microbial variability of the hydrothermal fluids. For this purpose we collected three fluid samples consecutively from the same spot at the Clueless field near 5 degrees S on the southern Mid-Atlantic Ridge over a period of 50 min. During sampling, the temperature was monitored online. We measured fluid chemical parameters, characterized microbial community compositions and used statistical analyses to determine significant differences between the samples. Overall, the three fluid samples are more closely related to each other than to any other tested habitat. Therefore, on a broad scale, the three collected fluid samples can be regarded as habitat representatives. However, small differences are apparent between all samples. One of the Clueless samples even displayed significant differences (P-value < 0.01) to the other two Clueless samples. Our data suggest that the observed variations in fluid chemical and microbial compositions are not reflecting sampling artefacts but are related to short-term fluid variability due to dynamic subseafloor fluid mixing. Recorded temporal changes in fact reflect spatial heterogeneity found in the subsurface as the fluid flows through distinctive pathways. While conservative elements (Cl, Si, Na and K) indicate variable degrees of fluid-seawater mixing, reactive components, including Fe(II), O(2) and H(2)S, show that chemical and microbial reactions within the mixing zone further modify the emanating fluids on short-time scales. Fluids entrain microorganisms, which modify the chemical microenvironment within the subsurface biotopes. This is the first study focusing on short-term microbial variability linked to chemical changes in hydrothermal fluids.
Collapse
Affiliation(s)
- Mirjam Perner
- Microbiology and Biotechnology, University of Hamburg, Biozentrum Klein Flottbek, 22609 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Heine M, Chandra SB. Bioinformatics Analysis of Hsp20 Sequences in Proteobacteria. Genomics Inform 2009. [DOI: 10.5808/gi.2009.7.1.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Campbell BJ, Smith JL, Hanson TE, Klotz MG, Stein LY, Lee CK, Wu D, Robinson JM, Khouri HM, Eisen JA, Cary SC. Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. PLoS Genet 2009; 5:e1000362. [PMID: 19197347 PMCID: PMC2628731 DOI: 10.1371/journal.pgen.1000362] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/31/2008] [Indexed: 11/19/2022] Open
Abstract
Submarine hydrothermal vents are model systems for the Archaean Earth environment, and some sites maintain conditions that may have favored the formation and evolution of cellular life. Vents are typified by rapid fluctuations in temperature and redox potential that impose a strong selective pressure on resident microbial communities. Nautilia profundicola strain Am-H is a moderately thermophilic, deeply-branching Epsilonproteobacterium found free-living at hydrothermal vents and is a member of the microbial mass on the dorsal surface of vent polychaete, Alvinella pompejana. Analysis of the 1.7-Mbp genome of N. profundicola uncovered adaptations to the vent environment--some unique and some shared with other Epsilonproteobacterial genomes. The major findings included: (1) a diverse suite of hydrogenases coupled to a relatively simple electron transport chain, (2) numerous stress response systems, (3) a novel predicted nitrate assimilation pathway with hydroxylamine as a key intermediate, and (4) a gene (rgy) encoding the hallmark protein for hyperthermophilic growth, reverse gyrase. Additional experiments indicated that expression of rgy in strain Am-H was induced over 100-fold with a 20 degrees C increase above the optimal growth temperature of this bacterium and that closely related rgy genes are present and expressed in bacterial communities residing in geographically distinct thermophilic environments. N. profundicola, therefore, is a model Epsilonproteobacterium that contains all the genes necessary for life in the extreme conditions widely believed to reflect those in the Archaean biosphere--anaerobic, sulfur, H2- and CO2-rich, with fluctuating redox potentials and temperatures. In addition, reverse gyrase appears to be an important and common adaptation for mesophiles and moderate thermophiles that inhabit ecological niches characterized by rapid and frequent temperature fluctuations and, as such, can no longer be considered a unique feature of hyperthermophiles.
