1
|
Zhao W, Chen X, Liu R, Tian P, Niu W, Zhang XH, Liu J, Wang X. Distinct coral environments shape the dynamic of planktonic Vibrio spp. ENVIRONMENTAL MICROBIOME 2023; 18:77. [PMID: 37872593 PMCID: PMC10594878 DOI: 10.1186/s40793-023-00532-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Coral reefs are one of the most biodiverse and productive ecosystems, providing habitat for a vast of species. Reef-building scleractinian corals with a symbiotic microbiome, including bacteria, archaea, viruses and eukaryotic microbes, are referred to coral holobionts. Among them, coral diseases, mainly caused by Vibrio spp., have significantly contributed to the loss of coral cover and diversity. Habitat filtering across the globe has led to a variety structure of marine bacterial communities. Coral species, quantity and characteristics are significant differences between the Xisha Islands and Daya Bay (Guangdong Province). Thus, the Vibrio communities may be distinct between coral rich and poor areas. RESULTS Through comparison of Vibrio dynamics between coral-rich (Xisha Islands) and coral-poor (Daya Bay) locations, we uncovered differences in Vibrio abundance, diversity, community composition and assembly mechanisms associated with corals. The higher abundance of Vibrio in coral rich areas may indicate a strong interaction between vibrios and corals. V. campbellii, Paraphotobacterium marinum and V. caribbeanicus were widely distributed in both coral rich and poor areas, likely indicating weak species specificity in the coral-stimulated growth of Vibrio. Random-forest prediction revealed Vibrio species and Photobacterium species as potential microbial indicators in the coral rich and coral poor areas, respectively. Ecological drift rather than selection governed the Vibrio community assembly in the Xisha Islands. Comparatively, homogenizing selection was more important for the Daya Bay community, which may reflect a role of habitat filtration. CONCLUSION This study revealed the different distribution pattern and assembly mechanism of Vibrio spp. between coral rich and poor areas, providing the background data for the research of Vibrio community in coral reef areas and may help the protection of coral reef at the biological level. The main reasons for the difference were different number and species of corals, environmental (e.g., temperature) and spatial factors. It reflected the strong interaction between Vibrio and corals, and provided a new perspective for the investigation of Vibrio in coral reef ecosystem.
Collapse
Affiliation(s)
- Wenbin Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Xing Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Peng Tian
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen, 361005, China
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510000, China
| | - Wentao Niu
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen, 361005, China
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510000, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China.
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Loughran RM, Emsley SA, Jefferson T, Wasson BJ, Deadmond MC, Knauss TL, Pfannmuller KM, Lippert KJ, Miller G, Cline LC, Oline DK, Koyack MJ, Grant-Beurmann S, Gaylor MO, Saw JH, Ushijima B, Videau P. Vibrio tetraodonis subsp. pristinus subsp. nov., isolated from the coral Acropora cytherea at Palmyra Atoll, and creation and emended description of Vibrio tetraodonis subsp. tetraodonis subsp. nov. Antonie Van Leeuwenhoek 2022; 115:1215-1228. [PMID: 35920985 DOI: 10.1007/s10482-022-01766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Strain OCN044T was isolated from the homogenised tissue and mucus of an apparently healthy Acropora cytherea coral fragment collected from the western reef terrace of Palmyra Atoll in the Northern Line Islands and was taxonomically evaluated with a polyphasic approach. The morphological and chemotaxonomic properties are consistent with characteristics of the genus Vibrio: Gram-stain-negative rods, oxidase- and catalase-positive, and motile by means of a polar flagellum. Strain OCN044T can be differentiated as a novel subspecies based on 21 differences among chemotaxonomic features (e.g., fatty acids percentages for C12:0 and C18:1 ω7c), enzymatic activities (e.g., DNase and cystine arylamidase), and carbon sources utilized (e.g., L-xylose and D-melezitose) from its nearest genetic relative. Phylogenetic analysis and genomic comparisons show close evolutionary relatedness to Vibrio tetraodonis A511T but the overall genomic relatedness indices identify strain OCN044T as a distinct subspecies. Based on a polyphasic characterisation, differences in genomic and taxonomic data, strain OCN044T represents a novel subspecies of V. tetraodonis A511T, for which the name Vibrio tetraodonis subsp. pristinus subsp. nov. is proposed. The type strain is OCN044T (= LMG 31895T = DSM 111778T).
Collapse
Affiliation(s)
- Rachel M Loughran
- Department of Biology, Southern Oregon University, Ashland, OR, USA.,Microbiology Graduate Program, University of Delaware, Newark, DE, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Tori Jefferson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | | | | | - Taylor L Knauss
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | | | - Katherine J Lippert
- Department of Biology, Southern Oregon University, Ashland, OR, USA.,Triplebar, Emeryville, CA, USA
| | - Gregory Miller
- Natural Sciences Department, Flagler College, St. Augustine, FL, USA
| | | | - David K Oline
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Marc J Koyack
- Department of Chemistry, Southern Oregon University, Ashland, OR, USA
| | - Silvia Grant-Beurmann
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, D.C, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA. .,Bayer Crop Science, Chesterfield, MO, USA.
| |
Collapse
|
3
|
Al-Karablieh N, Al-Horani FA, Alnaimat S, Abu Zarga M. Prevalence of Vibrio coralliilyticus in stony coral Porites sp. in the Gulf of Aqaba, Jordan. Lett Appl Microbiol 2022; 75:460-469. [PMID: 35639047 DOI: 10.1111/lam.13753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to assess the health of stony coral Porites sp. based on the presence of bacterial pathogens, specifically Vibrio coralliilyticus, in the Gulf of Aqaba, and to assess the impact of anthropogenic activities on Porites sp. Porites sp. specimens were collected from the Marine Science Station (MSS) and a public beach (Yamanyeh) in Jordan. Mucus, water, and sediment samples were collected throughout the year. The Vibrio-like population was higher in diseased samples than in healthy samples and was slightly higher in Yamanyeh than in MSS in all samples. In samples from both sites, there was a seasonal variation in the Vibrio-like population, with a decline in population as the temperature reduced. All samples contained virulent isolates clustered with V. coralliilyticus strains. Inoculation of healthy Porites sp. fragments with virulent isolates and V. coralliilyticus strain caused bleaching of the coral after 48 h. Therefore, V. coralliilyticus represents a pathogenic agent which may contribute to bleaching in Porites sp. in the Gulf of Aqaba and may not be affected considerably by anthropogenic activities. This is the first report of a bacterial pathogen of corals in Jordan; future studies should identify other coral pathogens in this region.
