1
|
Ge Z, Lu X, Zhang S, Yi L. Emission of CO 2 enhanced by thiamethoxam and cadmium in agricultural soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126190. [PMID: 40185184 DOI: 10.1016/j.envpol.2025.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The coexistence of neonicotinoid insecticide thiamethoxam (TMX) and heavy metal cadmium (Cd) is quite common in agricultural soils, yet their effects on the emission of greenhouse gas CO2 remain insufficiently studied. To address this issue, microcosms spiked with singe or combined TMX (20 mg/kg) and Cd (20 mg/kg) in soil were studied for 90 days. It turned out that single TMX (+12.13 %) and Cd (+22.76 %) both stimulated the emission of CO2, and the combined TMX and Cd exhibited synergic effect (+51.00 %). The presence of Cd reduced the attenuation of TMX (-3.32 %), while the presence of TMX increased the attenuation of Cd (+3.11 %). The relative abundances of bacteria Sphingomonas, Devosia, Erythrobacter, Phaselicystis, Woeseia, FFCH7168, Rhizorhapis, Hamadaea and genes related to sugar metabolism, glycolysis and the TCA cycle were found positively correlated to CO2 emission in the studied microcosms (p < 0.05). Results from this study provide scientific basis for developing sound environmental policies that aim to reduce CO2 emission from agricultural soils.
Collapse
Affiliation(s)
- Zaiming Ge
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaoxia Lu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Shuai Zhang
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lijin Yi
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Zhao S, Zhang H, Zhu Y, Xing Z, Chen W, Dong B, Zheng Z, Ji C, Xue Y, Liu X. Residual heavy metals and antibiotic pollution in abandoned breeding areas along the northeast coast of Hainan Island, China. MARINE POLLUTION BULLETIN 2025; 212:117518. [PMID: 39799815 DOI: 10.1016/j.marpolbul.2024.117518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
To assess the environmental status of an abandoned aquaculture and breeding area in the northeast coast of the Hainan Island, surface and well water, sediment and surface soils were sampled and analyzed for conventional physicochemical properties, heavy metals and antibiotics. Metagenome tests were also conducted to determine the composition and diversity of the microbial community in typical habitats. Affected by the discharge of wastewater from higher-place pond aquaculture, coastal freshwater rivers have undergone significant salinization, Cl- and Na+ were as high as 4.51 × 103 and 1.42 × 103 mg/L. The 3 hand-pumped wells surveyed were also suffered from varying degrees of salinization and heavy metal pollution, especially the threat of arsenic pollution. Compared with the local background values, significantly higher valves of Cu, Zn, As and Cd were observed in the surface soil and sediment, and the average concentrations for Cu, Zn, As and Cd are 5.71, 17.6, 15.4 and 0.09 mg/kg respectively. For As,the Nemerow index ranges from 7 to 16 and the geoaccumulation index is between 2 and 4, indicating moderate to severe pollution levels in surface soil. 14 antibiotics were detected in the soil and sediment samples, and the highest total amount was 73 μg/kg, with tetracycline being the dominant antibiotic. Sediment and forest soil showed different microbial community and the genetic diversity index of sediment was lower than that of the forest soils. For typical vegetation soil, the genetic diversity followed the order as P. elliottii × P. caribaea > Eucalyptus > C. equisetifolia. Among the soil and sediment samples, the highest abundances of antibiotic resistance genes (ARGs) were associated with elfamycin, peptide, rifamycin, and the most common antibiotic resistance mechanisms were antibiotic target alteration (54.5 %), antibiotic efflux (27.6 %) and antibiotic target replacement (12.1 %). The metal resistance genes (MRGs) for Cu, Fe, and Zn resistance were the main MRGs in the samples. This study identified the potential ecological environment risk factors in the abandoned coastal breeding areas, and suggested continuous monitoring and assessment of the residual pollutant abatement processes in the future.
Collapse
Affiliation(s)
- Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Haiyang Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zhe Xing
- Construction Quality Surveillance Center, Beijing 100143, China
| | - Wei Chen
- Construction Quality Surveillance Center, Beijing 100143, China
| | - Bin Dong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhangqin Zheng
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Chao Ji
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yulu Xue
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Podosokorskaya OA, Prokofeva MI, Kuchierskaya AA, Klyukina AA, Elcheninov AG. Tenuifilum osseticum sp. nov., a novel thermophilic hydrolytic bacterium within the Tenuifilaceae isolated from a North Ossetian thermal spring, and emended description of the genus Tenuifilum. Syst Appl Microbiol 2025; 48:126591. [PMID: 39951907 DOI: 10.1016/j.syapm.2025.126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/20/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
A novel anaerobic moderately thermophilic bacterium, strain 4138-strT, was isolated from a thermal spring of North Ossetia (Russian Federation). Gram-negative cells were non-sporeforming, straight or curved filamentous rods, occasionally forming rosettes. The strain grew at 30-55 °C, pH range of 6.1-8.7, NaCl range of 0-4 %, with an optimum at 50 °C, pH 7.1-7.5 and 0.2-0.4 % NaCl. It was a chemoorganoheterotroph, growing on simple sugars (glucose, maltose, cellobiose, etc.) and carbohydrates (starch, pullulan, laminarin, xylan, lichenan, curdlan, pachyman) or proteinaceous substrates (peptone, tryptone, gelatin, casein). Sulfur was used as electron acceptor. Major products of glucose fermentation were acetate, hydrogen, and carbon dioxide. Major cellular fatty acids were iso-C15:0 and anteiso-C15:0. The quinone was MK-7. The size of the whole genome of strain 4138-strT was 3.275 Mbp; DNA G + C content was 42.1 %. Genome analysis allowed to identify genes encoding carbohydrate-active enzymes and extracellular proteases. In addition, central metabolism and fermentation pathways of strain 4138-strT were reconstructed. According to both phylogenetic analyses, based on 16S rRNA gene sequences and conserved protein sequences, as well as genome-based comparisons, strain 4138-strT formed a species-level lineage within Tenuifilum genus of Tenuifilaceae family (phylum Bacteroidota). Here we propose a novel species Tenuifilum osseticum sp. nov. with type strain 4138-strT(=KCTC 25386T = VKM B-3628T = UQM 41477T).