Collapse
|
33
|
Nunoura T, Takai K. Comparison of microbial communities associated with phase-separation-induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough. FEMS Microbiol Ecol 2009; 67:351-70. [PMID: 19159423 DOI: 10.1111/j.1574-6941.2008.00636.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Microbial communities associated with a variety of hydrothermal emissions at the Yonaguni Knoll IV hydrothermal field, the southernmost Okinawa Trough, were analyzed by culture-dependent and -independent techniques. In this hydrothermal field, dozens of vent sites hosting physically and chemically distinct hydrothermal fluids were observed. Variability in the gas content and formation in the hydrothermal fluids was observed and could be controlled by the potential subseafloor phase-separation and -partition processes. The hydrogen concentration in the hydrothermal fluids was also variable (0.8-3.6 mmol kg(-1)) among the chimney sites, but was unusually high as compared with those in other Okinawa Trough hydrothermal fields. Despite the physical and chemical variabilities of the hydrothermal fluids, the microbial communities were relatively similar among the habitats. Based on both culture-dependent and -independent analyses of the microbial community structures, members of Thermococcales, Methanococcales and Desulfurococcales likely represent the predominant archaeal components, while members of Nautiliaceae and Thioreductoraceae are considered to dominate the bacterial population. Most of the abundant microbial components appear to be chemolithotrophs sustained by hydrogen oxidation. The relatively consistent microbial communities found in this study could have been because of the sufficient input of hydrogen from the hydrothermal fluids rather than other chemical properties.
Collapse
Affiliation(s)
- Takuro Nunoura
- Subground Animalcule Retrieval (SUGAR) Program, Extremobiosphere Research Center, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan.
| | | |
Collapse
|
34
|
Kern M, Simon J. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:646-56. [PMID: 19171117 DOI: 10.1016/j.bbabio.2008.12.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/23/2008] [Indexed: 12/16/2022]
Abstract
Recent phylogenetic analyses have established that the Epsilonproteobacteria form a globally ubiquitous group of ecologically significant organisms that comprises a diverse range of free-living bacteria as well as host-associated organisms like Wolinella succinogenes and pathogenic Campylobacter and Helicobacter species. Many Epsilonproteobacteria reduce nitrate and nitrite and perform either respiratory nitrate ammonification or denitrification. The inventory of epsilonproteobacterial genomes from 21 different species was analysed with respect to key enzymes involved in respiratory nitrogen metabolism. Most ammonifying Epsilonproteobacteria employ two enzymic electron transport systems named Nap (periplasmic nitrate reductase) and Nrf (periplasmic cytochrome c nitrite reductase). The current knowledge on the architecture and function of the corresponding proton motive force-generating respiratory chains using low-potential electron donors are reviewed in this article and the role of membrane-bound quinone/quinol-reactive proteins (NapH and NrfH) that are representative of widespread bacterial electron transport modules is highlighted. Notably, all Epsilonproteobacteria lack a napC gene in their nap gene clusters. Possible roles of the Nap and Nrf systems in anabolism and nitrosative stress defence are also discussed. Free-living denitrifying Epsilonproteobacteria lack the Nrf system but encode cytochrome cd(1) nitrite reductase, at least one nitric oxide reductase and a characteristic cytochrome c nitrous oxide reductase system (cNosZ). Interestingly, cNosZ is also found in some ammonifying Epsilonproteobacteria and enables nitrous oxide respiration in W. succinogenes.
Collapse
Affiliation(s)
- Melanie Kern
- Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
35
|
Abstract
Thermophilic anaerobes are Archaea and Bacteria that grow optimally at temperatures of 50 degrees C or higher and do not require the use of O(2) as a terminal electron acceptor for growth. The prokaryotes with this type of physiology are studied for a variety of reasons, including (a) to understand how life can thrive under extreme conditions, (b) for their biotechnological potential, and (c) because anaerobic thermophiles are thought to share characteristics with the early evolutionary life forms on Earth. Over 300 species of thermophilic anaerobes have been described; most have been isolated from thermal environments, but some are from mesobiotic environments, and others are from environments with temperatures below 0 degrees C. In this overview, the authors outline the phylogenetic and physiological diversity of thermophilic anaerobes as currently known. The purpose of this overview is to convey the incredible diversity and breadth of metabolism within this subset of anaerobic microorganisms.