Collapse
Affiliation(s)
- Nehaya Al-Karablieh
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan.,Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan
| | - Fuad A Al-Horani
- School of Marine Sciences, The University of Jordan, Aqaba, Jordan.,Marine Science Station, Aqaba, Jordan
| | | | - Musa Abu Zarga
- Chemistry Department, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Guardiola-Avila I, Sánchez-Busó L, Acedo-Félix E, Gomez-Gil B, Zúñiga-Cabrera M, González-Candelas F, Noriega-Orozco L. Core and Accessory Genome Analysis of Vibrio mimicus. Microorganisms 2021; 9:microorganisms9010191. [PMID: 33477474 PMCID: PMC7831076 DOI: 10.3390/microorganisms9010191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/21/2023] Open
Abstract
Vibrio mimicus is an emerging pathogen, mainly associated with contaminated seafood consumption. However, little is known about its evolution, biodiversity, and pathogenic potential. This study analyzes the pan-, core, and accessory genomes of nine V. mimicus strains. The core genome yielded 2424 genes in chromosome I (ChI) and 822 genes in chromosome II (ChII), with an accessory genome comprising an average of 10.9% of the whole genome for ChI and 29% for ChII. Core genome phylogenetic trees were obtained, and V. mimicus ATCC-33654 strain was the closest to the outgroup in both chromosomes. Additionally, a phylogenetic study of eight conserved genes (ftsZ, gapA, gyrB, topA, rpoA, recA, mreB, and pyrH), including Vibrio cholerae, Vibrio parilis, Vibrio metoecus, and Vibrio caribbenthicus, clearly showed clade differentiation. The main virulence genes found in ChI corresponded with type I secretion proteins, extracellular components, flagellar proteins, and potential regulators, while, in ChII, the main categories were type-I secretion proteins, chemotaxis proteins, and antibiotic resistance proteins. The accessory genome was characterized by the presence of mobile elements and toxin encoding genes in both chromosomes. Based on the genome atlas, it was possible to characterize differential regions between strains. The pan-genome of V. mimicus encompassed 3539 genes for ChI and 2355 genes for ChII. These results give us an insight into the virulence and gene content of V. mimicus, as well as constitute the first approach to its diversity.
Collapse
Affiliation(s)
- Iliana Guardiola-Avila
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico; (I.G.-A.); (E.A.-F.)
| | - Leonor Sánchez-Busó
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), 46020 Valencia, Spain;
| | - Evelia Acedo-Félix
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico; (I.G.-A.); (E.A.-F.)
| | - Bruno Gomez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Mazatlán, Unit for Aquaculture and Environmental Management, Mazatlan, Sinaloa 82112, Mexico;
| | - Manuel Zúñiga-Cabrera
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSSIC), 46980 Paterna, Spain;
| | - Fernando González-Candelas
- Joint Research Unit Infección y Salud Pública, FISABIO-Universitat de Valencia, I2SysBio, CIBERESP, 46980 Valencia, Spain;
| | - Lorena Noriega-Orozco
- Guaymas Unit, Centro de Investigación en Alimentación y Desarrollo (CIAD), Guaymas, Sonora 85480, Mexico
- Correspondence: ; Tel.: +52-662-289-2400
| |
Collapse
|
5
|
Wang X, Liu J, Liang J, Sun H, Zhang XH. Spatiotemporal dynamics of the total and active Vibrio spp. populations throughout the Changjiang estuary in China. Environ Microbiol 2020; 22:4438-4455. [PMID: 33462948 PMCID: PMC7689709 DOI: 10.1111/1462-2920.15152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/03/2020] [Indexed: 11/27/2022]
Abstract
Vibrio is ubiquitously distributed in marine environments and is the most extensively characterized group within Gammaproteobacteria. Studies have investigated Vibrio spp. worldwide, but mostly focused on pathogenic vibrios and based on cultivation methods. Here, using a combination of molecular and culturing methods, we investigated the dynamics of the total and active Vibrio spp. throughout the Changjiang estuary in China. The total Vibrio abundance was higher in summer (~6.59 × 103 copies ml−1) than in winter (~1.85 × 103 copies ml−1) and increased from freshwater to saltwater (e.g. 8.04 × 101 to 9.39 × 103 copies ml−1 in summer). The ratio of active to total Vibrio (Va/Vt) revealed a high activity of vibrios, with remarkable differences between freshwater and saltwater (p < 0.05). Based on the community compositions of the culturable, total and active Vibrio, Vibrio atlanticus and Vibrio owensii were the dominant and active species in winter and summer, respectively. The distribution of Vibrio was governed by the effects of diverse environmental factors, such as temperature, salinity, pH, dissolved oxygen and SiO32−. Our study clearly demonstrates the spatiotemporal dynamics of total and active Vibrio spp. and lays a foundation for fully understanding the ecological roles of marine Vibrio.
Collapse
Affiliation(s)
- Xiaolei Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China
| | - Jinchang Liang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Hao Sun
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
6
|
Franco A, Rückert C, Blom J, Busche T, Reichert J, Schubert P, Goesmann A, Kalinowski J, Wilke T, Kämpfer P, Glaeser SP. High diversity of Vibrio spp. associated with different ecological niches in a marine aquaria system and description of Vibrio aquimaris sp. nov. Syst Appl Microbiol 2020; 43:126123. [PMID: 32847789 DOI: 10.1016/j.syapm.2020.126123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
The aim of the study was to characterise the diversity and niche-specific colonization of Vibrio spp. in a marine aquaria system by a cultivation-dependent approach. A total of 53 Vibrio spp. isolates were cultured from different ecological niches in a marine aquarium including microplastic (MP) and sandy sediment particles (12 weeks after added sterile to the system), detritus, and the surrounding aquarium water. Based on the 16S rRNA gene sequence phylogeny and multilocus sequence analysis (MLSA) the isolates were assigned to seven different phylotypes. Six phylotypes were identified by high probability to the species level. The highest phylotype diversity was cultured from detritus and water (six out of seven phylotypes), while only two phylotypes were cultured from MP and sediment particles. Genomic fingerprinting indicated an even higher genetic diversity of Vibrio spp. at the strain (genotype) level. Again, the highest diversity of genotypes was recovered from detritus and water while only few partially particle-type specific genotypes were cultured from MP and sediment particles. Phylotype V-2 formed an independent branch in the MLSA tree and could not be assigned to a described Vibrio species. Isolates of this phylotype showed highest 16S rRNA gene sequence similarity to type strains of Vibrio japonicus (98.5%) and Vibrio caribbeanicus (98.4%). A representative isolate, strain THAF100T, was characterised by a polyphasic taxonomic approach and Vibrio aquimaris sp. nov., with strain THAF100T (=DSM 109633T=LMG 31434T=CIP 111709T) as type strain, is proposed as novel species.