Collapse
Affiliation(s)
- Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, 117312 Moscow, Russia.
| | - Maria I Prokofeva
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, 117312 Moscow, Russia
| | | | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, 117312 Moscow, Russia
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, 117312 Moscow, Russia
| |
Collapse
|
4
|
Prokofeva MI, Elcheninov AG, Klyukina AA, Novikov AA, Kachmazov GS, Toshchakov SV, Frolov EN, Podosokorskaya OA. Anaeroselena agilis gen. nov., sp. nov., a Novel Sulfite- and Arsenate-Respiring Bacterium Within the Family Acetonemataceae Isolated from a Thermal Spring of North Ossetia. Curr Microbiol 2025; 82:71. [PMID: 39757269 DOI: 10.1007/s00284-024-04046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
A novel Gram-negative, motile, rod-shaped bacterium, designated 4137-clT, was isolated from a thermal spring of North Ossetia (Russian Federation). Strain 4137-clT grew at 30-50 °C (optimum 42 °C) with 0-3.5% NaCl (optimum 0-0.3%) and within pH range 4.0-8.7 (optimum pH 6.8-7.3). It was a strictly anaerobic microorganism capable of fermentation and respiration on organic acids and proteinaceous substrates. Sulfur, sulfite, polysulfide, and arsenate were used as electron acceptors. In addition to heterotrophic growth it grew autotrophically with H2/CO2. The major fatty acids were C16:1 ω8c and C16:0. The size of the genome and genomic DNA G+C content of strain 4137-clT were 4.5 Mb and 59.2%, respectively. According to the 16S rRNA gene sequence and conserved protein sequences phylogenies, strain 4137-clT represented a distinct lineage of the family Acetonemataceae within the class Negativicutes. As inferred from the morphology, physiology, chemotaxonomical and phylogenomic analyses, strain 4137-clT ought to be recognized as a novel genus for which the name Anaeroselena agilis gen. nov., sp. nov., we propose. The type strain is 4137-clT(=KCTC 25383T = VKM B-3575T).
Collapse
Affiliation(s)
- Maria I Prokofeva
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Alexander G Elcheninov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Alexandra A Klyukina
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninsky Prospect 65/1, Moscow, Russia, 119991
| | - Gennady S Kachmazov
- Faculty of Chemistry, Biology and Biotechnology, North Ossetian State University Named After K.L.Khetagurov, Vatutina Str., 44-46, Vladikavkaz, Russia, 362025
| | - Stepan V Toshchakov
- National Research Centre "Kurchatov Institute", Akademika Kurchatova Sq., 1, Moscow, Russia, 123182
| | - Evgenii N Frolov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Olga A Podosokorskaya
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312.
| |
Collapse
|
5
|
Hashimi A, Tocheva EI. Cell envelope diversity and evolution across the bacterial tree of life. Nat Microbiol 2024; 9:2475-2487. [PMID: 39294462 DOI: 10.1038/s41564-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
The bacterial cell envelope is a complex multilayered structure conserved across all bacterial phyla. It is categorized into two main types based on the number of membranes surrounding the cell. Monoderm bacteria are enclosed by a single membrane, whereas diderm cells are distinguished by the presence of a second, outer membrane (OM). An ancient divide in the bacterial domain has resulted in two major clades: the Gracilicutes, consisting strictly of diderm phyla; and the Terrabacteria, encompassing monoderm and diderm species with diverse cell envelope architectures. Recent structural and phylogenetic advancements have improved our understanding of the diversity and evolution of the OM across the bacterial tree of life. Here we discuss cell envelope variability within major bacterial phyla and focus on conserved features found in diderm lineages. Characterizing the mechanisms of OM biogenesis and the evolutionary gains and losses of the OM provides insights into the primordial cell and the last universal common ancestor from which all living organisms subsequently evolved.
Collapse
Affiliation(s)
- Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Zayulina KS, Podosokorskaya OA, Klyukina AA, Panova TV, Novikov AA, Kublanov IV, Bonch-Osmolovskaya EA, Elcheninov AG. A Novel Species of the Genus Thermanaerothrix Isolated from a Kamchatka Hot Spring Possesses Hydrolytic Capabilities. Curr Microbiol 2024; 81:293. [PMID: 39090416 DOI: 10.1007/s00284-024-03815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Hot springs are inhabited by specific microbial communities which are reservoirs of novel taxa. In this work strain 4228-RoLT was isolated from the Solnechny hot spring, Uzon Caldera, Kamchatka. Cells of the strain 4228-RoLT were Gram-negative rods forming multicellular filaments. The strain grew optimally at 60 °C and pH 7.0 and fermented various organic compounds including polysaccharides (microcrystalline cellulose, xylan, chitin, starch, dextrin, dextran, beta-glucan, galactomannan, glucomannan, mannan). Major fatty acids were iso-C17:0, C16:0, C18:0, C20:0, iso-C19:0, anteiso-C17:0 and C22:0. Genome of the strain was of 3.25 Mbp with GC content of 54.2%. Based on the whole genome comparisons and phylogenomic analysis the new isolate was affiliated to a novel species of Thermanaerothrix genus within Anaerolineae class of phylum Chloroflexota, for which the name T. solaris sp. nov. was proposed with 4228-RoLT (= VKM B-3776 T = UQM 41594 T = BIM B-2058 T) as the type strain. 114 CAZymes including 43 glycoside hydrolases were found to be encoded in the genome of strain 4228-RoLT. Cell-bound and extracellular enzymes of strain 4228-RoLT were active against starch, dextran, mannan, xylan and various kinds of celluloses, with the highest activity against beta-glucan. Altogether, growth experiments, enzymatic activities determination and genomic analysis suggested that T. solaris strain 4228-RoLT could serve as a source of glycosidases suitable for plant biomass hydrolysis.
Collapse
Affiliation(s)
- Kseniya S Zayulina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia
| | - Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia
| | - Tatiana V Panova
- Faculty of Chemistry, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991, Moscow, Russia
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65, 119991, Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991, Moscow, Russia
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071, Moscow, Russia.