Collapse
Affiliation(s)
- Isaac D Wagner
- 212 Biological Sciences Building, 1000 Cedar Street, University of Georgia, Athens, GA 30602-2605, USA
| | | |
Collapse
|
36
|
Smith JL, Campbell BJ, Hanson TE, Zhang CL, Cary SC. Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 2008; 58:1598-602. [DOI: 10.1099/ijs.0.65435-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Voordeckers JW, Do MH, Hügler M, Ko V, Sievert SM, Vetriani C. Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge. Extremophiles 2008; 12:627-40. [PMID: 18523725 DOI: 10.1007/s00792-008-0167-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 04/15/2008] [Indexed: 11/25/2022]
Abstract
The bacterial and archaeal communities of three deep-sea hydrothermal vent systems located on the Mid-Atlantic Ridge (MAR; Rainbow, Logatchev and Broken Spur) were investigated using an integrated culture-dependent and independent approach. Comparative molecular phylogenetic analyses, using the 16S rRNA gene and the deduced amino acid sequences of the alpha and beta subunits of the ATP citrate lyase encoding genes were carried out on natural microbial communities, on an enrichment culture obtained from the Broken Spur chimney, and on novel chemolithoautotrophic bacteria and reference strains originally isolated from several different deep-sea vents. Our data showed that the three MAR hydrothermal vent chimneys investigated in this study host very different microbial assemblages. The microbial community of the Rainbow chimney was dominated by thermophilic, autotrophic, hydrogen-oxidizing, sulfur- and nitrate-reducing Epsilonproteobacteria related to the genus Caminibacter. The detection of sequences related to sulfur-reducing bacteria and archaea (Archaeoglobus) indicated that thermophilic sulfate reduction might also be occurring at this site. The Logatchev bacterial community included several sequences related to mesophilic sulfur-oxidizing bacteria, while the archaeal component of this chimney was dominated by sequences related to the ANME-2 lineage, suggesting that anaerobic oxidation of methane may be occurring at this site. Comparative analyses of the ATP citrate lyase encoding genes from natural microbial communities suggested that Epsilonproteobacteria were the dominant primary producers using the reverse TCA cycle (rTCA) at Rainbow, while Aquificales of the genera Desulfurobacterium and Persephonella were prevalent in the Broken Spur chimney.
Collapse
Affiliation(s)
- James W Voordeckers
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901-8525, USA
| | | | | | | | | | | |
Collapse
|
38
|
Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA. Phylogenetic systematics of microorganisms inhabiting thermal environments. BIOCHEMISTRY (MOSCOW) 2007; 72:1299-312. [DOI: 10.1134/s0006297907120048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
McCollom TM. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. ASTROBIOLOGY 2007; 7:933-50. [PMID: 18163871 DOI: 10.1089/ast.2006.0119] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.
Collapse
Affiliation(s)
- Thomas M McCollom
- CU Center for Astrobiology and Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder, Colorado 80309-0392, USA.
| |
Collapse
|
40
|
Perner M, Seifert R, Weber S, Koschinsky A, Schmidt K, Strauss H, Peters M, Haase K, Imhoff JF. Microbial CO(2) fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9 degrees S). Environ Microbiol 2007; 9:1186-201. [PMID: 17472634 DOI: 10.1111/j.1462-2920.2007.01241.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lilliput was discovered in 2005 as the southernmost known hydrothermal field along the Mid-Atlantic Ridge. It is exceptional in that it lacks high-temperature venting probably because of a thickened crust. The absence of thermophilic and hyperthermophilic prokaryotes in emissions supports the argument against the presence of a hot subsurface at Lilliput, as is typically suggested for diffuse emissions from areas of high-temperature venting. The high phylogenetic diversity and novelty of bacteria observed could be because of the low-temperature influence, the distinct location of the hydrothermal field or the Bathymodiolus assemblages covering the sites of discharge. The low-temperature fluids at the Lilliput are characterized by lowered pH and slightly elevated hydrogen (16 nM) and methane ( approximately 2.6 microM) contents compared with ambient seawater. No typical hydrogen and methane oxidizing prokaryotes were detected. The higher diversity of reverse tricarboxylic acid genes and the form II RubisCO genes of the Calvin Benson-Bassham (CBB) cycle compared with the form I RubisCO genes of the CBB cycle suggests that the chemoautotrophic community is better adapted to low oxygen concentrations. Thiomicrospira spp. and Epsilonproteobacteria dominated the autotrophic community. Sulfide is the most abundant inorganic energy source (0.5 mM). Diverse bacteria were associated with sulfur cycling, including Gamma-, Delta- and Epsilonproteobacteria, with the latter being the most abundant bacteria according to fluorescence in situ hybridization. With members of various Candidate Divisions constituting for 25% of clone library sequences we suggest that their role in vent ecosystems might be more important than previously assumed and propose potential mechanisms they might be involved in at the Lilliput hydrothermal field.