Collapse
Affiliation(s)
- Angel Franco
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany; Corporation Center of Excellence in Marine Sciences-CEMarin, Carrera 21 # 35-53, Bogotá, Colombia
| | - Christian Rückert
- Technology Platform Genomics, Center for Biotechnology (CeBiTec), Universität Bielefeld, 33594 Bielefeld, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology (CeBiTec), Universität Bielefeld, 33594 Bielefeld, Germany
| | - Jessica Reichert
- Corporation Center of Excellence in Marine Sciences-CEMarin, Carrera 21 # 35-53, Bogotá, Colombia; Institut für Tierökologie und Spezielle Zoologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Patrick Schubert
- Corporation Center of Excellence in Marine Sciences-CEMarin, Carrera 21 # 35-53, Bogotá, Colombia; Institut für Tierökologie und Spezielle Zoologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Jörn Kalinowski
- Technology Platform Genomics, Center for Biotechnology (CeBiTec), Universität Bielefeld, 33594 Bielefeld, Germany
| | - Thomas Wilke
- Corporation Center of Excellence in Marine Sciences-CEMarin, Carrera 21 # 35-53, Bogotá, Colombia; Institut für Tierökologie und Spezielle Zoologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany; Corporation Center of Excellence in Marine Sciences-CEMarin, Carrera 21 # 35-53, Bogotá, Colombia.
| |
Collapse
|
7
|
Unno K, Kaweewan I, Nakagawa H, Kodani S. Heterologous expression of a cryptic gene cluster from Grimontia marina affords a novel tricyclic peptide grimoviridin. Appl Microbiol Biotechnol 2020; 104:5293-5302. [DOI: 10.1007/s00253-020-10605-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
|
8
|
Spatiotemporal Dynamics of Free-Living and Particle-Associated Vibrio Communities in the Northern Chinese Marginal Seas. Appl Environ Microbiol 2019; 85:AEM.00217-19. [PMID: 30824453 DOI: 10.1128/aem.00217-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/17/2019] [Indexed: 12/28/2022] Open
Abstract
Vibrio species are associated with human health and play important roles in the carbon cycle. The interest in the Vibrio ecology in marine pelagic environments has increased in recent years, and the correlations between the Vibrio community structure and various environmental factors have been demonstrated. However, the identification of planktonic Vibrio species and their relationship with particulate matter are unclear. Here, we elucidated the spatiotemporal dynamics of Vibrio diversity and in relation to environmental factors in the northern Chinese marginal seas, which feature complex and ever-changing environmental conditions. Vibrio abundance derived from quantitative PCR analysis was higher in summer (∼1.4 × 106 copies liter-1) than in winter (∼1.9 × 105 copies liter-1). Interestingly, the average amount of free-living (on a 0.22-μm-pore-size filter membrane) Vibrio was higher (∼3.89 times) than that of particle-associated Vibrio (on a 3-μm-pore-size filter membrane), making it likely that the preferential lifestyle of the planktonic Vibrio community was free living. Shifts in Vibrio community composition identified by high-throughput amplicon sequencing of the Vibrio-specific 16S rRNA gene were observed at both spatial and temporal scales, which were mainly driven by temperature, dissolved oxygen, ammonium, salinity, nitrite, and phosphate. The most prominent operational taxonomic units in summer were closely related to Vibrio campbellii and Vibrio caribbeanicus and shifted to those affiliated with Vibrio atlanticus in winter. Our study demonstrated abundant and diverse Vibrio populations in the northern Chinese marginal seas, contributing to a better understanding of their potential ecological roles in these ecosystems.IMPORTANCE The dynamics of Vibrio communities have been shown in many marine habitats that are close to land, including estuary or harbor areas. Here, we investigated the spatiotemporal dynamics of Vibrio populations in the northern Chinese marginal seas, spanning a wide spatial scale. We showed that the abundances of the Vibrio population in the present study were higher than those in most previously studied areas and that Vibrio species are more likely to adopt a free-living lifestyle. Moreover, our results expanded upon previous results by showing a clear shift in the dominant Vibrio species from summer to winter, which was mainly attributable to the reduction in the abundance of dominant species in summer. Overall, this work contributes to the understanding of the ecology of the Vibrio communities in the marginal seas.
Collapse
|
9
|
Miller KA, Tomberlin KF, Dziejman M. Vibrio variations on a type three theme. Curr Opin Microbiol 2019; 47:66-73. [PMID: 30711745 DOI: 10.1016/j.mib.2018.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 11/18/2022]
Abstract
Mounting evidence suggests that Type 3 Secretion Systems (T3SS) are widespread among Vibrio species, and are present in strains isolated from diverse sources such as human clinical infections, environmental reservoirs, and diseased marine life. Experiments evaluating Vibrio parahaemolyticus and Vibrio cholerae T3SS mediated virulence suggest that Vibrio T3SS pathogenicity islands have a tripartite composition. A conserved 'core' region encodes functions essential for colonization and disease in vivo, including modulation of innate immune signaling pathways and actin dynamics, whereas regions flanking core sequences are variable among strains and encode effector proteins performing a diverse array of activities. Characterizing novel functions associated with Vibrio-specific effectors is, therefore, essential for understanding how vibrios employ T3SS mechanisms to cause disease in a broad range of hosts and how T3SS island composition potentially defines species-specific disease.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Katharine F Tomberlin
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
10
|
Misra HS, Maurya GK, Kota S, Charaka VK. Maintenance of multipartite genome system and its functional significance in bacteria. J Genet 2018. [DOI: 10.1007/s12041-018-0969-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Huang J, Zeng B, Liu D, Wu R, Zhang J, Liao B, He H, Bian F. Classification and structural insight into vibriolysin-like proteases of Vibrio pathogenicity. Microb Pathog 2018; 117:335-340. [PMID: 29510206 DOI: 10.1016/j.micpath.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/17/2022]
Abstract
Vibriolysin-like proteases (VLPs) are important virulence agents in the arsenal of Vibrio causing instant cytotoxic effects during infection. Most of Vibrio secreted VLPs show serious pathogenicity, while some species of Vibrio with VLPs are non-pathogenic, like Vibrio tasmaniensis and Vibrio pacinii. To investigate the relation between VLPs and Vibrio pathogenicity, one phylogenetic tree of VLPs was constructed and compared consensus sequences at the N-terminus of VLPs. Based on these results, VLPs were defined into nine phylogenetic clades. Pathogenicity analysis of Vibrio showed that Vibrio species with VLPs III, VI, VII or VIII are serious pathogenic bacteria, while species with VLPs I, II, IV or IX are opportunistic pathogens. Multiple sequence alignment showed that the N-terminal 5-16 nucleotides of each clade are highly conservative. Topological analysis of VLPs exhibited the structural differences in N-terminal regions of each VLP clade. These results suggest that structure of N-terminus might play a key role in the pathogenicity of VLPs. Our findings give new insights into the classification of VLPs and the relationship between VLPs and Vibrio pathogenicity.