| |
Collapse
|
7
|
Yadav S, Koenen M, Bale NJ, Reitsma W, Engelmann JC, Stefanova K, Damsté JSS, Villanueva L. Organic matter degradation in the deep, sulfidic waters of the Black Sea: insights into the ecophysiology of novel anaerobic bacteria. MICROBIOME 2024; 12:98. [PMID: 38797849 PMCID: PMC11129491 DOI: 10.1186/s40168-024-01816-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Recent studies have reported the identity and functions of key anaerobes involved in the degradation of organic matter (OM) in deep (> 1000 m) sulfidic marine habitats. However, due to the lack of available isolates, detailed investigation of their physiology has been precluded. In this study, we cultivated and characterized the ecophysiology of a wide range of novel anaerobes potentially involved in OM degradation in deep (2000 m depth) sulfidic waters of the Black Sea. RESULTS We have successfully cultivated a diverse group of novel anaerobes belonging to various phyla, including Fusobacteriota (strain S5), Bacillota (strains A1T and A2), Spirochaetota (strains M1T, M2, and S2), Bacteroidota (strains B1T, B2, S6, L6, SYP, and M2P), Cloacimonadota (Cloa-SY6), Planctomycetota (Plnct-SY6), Mycoplasmatota (Izemo-BS), Chloroflexota (Chflx-SY6), and Desulfobacterota (strains S3T and S3-i). These microorganisms were able to grow at an elevated hydrostatic pressure of up to 50 MPa. Moreover, this study revealed that different anaerobes were specialized in degrading specific types of OM. Strains affiliated with the phyla Fusobacteriota, Bacillota, Planctomycetota, and Mycoplasmatota were found to be specialized in the degradation of cellulose, cellobiose, chitin, and DNA, respectively, while strains affiliated with Spirochaetota, Bacteroidota, Cloacimonadota, and Chloroflexota preferred to ferment less complex forms of OM. We also identified members of the phylum Desulfobacterota as terminal oxidizers, potentially involved in the consumption of hydrogen produced during fermentation. These results were supported by the identification of genes in the (meta)genomes of the cultivated microbial taxa which encode proteins of specific metabolic pathways. Additionally, we analyzed the composition of membrane lipids of selected taxa, which could be critical for their survival in the harsh environment of the deep sulfidic waters and could potentially be used as biosignatures for these strains in the sulfidic waters of the Black Sea. CONCLUSIONS This is the first report that demonstrates the cultivation and ecophysiology of such a diverse group of microorganisms from any sulfidic marine habitat. Collectively, this study provides a step forward in our understanding of the microbes thriving in the extreme conditions of the deep sulfidic waters of the Black Sea. Video Abstract.
Collapse
Affiliation(s)
- Subhash Yadav
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Wietse Reitsma
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Julia C Engelmann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Kremena Stefanova
- Institute of Oceanology "Fridtjof Nansen", Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands.
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Wang Y, Du B, Wu G. Powdered activated carbon facilitated degradation of complex organic compounds and tetracycline in stressed anaerobic digestion systems. BIORESOURCE TECHNOLOGY 2024; 400:130672. [PMID: 38583675 DOI: 10.1016/j.biortech.2024.130672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Tetracycline exerts an inhibitory effect on anaerobic digestion, inducing stressed microbial activities and even system failure. Continuous-flow reactors (CFRs) and sequencing batch reactors (SBRs) were employed along with the dosage of powdered activated carbon (PAC) to enhance tetracycline removal during anaerobic digestion of complex organic compounds. PAC increased the maximum methane production rate by 15.6% (CFRs) and 13.8% (SBRs), and tetracycline biodegradation by 24.4% (CFRs) and 19.2% (SBRs). CFRs showed higher tetracycline removal and methane production rates than SBRs. Geobacter was enriched in CFRs, where Methanothrix was enriched with the addition of PAC. Desulfomicrobium harbored abundant propionate degradation-related genes, significantly correlating with tetracycline removal. The genes encoding carbon dioxide reduction in Methanothrix along with the detection of Geobacter might indicate direct interspecies electron transfer for methanogenesis in CFRs and PAC-added reactors. The study offers new insights into anaerobic digestion under tetracycline-stressed conditions and strategies for optimizing tetracycline removal.
Collapse
Affiliation(s)
- Yuyin Wang
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Bang Du
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
9
|
Gao L, Zhao Y, Wang Z, Zhang Y, Ming J, Sun X, Ni SQ. Seasonal and distance-decay patterns of surface sediments microbial nitrogen and sulfur cycling linkage in the eastern coast of China. MARINE POLLUTION BULLETIN 2024; 201:116169. [PMID: 38428046 DOI: 10.1016/j.marpolbul.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
The surface sediments as a repository of pelagic environment changes and microbial community structural succession tend to have a profound effect on global and local nitrogen and sulfur cycling. In this study, analysis of sediment samples collected from the Bohai Sea, Yellow Sea, and north of the East China Seas (BYnECS) revealed longitude, latitude, depth, and chlorophyll had the strongest influence on microbial community structure (p-values < 0.005). A clear distance-decay pattern was exhibited in BYnECS. The result of co-occurrence network modularization implied that the more active pathway in winter was thiosulfate reduction and nitrate reduction, while in summer it was nitrification. The potential functional genes were predicted in microbial communities, and the most dominant genes were assigned to assimilatory sulfur reduction, denitrification, and dissimilatory nitrate reduction. This study innovatively explored the potential relationships between nitrogen and sulfur cycling genes of these three sea regions in the China Sea.
Collapse
Affiliation(s)
- Linjie Gao
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China
| | - Yiyi Zhao
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, China
| | - Yong Zhang
- Shenzhen Xinbaoying Technology Co., Ltd, Guangdong, China
| | - Jie Ming
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China
| | - Xiaojie Sun
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China
| | - Shou-Qing Ni
- Shenzhen Research Institute of Shandong University, School of Environmental Science and Engineering, Shandong University, China.
| |
Collapse
|
10
|
Bedoya-Urrego K, Alzate JF. Phylogenomic discernments into Anaerolineaceae thermal adaptations and the proposal of a candidate genus Mesolinea. Front Microbiol 2024; 15:1349453. [PMID: 38486696 PMCID: PMC10937449 DOI: 10.3389/fmicb.2024.1349453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
This study delves into the evolutionary history of Anaerolineaceae, a diverse bacterial family within the Chloroflexota phylum. Employing a multi-faceted approach, including phylogenetic analyses, genomic comparisons, and exploration of adaptive features, the research unveils novel insights into the family's taxonomy and evolutionary dynamics. The investigation employs metagenome-assembled genomes (MAGs), emphasizing their prevalence in anaerobic environments. Notably, a novel mesophilic lineage, tentatively named Mesolinea, emerges within Anaerolineaceae, showcasing a distinctive genomic profile and apparent adaptation to a mesophilic lifestyle. The comprehensive genomic analyses shed light on the family's complex evolutionary patterns, including the conservation of key operons in thermophiles, providing a foundation for understanding the diverse ecological roles and adaptive strategies of Anaerolineaceae members.
Collapse
Affiliation(s)
- Katherine Bedoya-Urrego
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
11
|
Bovio-Winkler P, Cabezas A, Etchebehere C. Unveiling the hidden diversity and functional role of Chloroflexota in full-scale wastewater treatment plants through genome-centric analyses. ISME COMMUNICATIONS 2024; 4:ycae050. [PMID: 39698295 PMCID: PMC11653643 DOI: 10.1093/ismeco/ycae050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 12/20/2024]
Abstract
The phylum Chloroflexota has been found to exhibit high abundance in the microbial communities from wastewater treatment plants (WWTPs) in both aerobic and anaerobic systems. However, its metabolic role has not been fully explored due to the lack of cultured isolates. To address this gap, we use publicly available metagenome datasets from both activated sludge (AS) and methanogenic (MET) full-scale wastewater treatment reactors to assembled genomes. Using this strategy, 264 dereplicated, medium- and high-quality metagenome-assembled genomes (MAGs) classified within Chloroflexota were obtained. Taxonomic classification revealed that AS and MET reactors harbored distinct Chloroflexota families. Nonetheless, the majority of the annotated MAGs (166 MAGs with >85% completeness and < 5% contamination) shared most of the metabolic potential features, including the ability to degrade simple sugars and complex polysaccharides, fatty acids and amino acids, as well as perform fermentation of different products. While Chloroflexota MAGs from MET reactors showed the potential for strict fermentation, MAGs from AS harbored the potential for facultatively aerobic metabolism. Metabolic reconstruction of Chloroflexota members from AS unveiled their versatile metabolism and suggested a primary role in hydrolysis, carbon removal and involvement in nitrogen cycling, thus establishing them as fundamental components of the ecosystem. Microbial reference genomes are essential resources for understanding the potential functional role of uncultured organisms in WWTPs. Our study provides a comprehensive genome catalog of Chloroflexota for future analyses aimed at elucidating their role in these ecosystems.