Collapse
Affiliation(s)
- Mirjam Perner
- Leibniz Institute of Marine Sciences (IFM-GEOMAR), Marine Microbiology, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F, Horikoshi K. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 2006; 56:1725-1733. [PMID: 16901999 DOI: 10.1099/ijs.0.64255-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel mesophilic bacterium, strain GO25(T), was isolated from a nest of hydrothermal vent polychaetes, Paralvinella sp., at the Iheya North field in the Mid-Okinawa Trough. Cells were motile short rods with a single polar flagellum. Growth was observed between 4 and 35 degrees C (optimum 30 degrees C; 13-16 h doubling time) and between pH 5.4 and 8.6 (optimum pH 6.1). The isolate was a facultatively anaerobic chemolithoautotroph capable of growth using molecular hydrogen, elemental sulfur or thiosulfate as the sole energy source, carbon dioxide as the sole carbon source, ammonium or nitrate as the sole nitrogen source and elemental sulfur, thiosulfate or yeast extract as the sole sulfur source. Strain GO25(T) represents the first deep-sea epsilonproteobacterium capable of growth by both hydrogen and sulfur oxidation. Nitrate or molecular oxygen (up to 10 % partial pressure) could serve as the sole electron acceptor to support growth. Metabolic products of nitrate reduction shifted in response to the electron donor provided. The G+C content of genomic DNA was 37.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate belonged to the genus Sulfurimonas and was most closely related to Sulfurimonas autotrophica OK10(T) (96.3 % sequence similarity). DNA-DNA hybridization demonstrated that the novel isolate could be differentiated genotypically from Sulfurimonas autotrophica OK10(T). On the basis of the physiological and molecular properties of the novel isolate, the name Sulfurimonas paralvinellae sp. nov. is proposed, with strain GO25(T) (=JCM 13212(T)=DSM 17229(T)) as the type strain. Thiomicrospira denitrificans DSM 1251(T) (=ATCC 33889(T)) is phylogenetically associated with Sulfurimonas autotrophica OK10(T) and Sulfurimonas paralvinellae GO25(T). Based on the phylogenetic relationship between Thiomicrospira denitrificans DSM 1251(T), Sulfurimonas autotrophica OK10(T) and Sulfurimonas paralvinellae GO25(T), we propose the reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. (type strain DSM 1251(T)=ATCC 33889(T)). In addition, an emended description of the genus Sulfurimonas is proposed.
Collapse
Affiliation(s)
- Ken Takai
- Subground Animalcule Retrieval (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Masae Suzuki
- Subground Animalcule Retrieval (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Satoshi Nakagawa
- Subground Animalcule Retrieval (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Masayuki Miyazaki
- Subground Animalcule Retrieval (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yohey Suzuki
- Subground Animalcule Retrieval (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Fumio Inagaki
- Subground Animalcule Retrieval (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Koki Horikoshi
- Subground Animalcule Retrieval (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
42
|
L'Haridon S, Miroshnichenko ML, Kostrikina NA, Tindall BJ, Spring S, Schumann P, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C. Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 2006; 56:1047-1053. [PMID: 16627653 DOI: 10.1099/ijs.0.64012-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic, moderately thermophilic, spore-forming bacterium, designated strain BRT, was isolated from deep-sea hydrothermal core samples collected at the Rainbow vent field on the Mid-Atlantic Ridge (36 degrees 14' N 33 degrees 54' W). The cells were found to be rod-shaped, non-motile, Gram-positive and spore-forming. The organism grew in the temperature range 37-60 degrees C, with an optimum at 55 degrees C, and at pH values in the range 6-8.5, with an optimum around pH 7. NaCl concentrations for growth were in the range 10-40 g l(-1), with an optimum at 20-30 g l(-1). Strain BRT grew chemo-organoheterotrophically with carbohydrates, proteinaceous substrates and organic acids with nitrate as electron acceptor. The novel isolate was not able to ferment. The G+C content of the genomic DNA was 34.5 mol%. Phylogenetic analysis of the 16S rRNA gene sequence placed strain BRT in the Bacillaceae within the class 'Bacilli'. On the basis of the phenotypic and phylogenetic data, this isolate should be described as a member of a novel genus, for which the name Vulcanibacillus gen. nov. is proposed. The type species is Vulcanibacillus modesticaldus sp. nov., with the type strain BRT (=DSM 14931T=JCM 12998T).