Collapse
Affiliation(s)
- JiaFeng Huang
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - BingQi Zeng
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - Dan Liu
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - RiBang Wu
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - Jiang Zhang
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - BinQiang Liao
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China
| | - HaiLun He
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha 410013, China.
| | - Fei Bian
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250000, China.
| |
Collapse
|
12
|
Fang Y, Chen A, Dai H, Huang Y, Kan B, Wang D. Vibrio fujianensis sp. nov., isolated from aquaculture water. Int J Syst Evol Microbiol 2018; 68:1146-1152. [PMID: 29458501 DOI: 10.1099/ijsem.0.002642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A Gram-stain-negative, facultatively anaerobic strain, designated FJ201301T, was isolated from aquaculture water collected from Fujian province, China. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain FJ201301T belonged to the genus Vibrio, formed a distinct cluster with Vibriocincinnatiensis ATCC 35912T and shared the highest similarity with Vibriosalilacus CGMCC 1.12427T. A 15 bp insertion found in the 16S rRNA gene was a significant marker that distinguished strain FJ201301T from several phylogenetic neighbours (e.g. V. cincinnatiensis). Multilocus sequence analysis of eight genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA; concatenated 4135 bp sequence) showed that, forming a long and independent phylogenetic branch, strain FJ201301T clustered with V. cincinnatiensis ATCC 35912T, Vibrioinjenensis KCTC 32233T and Vibriometschnikovii CIP 69.14T clearly separated from V. salilacus CGMCC 1.12427T. Furthermore, the highest in silico DNA-DNA hybridization and average nucleotide identity values between strain FJ201301T and the closest related species were 26.3 and 83.1 % with V. cincinnatiensis ATCC 35912T, less than the proposed cutoff levels for species delineation, i.e. 70 and 95 %, respectively. Biochemical, sequence and genomic analysis suggested the designation of strain FJ201301T representing a novel species of the genus Vibrio, for which the name Vibrio fujianensis sp. nov. is proposed. The type strain is FJ201301T (=DSM 104687T=CGMCC 1.16099T).
Collapse
Affiliation(s)
- Yujie Fang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, PR China.,Center for Human Pathogen Collection, China CDC, Beijing 102206, PR China
| | - Aiping Chen
- Center for Disease Control and Prevention of Fujian Province, Fuzhou 350001, PR China
| | - Hang Dai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, PR China.,Center for Human Pathogen Collection, China CDC, Beijing 102206, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, PR China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, PR China
| | - Duochun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, PR China.,Center for Human Pathogen Collection, China CDC, Beijing 102206, PR China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, PR China
| |
Collapse
|
13
|
Doi H, Osawa I, Adachi H, Kawada M. Vibrio japonicus sp. nov., a novel member of the Nereis clade in the genus Vibrio isolated from the coast of Japan. PLoS One 2017; 12:e0172164. [PMID: 28231272 PMCID: PMC5322892 DOI: 10.1371/journal.pone.0172164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
A novel Vibrio strain, JCM 31412T, was isolated from seawater collected from the Inland Sea (Setonaikai), Japan, and characterized as a Gram-negative, oxidase-positive, catalase-negative, facultatively anaerobic, motile, ovoid-shaped bacterium with one polar flagellum. Based on 16S rDNA gene identity, strain JCM 31412T showed a close relationship with type strains of Vibrio brasiliensis (LMG 20546T, 98.2% identity), V. harveyi (NBRC 15634T, 98.2%), V. caribbeanicus (ATCC BAA-2122T, 97.8%) and V. proteolyticus (NBRC 13287T, 97.8%). The G+C content of strain JCM 31412T DNA was 46.8%. Multi-locus sequence analysis (MLSA) of eight loci (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA; 5535bp) further clustered strain JCM 31412T in the Nereis clade, genus Vibrio. Phenotypically, strain JCM 31412T differed from the closest related Vibrio species in its utilization of melibiose and raffinose, and its lack of casein and gelatin hydrolysis. It was further differentiated based on its fatty acid composition, specifically properties of C12:03OH and summed features, which were significantly different from those of V. brasiliensis, V. nigripulchritudo and V. caribbeanicus type strains. Overall, the results of DNA-DNA hybridization, and physiological and biochemical analysis differentiated strain JCM 31412T from other described species of the genus Vibrio. Based on these polyphasic taxonomic findings, it was therefore concluded that JCM 31412T was a novel Vibrio species, for which the name Vibrio japonicus sp. nov. was proposed, with JCM 31412T (= LMG 29636T = ATCC TSD-62T) as the type strain.
Collapse
Affiliation(s)
- Hiroyasu Doi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Numazu-shi, Shizuoka, Japan
- * E-mail:
| | - Ikuko Osawa
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo, Japan
| | - Hayamitsu Adachi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Numazu-shi, Shizuoka, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Numazu-shi, Shizuoka, Japan
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo, Japan
| |
Collapse
|
14
|
Dubert J, Romalde JL, Spinard EJ, Nelson DR, Gomez-Chiarri M, Barja JL. Reclassification of the larval pathogen for marine bivalves Vibrio tubiashii subsp. europaeus as Vibrio europaeus sp. nov. Int J Syst Evol Microbiol 2016; 66:4791-4796. [PMID: 27538951 DOI: 10.1099/ijsem.0.001431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Orientalis clade has a relevant significance for bivalve aquaculture since it includes the pathogens Vibrio bivalvicida, Vibrio tubiashii subsp. tubiashii and Vibrio tubiashii subsp. europaeus. However, the previous taxonomic description of the subspecies of V. tubiashii shows some incongruities that should be emended. In the genomic age, the comparison between genome assemblies is the key to clarify the taxonomic position of both subspecies. With this purpose, we have tested the ability of multilocus sequence analysis based on eight housekeeping gene sequences (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA and topA), different in silico genome-to-genome comparisons, chemotaxonomic features and phenotypic traits to reclassify the subspecies V. tubiashii subsp. europaeus within the Orientalis clade. This polyphasic approach clearly demonstrated that this subspecies is phylogenetically and phenotypically distinct from V. tubiashii and should be elevated to the rank of species as Vibrio europaeus sp. nov. This reclassification allows us to update the Orientalis clade (V. bivalvicida,V. brasiliensis, V. crosai, V. hepatarius, V. orientalis, V. sinaloensis, V. tubiashii and V. europaeus sp. nov.) and reconstruct a better phylogeny of the genus Vibrio. An emended description of V. tubiashii is provided. Finally, the proposed novel species is represented by emergent bivalve pathogens [type strain PP-638T (=CECT 8136T=DSM 27349T), PP2-843 and 07/118 T2] responsible for high mortalities in Spanish and French hatcheries.