Collapse
Affiliation(s)
- Patricia Bovio-Winkler
- Microbial Ecology Laboratory, Department of Microbial
Biochemistry and Genomic, Biological Research Institute “Clemente
Estable”, Avenida Italia 3318, 11600 Montevideo,
CP, Uruguay
| | - Angela Cabezas
- Departamento de sostenibilidad ambiental, Instituto Tecnológico Regional
Centro Sur, Universidad Tecnológica, Francisco Antonio Maciel s/n,
97000, Durazno, CPUruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Microbial
Biochemistry and Genomic, Biological Research Institute “Clemente
Estable”, Avenida Italia 3318, 11600 Montevideo,
CP, Uruguay
| |
Collapse
|
12
|
Petriglieri F, Kondrotaite Z, Singleton C, Nierychlo M, Dueholm MKD, Nielsen PH. A comprehensive overview of the Chloroflexota community in wastewater treatment plants worldwide. mSystems 2023; 8:e0066723. [PMID: 37992299 PMCID: PMC10746286 DOI: 10.1128/msystems.00667-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023] Open
Abstract
IMPORTANCE Chloroflexota are often abundant members of the biomass in wastewater treatment plants (WWTPs) worldwide, typically with a filamentous morphology, forming the backbones of the activated sludge floc. However, their overgrowth can often cause operational issues connected to poor settling or foaming, impairing effluent quality and increasing operational costs. Despite their importance, few Chloroflexota genera have been characterized so far. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide and an in-depth characterization of their morphology, phylogeny, and ecophysiology, obtaining a broad understanding of their ecological role in activated sludge.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten K. D. Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H. Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
13
|
Feng K, Lou Y, Li Y, Lu B, Fang A, Xie G, Chen C, Xing D. Conductive carrier promotes synchronous biofilm formation and granulation of anammox bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130754. [PMID: 36638675 DOI: 10.1016/j.jhazmat.2023.130754] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The extracellular electron transfer capability of some anaerobic ammonium oxidation (anammox) bacteria was confirmed in recent years. However, the effect of conductive carriers on the synchronous formation of anammox biofilm and granules is rarely reported. Anammox biofilm and granules with compact and stable structures accelerate the initiation and enhance the stability of the anammox process. In this study, we found that the conductive carbon fiber brush (CB) carrier promoted synchronous biofilm formation and granulation of anammox bacteria in the internal circulation immobilized blanket (ICIB) reactor. Compared with polyurethane sponge and zeolite carrier, the ICIB reactor packed with CB carrier can be operated under the highest total nitrogen loading rate of 6.53 kg-N/(m3·d) and maintain the effluents NH4+-N and NO2--N at less than 1 mM. The volatile suspended solids concentration in the ICIB reactor packed with conductive carrier increased from 5.17 ± 0.40 g/L of inoculum sludge to 24.24 ± 1.20 g/L of biofilm, and the average particle size of granules increased from 222.09 µm to 879.80 µm in 150 days. Fluorescence in situ hybridization analysis showed that anammox bacteria prevailed in the biofilm and granules. The analysis of extracellular polymeric substances indicated that protein and humic acid-like substances played an important role in the formation of anammox biofilm and granules. Microbiome analysis showed that the relative abundance of Candidatus Jettenia was increased from 0.18% to 38.15% in the biofilm from CB carrier during start-up stage. This study provides a strategy for rapid anammox biofilm and granules enrichment and carrier selection of anammox process.
Collapse
Affiliation(s)
- Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yitian Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Anran Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Draft Genome Sequence of Thermomicrobium sp. Strain 4228-Ro, a Thermophilic Bacterium Isolated from a Kamchatka Hot Spring. Microbiol Resour Announc 2023; 12:e0122122. [PMID: 36840594 PMCID: PMC10019275 DOI: 10.1128/mra.01221-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The genome of Thermomicrobium sp. strain 4228-Ro, an aerobic thermophilic bacterium isolated from a Kamchatka hot spring, was sequenced and analyzed. The genome assembly comprises 13 contigs with a total length of 3,068,448 bp. Genome analysis revealed the pathway of aerobic utilization of sugars, which was corroborated by growth experiments.
Collapse
|
15
|
Effect of substituting steam-flaked corn for course ground corn on in vitro digestibility, average daily gain, serum metabolites and ruminal volatile fatty acids, and bacteria diversity in growing yaks. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2022.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Ikeda S, Okazaki K, Takahashi H, Tsurumaru H, Minamisawa K. Seasonal Shifts in Bacterial Community Structures in the Lateral Root of Sugar Beet Grown in an Andosol Field in Japan. Microbes Environ 2023; 38. [PMID: 36754423 PMCID: PMC10037095 DOI: 10.1264/jsme2.me22071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
To investigate functional plant growth-promoting rhizobacteria in sugar beet, seasonal shifts in bacterial community structures in the lateral roots of sugar beet were examined using amplicon sequencing ana-lyses of the 16S rRNA gene. Shannon and Simpson indexes significantly increased between June and July, but did not significantly differ between July and subsequent months (August and September). A weighted UniFrac principal coordinate ana-lysis grouped bacterial samples into four clusters along with PC1 (43.8%), corresponding to the four sampling months in the order of sampling dates. Taxonomic ana-lyses revealed that bacterial diversity in the lateral roots was exclusively dominated by three phyla (Actinobacteria, Bacteroidetes, and Proteobacteria) in all samples examined. At the lower taxonomic levels, the dominant taxa were roughly classified into three groups. Therefore, the relative abundances of seven dominant genera (Janthinobacterium, Kribbella, Pedobacter, Rhodanobacter, Sphingobium, Sphingopyxis, and Streptomyces) were the highest in June and gradually decreased as sugar beet grew. The relative abundances of eight taxa (Bradyrhizobiaceae, Caulobacteraceae, Chitinophagaceae, Novosphingobium, Phyllobacteriaceae, Pseudomonas, Rhizobiaceae, and Sphingomonas) were mainly high in July and/or August. The relative abundances of six taxa (unclassified Comamonadaceae, Cytophagaceae, unclassified Gammaproteobacteria, Haliangiaceae, unclassified Myxococcales, and Sinobacteraceae) were the highest in September. Among the dominant taxa, 12 genera (Amycolatopsis, Bradyrhizobium, Caulobacter, Devosia, Flavobacterium, Janthinobacterium, Kribbella, Kutzneria, Pedobacter, Rhizobium, Rhodanobacter, and Steroidobacter) were considered to be candidate groups of plant growth-promoting bacteria based on their previously reported beneficial traits as biopesticides and/or biofertilizers.