Collapse
MESH Headings
- Atlantic Ocean
- Bacillaceae/classification
- Bacillaceae/cytology
- Bacillaceae/isolation & purification
- Bacillaceae/physiology
- Base Composition
- Carbohydrate Metabolism
- Carboxylic Acids/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Fatty Acids/isolation & purification
- Fermentation
- Genes, rRNA
- Hydrogen-Ion Concentration
- Molecular Sequence Data
- Movement
- Nitrates/metabolism
- Phylogeny
- Proteins/metabolism
- Quinones/analysis
- Quinones/isolation & purification
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Saline Solution, Hypertonic
- Seawater/microbiology
- Spores, Bacterial
- Temperature
- Water Microbiology
Collapse
Affiliation(s)
- S L'Haridon
- UMR 6197, Centre National de la Recherche Scientifique, IFREMER and Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, 29280 Plouzané, France
| | - M L Miroshnichenko
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabraya 7/2, 117811 Moscow, Russia
| | - N A Kostrikina
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabraya 7/2, 117811 Moscow, Russia
| | - B J Tindall
- German Collection of Microorganisms and Cell Cultures (DSMZ), Mascheroder Weg 1b, 38124 Braunschweig, Germany
| | - S Spring
- German Collection of Microorganisms and Cell Cultures (DSMZ), Mascheroder Weg 1b, 38124 Braunschweig, Germany
| | - P Schumann
- German Collection of Microorganisms and Cell Cultures (DSMZ), Mascheroder Weg 1b, 38124 Braunschweig, Germany
| | - E Stackebrandt
- German Collection of Microorganisms and Cell Cultures (DSMZ), Mascheroder Weg 1b, 38124 Braunschweig, Germany
| | - E A Bonch-Osmolovskaya
- Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabraya 7/2, 117811 Moscow, Russia
| | - C Jeanthon
- UMR 6197, Centre National de la Recherche Scientifique, IFREMER and Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, 29280 Plouzané, France
| |
Collapse
|
43
|
Moussard H, Corre E, Cambon-Bonavita MA, Fouquet Y, Jeanthon C. Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13 degrees N hydrothermal vent field, East Pacific Rise. FEMS Microbiol Ecol 2006; 58:449-63. [PMID: 16989658 DOI: 10.1111/j.1574-6941.2006.00192.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Rapid growth of microbial sulphur mats have repeatedly been observed during oceanographic cruises to various deep-sea hydrothermal vent sites. The microorganisms involved in the mat formation have not been phylogenetically characterized, although the production of morphologically similar sulphur filaments by a Arcobacter strain coastal marine has been documented. An in situ collector deployed for 5 days at the 13 degrees N deep-sea hydrothermal vent site on the East Pacific Rise (EPR) was rapidly colonized by a filamentous microbial mat. Microscopic and chemical analyses revealed that the mat consisted of a network of microorganisms embedded in a mucous sulphur-rich matrix. Molecular surveys based on 16S rRNA gene and aclB genes placed all the environmental clone sequences within the Epsilonproteobacteria. Although few 16S rRNA gene sequences were affiliated with that of cultured organisms, the majority was related to uncultured representatives of the Arcobacter group (< or = 95% sequence similarity). A probe designed to target all of the identified lineages hybridized with more than 95% of the mat community. Simultaneous hybridizations with the latter probe and a probe specific to Arcobacter spp. confirmed the numerical dominance of Arcobacter-like bacteria. This study provides the first example of the prevalence and ecological significance of free-living Arcobacter at deep-sea hydrothermal vents.