Collapse
Affiliation(s)
- Javier Dubert
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Edward J Spinard
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - David R Nelson
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Juan L Barja
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
15
|
Abstract
Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are a heterogeneous group of toxins found in a number of Vibrio species and other Gram-negative bacteria. The toxins are composed of conserved repeat regions and an autoprocessing protease domain that together function as a delivery platform for transfer of cytotoxic and cytopathic domains into target eukaryotic cell cytosol. Within the cells, the effectors can alter biological processes such as signaling or cytoskeletal structure, presumably to the benefit of the bacterium. Ten effector domains are found in the various Vibrio MARTX toxins, although any one toxin carries only two to five effector domains. The specific toxin variant expressed by a species can be modified by homologous recombination to acquire or lose effector domains, such that different strains within the same species can express distinct variants of the toxins. This review examines the conserved structural elements of the MARTX toxins and details the different toxin arrangements carried by Vibrio species and strains. The catalytic function of domains and how the toxins are linked to pathogenesis of human and animals is described.
Collapse
|
16
|
Fournier PE, Lagier JC, Dubourg G, Raoult D. From culturomics to taxonomogenomics: A need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe 2015; 36:73-8. [DOI: 10.1016/j.anaerobe.2015.10.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/06/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023]
|
17
|
Dubert J, Romalde JL, Prado S, Barja JL. Vibrio bivalvicida sp. nov., a novel larval pathogen for bivalve molluscs reared in a hatchery. Syst Appl Microbiol 2015; 39:8-13. [PMID: 26654527 DOI: 10.1016/j.syapm.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/30/2015] [Accepted: 10/31/2015] [Indexed: 11/25/2022]
Abstract
Three isolates were obtained from cultures of carpet shell clam (Ruditapes decussatus) reared in a bivalve hatchery (Galicia, NW Spain) from different sources: healthy broodstock, moribund larvae and the seawater corresponding to the larval tank. All isolates were studied by a polyphasic approach, including a phylogenetic analysis based on concatenated sequences of the five housekeeping genes ftsZ, gyrB, pyrH, recA and rpoA. The analysis supported their inclusion in the Orientalis clade of the genus Vibrio, and they formed a tight group separated from the closest relatives: Vibrio tubiashii subsp. europaensis, Vibrio tubiashii subsp. tubiashii and Vibrio orientalis. The percentages of genomic resemblance, including average nucleotide identity, DNA-DNA hybridization and in silico genome-to-genome comparison, between the type strain and the closest relatives were below values for species delineation and confirmed the taxonomic position of the new species, which could be differentiated from the related taxa on the basis of several phenotypic and chemotaxonomic features, including FAME and MALDI-TOF-MS. The pathogenicity of the new species was demonstrated in larvae of R. decussatus, Ruditapes philippinarum, Ostrea edulis and Donax trunculus. The results demonstrated that the strains analyzed represented a novel species in the Orientalis clade of the genus Vibrio, for which the name Vibrio bivalvicida sp. nov. is proposed, with 605(T) (= CECT 8855(T)=CAIM 1904(T)) designated as the type strain.
Collapse
Affiliation(s)
- Javier Dubert
- Departamento de Microbiología y Parasitología, CIBUS - Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS - Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Susana Prado
- Departamento de Microbiología y Parasitología, CIBUS - Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Juan L Barja
- Departamento de Microbiología y Parasitología, CIBUS - Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
18
|
Zhong ZP, Liu Y, Liu HC, Wang F, Zhou YG, Liu ZP. Vibrio salilacus sp. nov., a new member of the Anguillarum clade with six alleles of the 16S rRNA gene from a saline lake. Int J Syst Evol Microbiol 2015; 65:2653-2660. [DOI: 10.1099/ijs.0.000316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A Gram-stain-negative, catalase- and oxidase-positive, facultatively aerobic bacterium, strain DSG-S6T, was isolated from Dasugan Lake (salinity 3.1 %, w/w), China. Its taxonomic position was determined by using a polyphasic approach. Cells of strain DSG-S6T were non-spore-forming, slightly bent rods, and motile by means of a single polar flagellum. Growth occurred in the presence of 0–7.0 % (w/v) NaCl (optimum, 2.0 %), at 4–35 °C (optimum, 30 °C) and at pH 6.0–10.5 (optimum, pH 8.0–8.5). C16 : 0, C18 : 1ω7c and C16 : 1ω7c and/or C16 : 1ω6c were the major fatty acids. Six alleles of the 16S rRNA gene sharing 98.9–99.9 % similarity were detected in strain DSG-S6T, which showed highest 16S rRNA gene sequence similarity to Vibrio aestuarianus ATCC 35048T (97.7 %), then to Vibrio pacinii LMG 19999T (97.6 %) and Vibrio metschnikovii CIP 69.14T (96.8 %). Multilocus sequence analysis of four housekeeping genes and 16S rRNA genes clearly clustered it as a member of the Anguillarum clade. Mean DNA–DNA relatedness between strain DSG-S6T and V. aestuarianus NBRC 15629T, V. pacinii CGMCC 1.12557T and V. metschnikovii JCM 21189T was 20.6 ± 2.3, 38.1 ± 3.5 and 24.2 ± 2.8 %, respectively. The DNA G+C content was 46.8 mol% (T
m). Based on the data, it is concluded that strain DSG-S6T represents a novel species of the genus Vibrio, for which the name Vibrio salilacus sp. nov. is proposed. The type strain is DSG-S6T ( = CGMCC 1.12427T = JCM 19265T).
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hong-Can Liu
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fang Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100089, PR China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
19
|
The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015; 28:237-64. [PMID: 25567229 DOI: 10.1128/cmr.00014-14] [Citation(s) in RCA: 546] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial culture was the first method used to describe the human microbiota, but this method is considered outdated by many researchers. Metagenomics studies have since been applied to clinical microbiology; however, a "dark matter" of prokaryotes, which corresponds to a hole in our knowledge and includes minority bacterial populations, is not elucidated by these studies. By replicating the natural environment, environmental microbiologists were the first to reduce the "great plate count anomaly," which corresponds to the difference between microscopic and culture counts. The revolution in bacterial identification also allowed rapid progress. 16S rRNA bacterial identification allowed the accurate identification of new species. Mass spectrometry allowed the high-throughput identification of rare species and the detection of new species. By using these methods and by increasing the number of culture conditions, culturomics allowed the extension of the known human gut repertoire to levels equivalent to those of pyrosequencing. Finally, taxonogenomics strategies became an emerging method for describing new species, associating the genome sequence of the bacteria systematically. We provide a comprehensive review on these topics, demonstrating that both empirical and hypothesis-driven approaches will enable a rapid increase in the identification of the human prokaryote repertoire.