Collapse
Affiliation(s)
- Seishi Ikeda
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | - Kazuyuki Okazaki
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | - Hiroyuki Takahashi
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | | | | |
Collapse
|
17
|
Gu M, Wang Y, Wan D, Shi Y, He Q. Electrodialysis ion-exchange membrane bioreactor (EDIMB) to remove nitrate from water: Optimization of operating conditions and kinetics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156046. [PMID: 35597341 DOI: 10.1016/j.scitotenv.2022.156046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Nitrate pollution has become a worldwide problem. In this study, we remove nitrate from water by electrodialysis ion-exchange membrane bioreactor (EDIMB) and enabling simultaneous nitrate enrichment and denitrification. In this reactor, nitrate migrated from the water chamber to the biological chamber via electrodialysis and was degraded by microorganisms. The effects of voltage and biomass concentration on the reactor performance were examined, and the kinetics data of the water chamber and biological chamber were fitted. The experimental results showed that the migration of nitrate in the water chamber conformed to the first-order model, and the constructed zero-Michaelis-Menten model described changes in nitrate concentration in the biological chamber. Furthermore, when the inflow nitrate concentration was 40 mg N/L, 5 V was the best voltage, and 3.00 g VSS/L was the best biomass concentration. The nitrate removal rate in the water chamber was 98.94%, and there was no accumulation of nitrate or nitrite in the biological chamber. Compared with traditional ED processes, the nitrate removal efficiency was 8.86% higher, and the current efficiency was 22.14% higher. The total organic carbon (TOC) of the water chamber was only 1.43 mg C/L, which proves that the structure of the EDIMB confined the denitrifying bacteria and organic carbon donors in the biological chamber and avoided secondary pollution in the water chamber. Microbial community analysis showed that Thauera (66.06%) was the dominant bacterium in the EDIMB system, and Azoarcus (9.81%) was a minor denitrifying genus.
Collapse
Affiliation(s)
- Mengqi Gu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yanan Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China; Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| |
Collapse
|
18
|
Jia Y, Wang P, Ou Y, Yan Y, Zhou S, Sun L, Lu H. Insights into the microbial response mechanisms to ciprofloxacin during sulfur-mediated biological wastewater treatment using a metagenomics approach. WATER RESEARCH 2022; 223:118995. [PMID: 36007398 DOI: 10.1016/j.watres.2022.118995] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The fate and removal of ciprofloxacin, a class of fluoroquinolone antibiotic, during sulfur-mediated biological wastewater treatment has been recently well documented. However, little is known regarding the genetic response of microorganisms to ciprofloxacin. Here, a lab-scale anaerobic sulfate-reducing bioreactor was continuously operated over a long term for ciprofloxacin-contaminated wastewater treatment to investigate the response of the microorganisms to ciprofloxacin by adopting a metagenomics approach. It was found that total organic carbon (TOC) removal and sulfate reduction were promoted by approximately 10% under ciprofloxacin stress, along with the enrichment of functional genera (e.g., Desulfobacter, Geobacter) involved in carbon and sulfur metabolism. The metagenomic analytical results demonstrated that ciprofloxacin triggered the microbial SOS response, as demonstrated by the up-regulation of the multidrug efflux pump genes (8-125-fold higher than that of the control) and ciprofloxacin-degrading genes (4-33-fold higher than that of the control). Moreover, the contents of ATP, NADH, and cytochrome C, as well as related functional genes (including genes involved in energy generation, electron transport, carbon metabolism, and sulfur metabolism) were markedly increased under ciprofloxacin stress. This demonstrated that the carbon and sulfur metabolisms were enhanced for energy (ATP) generation and electron transport in response to ciprofloxacin-induced stress. Interestingly, the microbes tended to cooperate while being subjected exposure to exogenous ciprofloxacin according to the reconstructed metabolic network using the NetSeed model. Particularly, the species with higher complementarity indices played more pivotal roles in strengthening microbial metabolism and the SOS response under long-term ciprofloxacin stress. This study characterized the response mechanisms of microorganisms to ciprofloxacin at the genetic level in sulfur-mediated biological wastewater treatment. These new understandings will contribute the scientific basis for improving and optimizing the sulfur-mediated bioprocess for antibiotics-laden wastewater treatment.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Ecology, Sun Yat-sen University, Guangzhou, PR China
| | - Pandeng Wang
- School of Ecology, Sun Yat-sen University, Guangzhou, PR China
| | - Yuyi Ou
- School of Ecology, Sun Yat-sen University, Guangzhou, PR China
| | - Yujian Yan
- School of Ecology, Sun Yat-sen University, Guangzhou, PR China
| | - Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
19
|
Xu M, Dai W, Zhao Z, Zheng J, Huang F, Mei C, Huang S, Liu C, Wang P, Xiao R. Effect of rice straw biochar on three different levels of Cd-contaminated soils: Cd availability, soil properties, and microbial communities. CHEMOSPHERE 2022; 301:134551. [PMID: 35405191 DOI: 10.1016/j.chemosphere.2022.134551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Biochar can be effective in immobilizing soil cadmium (Cd), but the difference in its immobilization mechanisms for different levels of Cd-contaminated soils was overlooked. In this study, rice straw biochar (BC) was added to three Cd-contaminated soils following 180 days of incubation, in the process of which the dynamic changes of Cd speciation, soil properties and microbial community diversity were determined. BC could significantly reduce the ratio of acid-soluble in the three soils, especially in light and medium Cd-contaminated soils by more than 20%. The addition of biochar could significantly increase the soil pH, soil organic matter, cation exchange capacity, and the activities of catalase, but decrease the richness and diversity of bacterial communities in all soils. The associations between microbial communities were inhibited in light and medium Cd-contaminated soils, but promoted in heavy Cd-contaminated soils. Furthermore, the main pathway of BC effect on soil Cd availability was also analyzed by partial least squares model (PLS-PM), which indicated that BC indirectly reduced Cd availability mainly by regulating the microbial community in light Cd-contaminated soil, whereas BC directly reduced Cd availability primarily by its own adsorption in medium and heavy Cd-contaminated soils. This research deepened understanding of the mechanisms of stabilization of Cd by biochar for agricultural soils.