Collapse
Affiliation(s)
- Hélène Moussard
- Laboratoire de Microbiologie des Environnements Extrêmes, Centre National de la Recherche Scientifique, IFREMER, Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, Plouzané, France
| | | | | | | | | |
Collapse
|
44
|
Nakagawa T, Takai K, Suzuki Y, Hirayama H, Konno U, Tsunogai U, Horikoshi K. Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Environ Microbiol 2006; 8:37-49. [PMID: 16343320 DOI: 10.1111/j.1462-2920.2005.00884.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel hydrothermal activities accompanying effluent white smokers and elemental sulfur chimney structures at the north-east lava dome of the TOTO caldera depression in the Mariana Volcanic Arc have been explored and characterized by geochemical and microbiological surveys. White smoker hydrothermal fluids were observed in the potential hydrothermal activity centre of the field and represented the maximal temperature of 170 degrees C and the lowest pH of 1.6. The chimney structures, all consisting of elemental sulfur (sulfur chimney), were also unique to the TOTO caldera hydrothermal field. Microbial community structures in a sulfur chimney and its formation hydrothermal fluid with a high concentration of hydrogen sulfide (15 mM) have been investigated by culture-dependent and -independent analyses. 16S rRNA gene clone analysis and fluorescence in situ hybridization (FISH) analysis revealed that epsilon-Proteobacteria dominated the microbial communities in the sulfur chimney structure and formed a dense microbial mat covering the sulfur chimney surface. Archaeal phylotypes were consistently minor components in the communities and related to the genera Thermococcus, Pyrodictium, Aeropyrum, and the uncultivated archaeal group of 'deep-sea hydrothermal vent euryarchaeotal group'. Cultivation analysis suggested that the chemolithoautotrophs might play a significant ecological role as primary producers utilizing gas and sulfur compounds provided from hydrothermal fluids.
Collapse
Affiliation(s)
- Tatsunori Nakagawa
- Subground Animalcule Retrieval SUGAR Project, Japan Agency for Marine-Earth Science and Technology, JAMSTEC, Yokosuka 237-0061, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Gupta RS. Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon proteobacteria (Campylobacterales). BMC Genomics 2006; 7:167. [PMID: 16817973 PMCID: PMC1557499 DOI: 10.1186/1471-2164-7-167] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/04/2006] [Indexed: 11/28/2022] Open
Abstract
Background The epsilon proteobacteria, which include many important human pathogens, are presently recognized solely on the basis of their branching in rRNA trees. No unique molecular or biochemical characteristics specific for this group are known. Results Comparative analyses of proteins in the genomes of Wolinella succinogenes DSM 1740 and Campylobacter jejuni RM1221 against all available sequences have identified a large number of proteins that are unique to various epsilon proteobacteria (Campylobacterales), but whose homologs are not detected in other organisms. Of these proteins, 49 are uniquely found in nearly all sequenced epsilon-proteobacteria (viz. Helicobacter pylori (26695 and J99), H. hepaticus, C. jejuni (NCTC 11168, RM1221, HB93-13, 84-25, CF93-6, 260.94, 11168 and 81-176), C. lari, C. coli, C. upsaliensis, C. fetus, W. succinogenes DSM 1740 and Thiomicrospira denitrificans ATCC 33889), 11 are unique for the Wolinella and Helicobacter species (i.e. Helicobacteraceae family) and many others are specific for either some or all of the species within the Campylobacter genus. The primary sequences of many of these proteins are highly conserved and provide novel resources for diagnostics and therapeutics. We also report four conserved indels (i.e. inserts or deletions) in widely distributed proteins (viz. B subunit of exinuclease ABC, phenylalanyl-tRNA synthetase, RNA polymerase β '-subunit and FtsH protein) that are specific for either all epsilon proteobacteria or different subgroups. In addition, a rare genetic event that caused fusion of the genes for the largest subunits of RNA polymerase (rpoB and rpoC) in Wolinella and Helicobacter is also described. The inter-relationships amongst Campylobacterales as deduced from these molecular signatures are in accordance with the phylogenetic trees based on the 16S rRNA and concatenated sequences for nine conserved proteins. Conclusion These molecular signatures provide novel tools for identifying and circumscribing species from the Campylobacterales order and its subgroups in molecular terms. Although sequence information for these signatures is presently limited to Campylobacterales species, it is likely that many of them will also be found in other epsilon proteobacteria. Functional studies on these proteins and conserved indels should reveal novel biochemical or physiological characteristics that are unique to these groups of epsilon proteobacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8N 3Z5, Canada.