Collapse
|
20
|
Fournier PE, Drancourt M. New Microbes New Infections promotes modern prokaryotic taxonomy: a new section "TaxonoGenomics: new genomes of microorganisms in humans". New Microbes New Infect 2015. [PMID: 26199732 PMCID: PMC4506979 DOI: 10.1016/j.nmni.2015.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005, Marseille, France
| | - Michel Drancourt
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005, Marseille, France
| |
Collapse
|
21
|
Tarazona E, Ruvira MA, Lucena T, Macián MC, Arahal DR, Pujalte MJ. Vibrio renipiscarius sp. nov., isolated from cultured gilthead sea bream (Sparus aurata). Int J Syst Evol Microbiol 2015; 65:1941-1945. [DOI: 10.1099/ijs.0.000200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains of Gram-negative, facultatively anaerobic, slightly halophilic bacteria, isolated from healthy gilthead sea bream (Sparus aurata) cultured in Spanish Mediterranean fish farms, were different from their closest relatives, Vibrio scophthalmi and V. ichthyoenteri, by phenotypic, phylogenetic and genomic standards. The strains were negative for decarboxylase tests and lacked extracellular hydrolytic activities, but were able to ferment d-mannitol, sucrose, cellobiose and d-gluconate, among other carbohydrates. The major cellular fatty acids were C16:
1 and C16:
0, in agreement with other species of the genus Vibrio. Their 16S rRNA gene sequences were 98.4 and 97.2 % similar to those of the type strains of V. scophthalmi and V. ichthyoenteri, and the similarities using other housekeeping genes (ftsZ, rpoD, recA, mreB and gyrB) and indices of genomic resemblance (average nucleotide identity and estimated DNA–DNA hybridization) between the isolates and those type strains were clearly below intraspecific levels, supporting the recognition of the strains as members of a separate novel species. Thus, we propose the name Vibrio renipiscarius sp. nov., with DCR 1-4-2T ( = CECT 8603T = KCTC 42287T) as the type strain.
Collapse
Affiliation(s)
- Eva Tarazona
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Valencia, Spain
| | - María A. Ruvira
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Valencia, Spain
| | - Teresa Lucena
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Valencia, Spain
| | - M. Carmen Macián
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Valencia, Spain
| | - David R. Arahal
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Valencia, Spain
| | - María J. Pujalte
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Valencia, Spain
| |
Collapse
|
22
|
Kumari P, Poddar A, Schumann P, Das SK. Vibrio panuliri sp. nov., a marine bacterium isolated from spiny lobster, Panulirus penicillatus and transfer of Vibrio ponticus from Scophthalmi clade to the newly proposed Ponticus clade. Res Microbiol 2014; 165:826-35. [PMID: 25445014 DOI: 10.1016/j.resmic.2014.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 01/29/2023]
Abstract
A novel marine bacterium, strain LBS2(T) was isolated from eggs carried on pleopods of the spiny lobster collected from Andaman Sea. Heterotrophic growth occurred at 1-7% NaCl. 16S rRNA gene sequence similarity revealed the strain LBS2(T) belonged to the genus Vibrio and showed above 97% similarity with eight type strains of the genus Vibrio. Multilocus analysis based on ftsZ, gapA, gyrB, mreB, pyrH recA, rpoA, and topA revealed LBS2(T) formed a separate cluster with Vibrio ponticus DSM 16217(T) with 89.8% multilocus gene sequence similarity. However, strain LBS2(T) is distantly related with other members of the Scophthalmi clade in terms of 16S rRNA signatures, phenotypic variations and multilocus gene sequence similarity, for which we propose LBS2(T) belongs to a new clade i.e. Ponticus clade with V. ponticus DSM 16217(T) as the representative type strain of the clade. DNA-DNA homologies between strain LBS2(T) and closely related strains were well below 70%. DNA G + C content was 45.3 mol%. On the basis of our polyphasic study, strain LBS2(T) represents a novel species of the genus Vibrio, for which the name Vibrio panuliri sp. nov. is proposed. The type strain is LBS2(T) (= JCM 19500(T) = DSM 27724(T) = LMG 27902(T)).
Collapse
Affiliation(s)
- Prabla Kumari
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar 751 023, Odisha, India
| | - Abhijit Poddar
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar 751 023, Odisha, India
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Subrata K Das
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar 751 023, Odisha, India.
| |
Collapse
|
23
|
Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316-324. [PMID: 24505069 DOI: 10.1099/ijs.0.054171-0] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The polyphasic approach used today in the taxonomy and systematics of the Bacteria and Archaea includes the use of phenotypic, chemotaxonomic and genotypic data. The use of 16S rRNA gene sequence data has revolutionized our understanding of the microbial world and led to a rapid increase in the number of descriptions of novel taxa, especially at the species level. It has allowed in many cases for the demarcation of taxa into distinct species, but its limitations in a number of groups have resulted in the continued use of DNA-DNA hybridization. As technology has improved, next-generation sequencing (NGS) has provided a rapid and cost-effective approach to obtaining whole-genome sequences of microbial strains. Although some 12,000 bacterial or archaeal genome sequences are available for comparison, only 1725 of these are of actual type strains, limiting the use of genomic data in comparative taxonomic studies when there are nearly 11,000 type strains. Efforts to obtain complete genome sequences of all type strains are critical to the future of microbial systematics. The incorporation of genomics into the taxonomy and systematics of the Bacteria and Archaea coupled with computational advances will boost the credibility of taxonomy in the genomic era. This special issue of International Journal of Systematic and Evolutionary Microbiology contains both original research and review articles covering the use of genomic sequence data in microbial taxonomy and systematics. It includes contributions on specific taxa as well as outlines of approaches for incorporating genomics into new strain isolation to new taxon description workflows.
Collapse
Affiliation(s)
- Jongsik Chun
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Fred A Rainey
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| |
Collapse
|
24
|
Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E, Raoult D, Fournier PE. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 2014; 64:384-391. [DOI: 10.1099/ijs.0.057091-0] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, bacterial taxonomy relies on a polyphasic approach based on the combination of phenotypic and genotypic characteristics. However, the current situation is paradoxical in that the genetic criteria that are used, including DNA–DNA hybridization, 16S rRNA gene sequence nucleotide similarity and phylogeny, and DNA G+C content, have significant limitations, but genome sequences that contain the whole genetic information of bacterial strains are not used for taxonomic purposes, despite the decreasing costs of sequencing and the increasing number of available genomes. Recently, we diversified bacterial culture conditions with the aim of isolating uncultivated bacteria. To classify the putative novel species that we cultivated, we used a polyphasic strategy that included phenotypic as well as genomic criteria (genome characteristics as well as genomic sequence similarity). Herein, we review the pros and cons of genome sequencing for taxonomy and propose that the incorporation of genome sequences in taxonomic studies has the advantage of using reliable and reproducible data. This strategy, which we name taxono-genomics, may contribute to the taxonomic classification of bacteria.