Collapse
Affiliation(s)
- Meili Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weijie Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zilin Zhao
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jiatong Zheng
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Fei Huang
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Chuang Mei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shuting Huang
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chufan Liu
- Shenzhen Academy of Environmental Science, Shenzhen, 518001, PR China
| | - Peng Wang
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Rongbo Xiao
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
20
|
Xu D, Liu H, Yin Z, He K, Song S, Chen Y, Hu Y, Liu C. Oxytetracycline co-metabolism with denitrification/desulfurization in SRB mediated system. CHEMOSPHERE 2022; 298:134256. [PMID: 35271902 DOI: 10.1016/j.chemosphere.2022.134256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/30/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Aquaculture wastewater contained a high remnant of oxytetracycline (OTC) and nitrate. In this study, OTC co-metabolized with denitrification/desulfurization was investigated in terms of kinetic analysis, pathway, microbial communities and produces analysis in sulfate-reducing bacteria (SRB) mediated system. Long-term acclimatization with sulfate (300 mg-S/L) could markedly accelerate the removed rate of OTC from 0.9 to 1.4 mg/g-SS/d, with the kinetic constants increasing from 0.2760 to 0.5232 d-1, mainly via enzymes including adenosine-5'-phos-phosulfate reductase and cytochrome P450, and non-enzymatic process related to intermediates (adenosine-5'-phos-phosulfate and S0). Furthermore, OTC was likely detoxified by SRB enriched sludge mainly via hydrolysis, dehydration, oxidation and reduction. The denitrification process would postpone the OTC degradation via outcompeting electron donors with the desulfurization process. Redundancy analysis suggested that sulfur-oxidizing bacteria (Acidithiobacillus, Ochrobactrum) were highly related to OTC degradation processes. This study provides deep insight and a new opportunity for the treatment of aquaculture wastewater containing OTC, sulfate and nitrate by SRB sludge.
Collapse
Affiliation(s)
- Dong Xu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Huimin Liu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zile Yin
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Kuang He
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong, 510006, PR China
| | - Song Song
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chang Liu
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
21
|
Liu Y, Lv Z, Hou H, Lan X, Ji J, Liu X. Long-term effects of combination of organic and inorganic fertilizer on soil properties and microorganisms in a Quaternary Red Clay. PLoS One 2021; 16:e0261387. [PMID: 34914800 PMCID: PMC8675731 DOI: 10.1371/journal.pone.0261387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Quaternary Red Clay (QRC) is the most common planting soil with low soil fertility and low crop yields in Southeast China, with low soil fertility and low crop yields. Many factors can impact the fertility and utilization efficiency of QRC. Here, we conducted a long-term fertilization experiment from 1984 to 2013. Five fertilization measures were carried out, including non-fertilization group; chemical Fertilizer group; 70% chemical and 30% organic fertilizer group; 50% chemical and 50% organic fertilizer group; 30% chemical and 70% organic fertilizer group. Soil organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), soil microbial biomass carbon (SMBC) and nitrogen (SMBN), and soil enzymes activity were measured to evaluate the changes of soil. In addition, soil microorganisms were determined by high-throughput sequencing technology, and the dominant microbes were screened. The higher the proportion of organic fertilizer was, the higher the soil OM content was. The OM content of the non-fertilization group was the lowest. Similarly, SMBC and SMBN showed a consistent trend with OM content. Illumina sequence results showed that the application of organic fertilizer reduced the relative abundance of Chloroflexi, Acidobacteria and Nitrospirae, but increased Proteobacteria and Actinobacteria. The relative abundance of Acremonium and Mortierella were also greatly increased by different fertilization strategies. However, when high proportion of organic fertilizer was applied, the abundance of Acremonium and Mortierella decreased. Long-term balanced inorganic fertilization (NPK, 60%N:20%P:20%K) can effectively improve the quality and fertility of QRC. The effect of different fertilization strategies on fungi was greater than that on bacteria. The change of soil microorganism also proved the validity of inorganic fertilizer application.
Collapse
Affiliation(s)
- Yiren Liu
- Institute of Soil Fertilizer and Resource Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- National Engineering and Technology Research Center for Red Soil Improvement, Nanchang, China
| | - Zhenzhen Lv
- Institute of Soil Fertilizer and Resource Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- National Engineering and Technology Research Center for Red Soil Improvement, Nanchang, China
| | - Hongqian Hou
- Institute of Soil Fertilizer and Resource Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- National Engineering and Technology Research Center for Red Soil Improvement, Nanchang, China
| | - Xianjin Lan
- Institute of Soil Fertilizer and Resource Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- National Engineering and Technology Research Center for Red Soil Improvement, Nanchang, China
| | - Jianhua Ji
- Institute of Soil Fertilizer and Resource Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- National Engineering and Technology Research Center for Red Soil Improvement, Nanchang, China
| | - Xiumei Liu
- Institute of Soil Fertilizer and Resource Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- National Engineering and Technology Research Center for Red Soil Improvement, Nanchang, China
- * E-mail:
| |
Collapse
|
22
|
Ejaz U, Sohail M, Ghanemi A. Cellulases: From Bioactivity to a Variety of Industrial Applications. Biomimetics (Basel) 2021; 6:44. [PMID: 34287227 PMCID: PMC8293267 DOI: 10.3390/biomimetics6030044] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
Utilization of microbial enzymes has been widely reported for centuries, but the commercial use of enzymes has been recently adopted. Particularly, cellulases have been utilized in various commercial sectors including agriculture, brewing, laundry, pulp and paper and textile industry. Cellulases of microbial origin have shown their potential application in various commercial sectors including textile, pulp and paper, laundry, brewing, agriculture and biofuel. Cellulases have diversified applications in the food industry, food service, food supply and its preservation. Indeed, cellulases can tenderize fruits, clarify the fruit juices, reduce roughage in dough, hydrolyze the roasted coffee, extract tea polyphenols and essential oils from olives and can increase aroma and taste in food items. However, their role in food industries has by and large remained neglected. The use of immobilized cellulases has further expanded their application in fruit and vegetable processing as it potentiates the catalytic power and reduces the cost of process. Technological and scientific developments will further expand their potential usage in the food industry.
Collapse
Affiliation(s)
- Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
23
|
Yang H, Jung H, Oh K, Jeon JM, Cho KS. Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions. J Microbiol Biotechnol 2021; 31:803-814. [PMID: 33879637 PMCID: PMC9705922 DOI: 10.4014/jmb.2103.03005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40°C at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50°C) and mesophilic conditions (30°C). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40°C and 50°C, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the nonsummer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.