| |
Collapse
|
46
|
Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 2006; 4:458-68. [PMID: 16652138 DOI: 10.1038/nrmicro1414] [Citation(s) in RCA: 442] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The epsilon-proteobacteria have recently been recognized as globally ubiquitous in modern marine and terrestrial ecosystems, and have had a significant role in biogeochemical and geological processes throughout Earth's history. To place this newly expanded group, which consists mainly of uncultured representatives, in an evolutionary context, we present an overview of the taxonomic classification for the class, review ecological and metabolic data in key sulphidic habitats and consider the ecological and geological potential of the epsilon-proteobacteria in modern and ancient systems. These integrated perspectives provide a framework for future culture- and genomic-based studies.
Collapse
Affiliation(s)
- Barbara J Campbell
- College of Marine Studies, University of Delaware, Lewes, Delaware 19958, USA.
| | | | | | | |
Collapse
|
47
|
Miroshnichenko ML, Bonch-Osmolovskaya EA. Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles 2006; 10:85-96. [PMID: 16418793 DOI: 10.1007/s00792-005-0489-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
The diversity of thermophilic prokaryotes inhabiting deep-sea hot vents was actively studied over the last two decades. The ever growing interest is reflected in the exponentially increasing number of novel thermophilic genera described. The goal of this paper is to survey the progress in this field made in the years 2000-2005. In this period, representatives of several new taxa of hyperthermophilic archaea were obtained from deep-sea environments. Two of these isolates had phenotypic features new for this group of organisms: the presence of an outer cell membrane (the genus Ignicoccus) and the ability to grow anaerobically with acetate and ferric iron (the genus Geoglobus). Also, our knowledge on the diversity of thermophilic bacteria from deep-sea thermal environments extended significantly. The new bacterial isolates represented diverse bacterial divisions: the phylum Aquificae, the subclass Epsilonproteobacteria, the order Thermotogales, the families Thermodesulfobacteriaceae, Deferribacteraceae, and Thermaceae, and a novel bacterial phylum represented by the genus Caldithrix. Most of these isolates are obligate or facultative lithotrophs, oxidizing molecular hydrogen in the course of different types of anaerobic respiration or microaerobic growth. The existence and significant ecological role of some of new bacterial thermophilic isolates was initially established by molecular methods.
Collapse
|
48
|
|
49
|
Takai K, Nakagawa S, Reysenbach AL, Hoek J. Microbial ecology of mid-ocean ridges and back-arc basins. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/166gm10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
50
|
Nakagawa S, Takai K, Inagaki F, Chiba H, Ishibashi JI, Kataoka S, Hirayama H, Nunoura T, Horikoshi K, Sako Y. Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: Impacts of subseafloor phase-separation. FEMS Microbiol Ecol 2005; 54:141-55. [PMID: 16329980 DOI: 10.1016/j.femsec.2005.03.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/10/2005] [Accepted: 03/16/2005] [Indexed: 11/26/2022] Open
Abstract
Phase-separation and -segregation (boiling/distillation of subseafloor hydrothermal fluids) represent the primary mechanisms causing intra-field variations in vent fluid compositions. To determine whether this geochemical process affects the formation of microbial communities, we examined the microbial communities at three different vent sites located within a few tens meters of one another. In addition to chimney structures, colonization devices capturing subseafloor communities entrained by the vent fluids were studied, using culture-dependent and -independent methods. Microbiological analyses demonstrated the occurrence of distinctive microbial communities in each of the hydrothermal niches. Within a chimney structure, there was a transition from a mixed community of mesophiles and thermophiles in the exterior parts to thermophiles in the interior. Beside the transition within a chimney structure, intra-field variations in microbial communities in vent fluids were apparent. Geochemical analysis demonstrated that different vent fluids have distinctive end-member compositions as a consequence of subseafloor phase-separation and -segregation, which were designated gas-depleted, normal and gas-enriched fluids. In comparison to gas-depleted and normal fluids, gas-enriched fluids harbored more abundant chemolithoautotrophs with gaseous component-dependent energy metabolism, such as hydrogenotrophic methanogenesis. Subseafloor phase-separation and -segregation may play a key role in supplying energy and carbon sources to vent-associated chemolithoautotrophs and subvent microbial communities.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|