Collapse
Affiliation(s)
- Dhamodharan Ramasamy
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Ajay Kumar Mishra
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jean-Christophe Lagier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Roshan Padhmanabhan
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Morgane Rossi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Erwin Sentausa
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes URMITE, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, UMR63, CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
25
|
Romalde JL, Dieguez AL, Lasa A, Balboa S. New Vibrio species associated to molluscan microbiota: a review. Front Microbiol 2014; 4:413. [PMID: 24427157 PMCID: PMC3877837 DOI: 10.3389/fmicb.2013.00413] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/16/2013] [Indexed: 01/22/2023] Open
Abstract
The genus Vibrio consists of more than 100 species grouped in 14 clades that are widely distributed in aquatic environments such as estuarine, coastal waters, and sediments. A large number of species of this genus are associated with marine organisms like fish, molluscs and crustaceans, in commensal or pathogenic relations. In the last decade, more than 50 new species have been described in the genus Vibrio, due to the introduction of new molecular techniques in bacterial taxonomy, such as multilocus sequence analysis or fluorescent amplified fragment length polymorphism. On the other hand, the increasing number of environmental studies has contributed to improve the knowledge about the family Vibrionaceae and its phylogeny. Vibrio crassostreae, V. breoganii, V. celticus are some of the new Vibrio species described as forming part of the molluscan microbiota. Some of them have been associated with mortalities of different molluscan species, seriously affecting their culture and causing high losses in hatcheries as well as in natural beds. For other species, ecological importance has been demonstrated being highly abundant in different marine habitats and geographical regions. The present work provides an updated overview of the recently characterized Vibrio species isolated from molluscs. In addition, their pathogenic potential and/or environmental importance is discussed.
Collapse
Affiliation(s)
- Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidad de Santiago de Compostela, Santiago de CompostelaSpain
| | | | | | | |
Collapse
|
26
|
|
27
|
Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin AR, Mino S, Nakagawa S, Sawabe T, Kumar R, Fukui Y, Satomi M, Matsushima R, Thompson FL, Gomez-Gil B, Christen R, Maruyama F, Kurokawa K, Hayashi T. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol 2013; 4:414. [PMID: 24409173 PMCID: PMC3873509 DOI: 10.3389/fmicb.2013.00414] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022] Open
Abstract
To date 142 species have been described in the Vibrionaceae family of bacteria, classified into seven genera; Aliivibrio, Echinimonas, Enterovibrio, Grimontia, Photobacterium, Salinivibrio and Vibrio. As vibrios are widespread in marine environments and show versatile metabolisms and ecologies, these bacteria are recognized as one of the most diverse and important marine heterotrophic bacterial groups for elucidating the correlation between genome evolution and ecological adaptation. However, on the basis of 16S rRNA gene phylogeny, we could not find any robust monophyletic lineages in any of the known genera. We needed further attempts to reconstruct their evolutionary history based on multilocus sequence analysis (MLSA) and/or genome wide taxonomy of all the recognized species groups. In our previous report in 2007, we conducted the first broad multilocus sequence analysis (MLSA) to infer the evolutionary history of vibrios using nine housekeeping genes (the 16S rRNA gene, gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA), and we proposed 14 distinct clades in 58 species of Vibrionaceae. Due to the difficulty of designing universal primers that can amplify the genes for MLSA in every Vibrionaceae species, some clades had yet to be defined. In this study, we present a better picture of an updated molecular phylogeny for 86 described vibrio species and 10 genome sequenced Vibrionaceae strains, using 8 housekeeping gene sequences. This new study places special emphasis on (1) eight newly identified clades (Damselae, Mediterranei, Pectenicida, Phosphoreum, Profundum, Porteresiae, Rosenbergii, and Rumoiensis); (2) clades amended since the 2007 proposal with recently described new species; (3) orphan clades of genomospecies F6 and F10; (4) phylogenetic positions defined in 3 genome-sequenced strains (N418, EX25, and EJY3); and (5) description of V. tritonius sp. nov., which is a member of the “Porteresiae” clade.
Collapse
Affiliation(s)
- Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University Hakodate, Japan
| | - Yoshitoshi Ogura
- Division of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki Miyazaki, Japan
| | - Yuta Matsumura
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University Hakodate, Japan
| | - Gao Feng
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University Hakodate, Japan
| | - Akm Rohul Amin
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University Hakodate, Japan
| | - Satoshi Nakagawa
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University Hakodate, Japan
| | - Toko Sawabe
- Department of Food and Nutrition, Hakodate Junior College Hakodate, Japan
| | - Ramesh Kumar
- National Institute for Interdisciplinary Science and Technology (CSIR) Kerala, India
| | - Yohei Fukui
- National Research Institute of Fisheries Science, Fisheries Research Agency Yokohama, Japan
| | - Masataka Satomi
- National Research Institute of Fisheries Science, Fisheries Research Agency Yokohama, Japan
| | - Ryoji Matsushima
- National Research Institute of Fisheries Science, Fisheries Research Agency Yokohama, Japan
| | - Fabiano L Thompson
- Department of Genetics, Center of Health Sciences, Federal University of Rio de Janeiro (UFRS) Rio de Janeiro, Brazil
| | | | - Richard Christen
- CNRS UMR 7138, Systématique-Adaptation-Evolution Nice, France ; Systématique-Adaptation-Evolution, Université de Nice-Sophia Antipolis Nice, France
| | - Fumito Maruyama
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Ken Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology Tokyo, Japan
| | - Tetsuya Hayashi
- Division of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki Miyazaki, Japan
| |
Collapse
|
28
|
Padmanabhan R, Mishra AK, Raoult D, Fournier PE. Genomics and metagenomics in medical microbiology. J Microbiol Methods 2013; 95:415-24. [PMID: 24200711 DOI: 10.1016/j.mimet.2013.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
Abstract
Over the last two decades, sequencing tools have evolved from laborious time-consuming methodologies to real-time detection and deciphering of genomic DNA. Genome sequencing, especially using next generation sequencing (NGS) has revolutionized the landscape of microbiology and infectious disease. This deluge of sequencing data has not only enabled advances in fundamental biology but also helped improve diagnosis, typing of pathogen, virulence and antibiotic resistance detection, and development of new vaccines and culture media. In addition, NGS also enabled efficient analysis of complex human micro-floras, both commensal, and pathological, through metagenomic methods, thus helping the comprehension and management of human diseases such as obesity. This review summarizes technological advances in genomics and metagenomics relevant to the field of medical microbiology.
Collapse
Affiliation(s)
- Roshan Padmanabhan
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix-Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, 27 Bd. Jean Moulin, 13005 Marseille, France
| | | | | | | |
Collapse
|
29
|
Dupont S, Carré-Mlouka A, Descarrega F, Ereskovsky A, Longeon A, Mouray E, Florent I, Bourguet-Kondracki ML. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae). Lett Appl Microbiol 2013; 58:42-52. [PMID: 24033393 DOI: 10.1111/lam.12154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/16/2022]
Abstract
UNLABELLED The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. SIGNIFICANCE AND IMPACT OF THE STUDY This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds.