Collapse
Affiliation(s)
- Hyoju Yang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyungcheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea,Corresponding author Phone: +82-2-32772393 E-mail:
| |
Collapse
|
24
|
Ghezzi D, Filippini M, Cappelletti M, Firrincieli A, Zannoni D, Gargini A, Fedi S. Molecular characterization of microbial communities in a peat-rich aquifer system contaminated with chlorinated aliphatic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23017-23035. [PMID: 33438126 DOI: 10.1007/s11356-020-12236-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In an aquifer-aquitard system in the subsoil of the city of Ferrara (Emilia-Romagna region, northern Italy) highly contaminated with chlorinated aliphatic toxic organics such as trichloroethylene (TCE) and tetrachloroethylene (PCE), a strong microbial-dependent dechlorination activity takes place during migration of contaminants through shallow organic-rich layers with peat intercalations. The in situ microbial degradation of chlorinated ethenes, formerly inferred by the utilization of contaminant concentration profiles and Compound-Specific Isotope Analysis (CSIA), was here assessed using Illumina sequencing of V4 hypervariable region of 16S rRNA gene and by clone library analysis of dehalogenase metabolic genes. Taxon-specific investigation of the microbial communities catalyzing the chlorination process revealed the presence of not only dehalogenating genera such as Dehalococcoides and Dehalobacter but also of numerous other groups of non-dehalogenating bacteria and archaea thriving on diverse metabolisms such as hydrolysis and fermentation of complex organic matter, acidogenesis, acetogenesis, and methanogenesis, which can indirectly support the reductive dechlorination process. Besides, the diversity of genes encoding some reductive dehalogenases was also analyzed. Geochemical and 16S rRNA and RDH gene analyses, as a whole, provided insights into the microbial community complexity and the distribution of potential dechlorinators. Based on the data obtained, a possible network of metabolic interactions has been hypothesized to obtain an effective reductive dechlorination process.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Laboratory of NanoBiotechnology, IRCSS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Maria Filippini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Alessandro Gargini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
25
|
He Q, Dasi EA, Cheng Z, Talla E, Main K, Feng C, Ergas SJ. Wood and sulfur-based cyclic denitrification filters for treatment of saline wastewaters. BIORESOURCE TECHNOLOGY 2021; 328:124848. [PMID: 33611020 DOI: 10.1016/j.biortech.2021.124848] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the performance and microbiome of cyclic denitrification filters (CDFs) for wood and sulfur heterotrophic-autotrophic denitrification (WSHAD) of saline wastewater. Wood-sulfur CDFs integrated into two pilot-scale marine recirculating aquaculture systems achieved high denitrification rates (103 ± 8.5 g N/(m3·d)). The combined use of pine wood and sulfur resulted in lower SO42- accumulation compared with prior saline wastewater denitrification studies with sulfur alone. Although fish tank water quality parameters, including ammonia, nitrite, nitrate and sulfide, were below the inhibitory levels for marine fish production, lower survival rates of Poecilia sphenops were observed compared with prior studies. Heterotrophic denitrification was the dominant removal mechanism during the early operational stages, while sulfur autotrophic denitrification increased as readily biodegradable organic carbon released from wood chips decreased over time. 16S rRNA-based analysis of the CDF microbiome revealed that Sulfurimonas, Thioalbus, Defluviimonas, and Ornatilinea as notable genera that contributed to denitrification performance.
Collapse
Affiliation(s)
- Qiaochong He
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Department of Civil & Environmental Engineering, University of South Florida, 74202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Erica A Dasi
- Department of Civil & Environmental Engineering, University of South Florida, 74202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA
| | - Zhang Cheng
- Department of Civil & Environmental Engineering, University of South Florida, 74202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA
| | - Emmanuel Talla
- Aix Marseille Univ, CNRS, LCB, Laboratoire de Chimie Bactérienne, F-13009 Marseille, France
| | - Kevan Main
- Directorate of Fisheries and Aquaculture, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Sarina J Ergas
- Department of Civil & Environmental Engineering, University of South Florida, 74202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA.
| |
Collapse
|
26
|
He ZW, Yang CX, Tang CC, Liu WZ, Zhou AJ, Ren YX, Wang AJ. Response of anaerobic digestion of waste activated sludge to residual ferric ions. BIORESOURCE TECHNOLOGY 2021; 322:124536. [PMID: 33341712 DOI: 10.1016/j.biortech.2020.124536] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
This study was conducted to investigate the effects of residual ferric ions (FI), released from iron or its oxides for wastewater or waste activated sludge (WAS) treatment, on anaerobic digestion of WAS. Herein it was found that the anaerobic digestion process was greatly affected by FI dosages as well as FI distributions. The responses of performance and microorganism suggested that a low FI (e.g., 0.125 mmol/g volatile suspended solid (VSS)) enhanced methane production by 29.3%, and a medium FI (e.g., 0.3 mmol/g VSS) promoted short chain fatty acids accumulation to reach the maximum of 247 mg chemical oxygen demand /g VSS, conversely, a high FI (e.g., 0.9 mmol/g VSS) led to severe inhibition on acidogenesis and methanogenesis. The findings may provide some new insights for mechanism understanding on anaerobic digestion process influenced by iron or its oxides, as well as the disposal of WAS contained FI.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chun-Xue Yang
- Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, School of Geography and Tourism, Harbin University, Harbin 150086, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen-Zong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 51805, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 51805, China.
| |
Collapse
|
27
|
Yuan H, Huang S, Yuan J, You Y, Zhang Y. Characteristics of microbial denitrification under different aeration intensities: Performance, mechanism, and co-occurrence network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141965. [PMID: 32911146 DOI: 10.1016/j.scitotenv.2020.141965] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to explore how dissolved oxygen (DO) affected the characteristics and mechanisms of denitrification in mixed bacterial consortia. We analyzed denitrification efficiency, intracellular nicotinamide adenine dinucleotide (NADH), relative expression of functional genes, and potential co-occurrence network of microorganisms. Results showed that the total nitrogen (TN) removal rates at different aeration intensities (0.00, 0.25, 0.63, and 1.25 L/(L·min)) were 0.93, 1.45, 0.86, and 0.53 mg/(L·min), respectively, which were higher than previously reported values for pure culture. The optimal aeration intensity was 0.25 L/(L·min), at which the maximum NADH accumulation rate and highest relative abundance of napA, nirK, and nosZ were achieved. With increased aeration intensity, the amount of electron flux to nitrate decreased and nitrate assimilation increased. On one hand, nitrate reduction was primarily inhibited by oxygen through competition for electron donors of a certain single strain. On the other hand, oxygen was consumed rapidly by bacteria by stimulating carbon metabolism to create an optimal denitrification niche for denitrifying microorganisms. Denitrification was performed via inter-genus cooperation (competitive interactions and symbiotic relationships) between keystone taxa (Azoarcus, Paracoccus, Thauera, Stappia, and Pseudomonas) and other heterotrophic bacteria (OHB) in aeration reactors. However, in the non-aeration case, which was primarily carried out based on intra-genus syntrophy within genus Propionivibrio, the co-occurrence network constructed the optimal niche contributing to the high TN removal efficiency. Overall, this study enhanced our knowledge about the molecular ecological mechanisms of aerobic denitrification in mixed bacterial consortia and has theoretical guiding significance for further practical application.