Collapse
Affiliation(s)
- S Dupont
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sentausa E, Fournier PE. Advantages and limitations of genomics in prokaryotic taxonomy. Clin Microbiol Infect 2013; 19:790-5. [DOI: 10.1111/1469-0691.12181] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Comparative genomics of pathogenic lineages of Vibrio nigripulchritudo identifies virulence-associated traits. ISME JOURNAL 2013; 7:1985-96. [PMID: 23739050 DOI: 10.1038/ismej.2013.90] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 11/08/2022]
Abstract
Vibrio nigripulchritudo is an emerging pathogen of farmed shrimp in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have suggested that pathogenicity is linked to particular lineages. Here, we performed high-throughput sequencing-based comparative genome analysis of 16 V. nigripulchritudo strains to explore the genomic diversity and evolutionary history of pathogen-containing lineages and to identify pathogen-specific genetic elements. Our phylogenetic analysis revealed three pathogen-containing V. nigripulchritudo clades, including two clades previously identified from New Caledonia and one novel clade comprising putatively pathogenic isolates from septicemic shrimp in Madagascar. The similar genetic distance between the three clades indicates that they have diverged from an ancestral population roughly at the same time and recombination analysis indicates that these genomes have, in the past, shared a common gene pool and exchanged genes. As each contemporary lineage is comprised of nearly identical strains, comparative genomics allowed differentiation of genetic elements specific to shrimp pathogenesis of varying severity. Notably, only a large plasmid present in all highly pathogenic (HP) strains encodes a toxin. Although less/non-pathogenic strains contain related plasmids, these are differentiated by a putative toxin locus. Expression of this gene by a non-pathogenic V. nigripulchritudo strain resulted in production of toxic culture supernatant, normally an exclusive feature of HP strains. Thus, this protein, here termed 'nigritoxin', is implicated to an extent that remains to be precisely determined in the toxicity of V. nigripulchritudo.
Collapse
|
32
|
Akram N, Palovaara J, Forsberg J, Lindh MV, Milton DL, Luo H, González JM, Pinhassi J. Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp. AND4. Environ Microbiol 2013; 15:1400-15. [PMID: 23379752 DOI: 10.1111/1462-2920.12085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/08/2013] [Indexed: 01/21/2023]
Abstract
Proteorhodopsin (PR), a ubiquitous membrane photoprotein in marine environments, acts as a light-driven proton pump and can provide energy for bacterial cellular metabolism. However, knowledge of factors that regulate PR gene expression in different bacteria remains strongly limited. Here, experiments with Vibrio sp. AND4 showed that PR phototrophy promoted survival only in cells from stationary phase and not in actively growing cells. PR gene expression was tightly regulated, with very low values in exponential phase, a pronounced peak at the exponential/stationary phase intersection, and a marked decline in stationary phase. Thus, PR gene expression at the entry into stationary phase preceded, and could therefore largely explain, the stationary phase light-induced survival response in AND4. Further experiments revealed nutrient limitation, not light exposure, regulated this differential PR expression. Screening of available marine vibrios showed that the PR gene, and thus the potential for PR phototrophy, is found in at least three different clusters in the genus Vibrio. In an ecological context, our findings suggest that some PR-containing bacteria adapted to the exploitation of nutrient-rich micro-environments rely on a phase of relatively slowly declining resources to mount a cellular response preparing them for adverse conditions dispersed in the water column.
Collapse
Affiliation(s)
- Neelam Akram
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, SE-39182, Kalmar, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Characterization of the biosynthetic operon for the antibacterial peptide herbicolin in Pantoea vagans biocontrol strain C9-1 and incidence in Pantoea species. Appl Environ Microbiol 2012; 78:4412-9. [PMID: 22504810 DOI: 10.1128/aem.07351-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pantoea vagans C9-1 is a biocontrol strain that produces at least two antibiotics inhibiting the growth of Erwinia amylovora, the causal agent of fire blight disease of pear and apple. One antibiotic, herbicolin I, was purified from culture filtrates of P. vagans C9-1 and determined to be 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine, also known as N(ß)-epoxysuccinamoyl-DAP-valine. A plasposon library was screened for mutants that had lost the ability to produce herbicolin I. It was shown that mutants had reduced biocontrol efficacy in immature pear assays. The biosynthetic gene cluster in P. vagans C9-1 was identified by sequencing the flanking regions of the plasposon insertion sites. The herbicolin I biosynthetic gene cluster consists of 10 coding sequences (CDS) and is located on the 166-kb plasmid pPag2. Sequence comparisons identified orthologous gene clusters in Pantoea agglomerans CU0119 and Serratia proteamaculans 568. A low incidence of detection of the biosynthetic cluster in a collection of 45 Pantoea spp. from biocontrol, environmental, and clinical origins showed that this is a rare trait among the tested strains.
Collapse
|
34
|
Gao ZM, Xiao J, Wang XN, Ruan LW, Chen XL, Zhang YZ. Vibrio xiamenensis sp. nov., a cellulase-producing bacterium isolated from mangrove soil. Int J Syst Evol Microbiol 2011; 62:1958-1962. [PMID: 22039001 DOI: 10.1099/ijs.0.033597-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study was carried out on a cellulase-producing bacterium, strain G21(T), isolated from mangrove soil in Xiamen, Fujian province, China. Cells were Gram-negative, slightly curved rods, motile with a single polar flagellum. The strain grew at 15-40 °C and in 0.5-10% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain G21(T) belonged to the genus Vibrio and formed a clade with Vibrio furnissii ATCC 350116(T) (97.4% sequence similarity), V. fluvialis LMG 7894(T) (97.1%) and V. ponticus CECT 5869(T) (96.1%). However, multilocus sequence analysis (using rpoA, recA, mreB, gapA, gyrB and pyrH sequences) and DNA-DNA hybridization experiments indicated that the strain was distinct from the closest related Vibrio species. Additionally, strain G21(T) could be differentiated from them phenotypically by the ability to grow in 10% NaCl but not on TCBS plates, its enzyme activity spectrum, citrate utilization, oxidization of various carbon sources, hydrolysis of several substrates and its cellular fatty acid profile. The G+C content of the genomic DNA was 46.0 mol%. The major cellular fatty acids were summed feature 3 (C(16:1)ω7c and/or iso-C(15:0) 2-OH), C(16:0) and C(18:1)ω7c. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol, with trace amounts of diphosphatidylglycerol. The predominant quinones were Q-8 and Q-7. Based on phylogenetic, phenotypic and chemotaxonomic characteristics and DNA-DNA hybridization analysis, it is concluded that strain G21(T) represents a novel species of the genus Vibrio, for which the name Vibrio xiamenensis sp. nov. is proposed. The type strain is G21(T) ( = DSM 22851(T) = CGMCC 1.10228(T)).
Collapse
Affiliation(s)
- Zhao-Ming Gao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China.,The State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Jing Xiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
| | - Xing-Na Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
| | - Ling-Wei Ruan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
| | - Xiu-Lan Chen
- The State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Yu-Zhong Zhang
- The State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| |
Collapse
|