Collapse
Affiliation(s)
- Haiguang Yuan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, PR China.
| | - Jianqi Yuan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yingying You
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| |
Collapse
|
28
|
Zhang T, Xiao X, Chen S, Zhao J, Chen Z, Feng J, Liang Q, Phelps TJ, Zhang C. Active Anaerobic Archaeal Methanotrophs in Recently Emerged Cold Seeps of Northern South China Sea. Front Microbiol 2021; 11:612135. [PMID: 33391242 PMCID: PMC7772427 DOI: 10.3389/fmicb.2020.612135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Cold seep ecosystems are developed from methane-rich fluids in organic rich continental slopes, which are the source of various dense microbial and faunal populations. Extensive studies have been conducted on microbial populations in this unique environment; most of them were based on DNA, which could not resolve the activity of extant organisms. In this study, RNA and DNA analyses were performed to evaluate the active archaeal and bacterial communities and their network correlations, particularly those participating in the methane cycle at three sites of newly developed cold seeps in the northern South China Sea (nSCS). The results showed that both archaeal and bacterial communities were significantly different at the RNA and DNA levels, revealing a higher abundance of methane-metabolizing archaea and sulfate-reducing bacteria in RNA sequencing libraries. Site ROV07-01, which exhibited extensive accumulation of deceased Calyptogena clam shells, was highly developed, and showed diverse and active anaerobic archaeal methanotrophs (ANME)-2a/b and sulfate-reducing bacteria from RNA libraries. Site ROV07-02, located near carbonate crusts with few clam shell debris, appeared to be poorly developed, less anaerobic and less active. Site ROV05-02, colonized by living Calyptogena clams, could likely be intermediary between ROV07-01 and ROV07-02, showing abundant ANME-2dI and sulfate-reducing bacteria in RNA libraries. The high-proportions of ANME-2dI, with respect to ANME-2dII in the site ROV07-01 was the first report from nSCS, which could be associated with recently developed cold seeps. Both ANME-2dI and ANME-2a/b showed close networked relationships with sulfate-reducing bacteria; however, they were not associated with the same microbial operational taxonomic units (OTUs). Based on the geochemical gradients and the megafaunal settlements as well as the niche specificities and syntrophic relationships, ANMEs appeared to change in community structure with the evolution of cold seeps, which may be associated with the heterogeneity of their geochemical processes. This study enriched our understanding of more active sulfate-dependent anaerobic oxidation of methane (AOM) in poorly developed and active cold seep sediments by contrasting DNA- and RNA-derived community structure and activity indicators.
Collapse
Affiliation(s)
- Tingting Zhang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Songze Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Jing Zhao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongheng Chen
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Junxi Feng
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China
| | - Qianyong Liang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Tommy J Phelps
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
29
|
Rowles Iii LS, Hossain AI, Ramirez I, Durst NJ, Ward PM, Kirisits MJ, Araiza I, Lawler DF, Saleh NB. Seasonal contamination of well-water in flood-prone colonias and other unincorporated U.S. communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140111. [PMID: 32562995 DOI: 10.1016/j.scitotenv.2020.140111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Many of the six million residents of unincorporated communities in the United States depend on well-water to meet their needs. One group of unincorporated communities is the colonias, located primarily in several southwestern U.S. states. Texas is home to the largest number of these self-built communities, of mostly low-income families, lacking basic infrastructure. While some states have regulations that mandate minimum infrastructure for these communities, water and sewage systems are still lacking for many of their residents. Unprotected wells and self-built septic/cesspool systems serve as the primary infrastructure for many such colonias. This research was designed to probe how wells and septic/cesspool systems are influenced by heavy rainfall events. Such events are hypothesized to impact water quality with regard to human health. Inorganic and microbiological water quality of the wells in nine colonias located in Nueces County, Texas, were evaluated during dry and wet periods. Nueces County was selected as an example based on its flooding history and the fact that many colonias there depend entirely on well-water and septic/cesspool systems. The results demonstrate that well-water quality in these communities varies seasonally with respect to arsenic (up to 35 μg/L) and bacterial contamination (Escherichia coli), dependent on the amount of rainfall, which leaves this population vulnerable to health risks during both wet and dry periods. Microbial community analyses were also conducted on selected samples. To explore similar seasonal contamination of well-water, an analysis of unincorporated communities, flooding frequency, and arsenic contamination in wells was conducted by county throughout the United States. This nationwide analysis indicates that unincorporated communities elsewhere in the United States are likely experiencing comparable challenges for potable water access because of a confluence of socioeconomic, infrastructural, and policy realities.
Collapse
Affiliation(s)
- Lewis Stetson Rowles Iii
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, TX 78712, United States of America
| | - Areeb I Hossain
- Department of Biology, University of Texas, Austin, TX 78712, United States of America
| | - Isac Ramirez
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, TX 78712, United States of America
| | - Noah J Durst
- School of Planning, Design and Construction, Michigan State University, East Lansing, MI 48824, United States of America
| | - Peter M Ward
- The Lyndon B. Johnson School of Public Affairs, University of Texas, Austin, TX 78712, United States of America
| | - Mary Jo Kirisits
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, TX 78712, United States of America
| | - Isabel Araiza
- Department of Psychology and Sociology, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, United States of America
| | - Desmond F Lawler
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, TX 78712, United States of America
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, TX 78712, United States of America.
| |
Collapse
|
30
|
Fincker M, Huber JA, Orphan VJ, Rappé MS, Teske A, Spormann AM. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ Microbiol 2020; 22:3188-3204. [PMID: 32372496 DOI: 10.1111/1462-2920.15061] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Uncultured members of the Chloroflexi phylum are highly enriched in numerous subseafloor environments. Their metabolic potential was evaluated by reconstructing 31 Chloroflexi genomes from six different subseafloor habitats. The near ubiquitous presence of enzymes of the Wood-Ljungdahl pathway, electron bifurcation, and ferredoxin-dependent transport-coupled phosphorylation indicated anaerobic acetogenesis was central to their catabolism. Most of the genomes simultaneously contained multiple degradation pathways for complex carbohydrates, detrital protein, aromatic compounds, and hydrogen, indicating the coupling of oxidation of chemically diverse organic substrates to ubiquitous CO2 reduction. Such pathway combinations may confer a fitness advantage in subseafloor environments by enabling these Chloroflexi to act as primary fermenters and acetogens in one microorganism without the need for syntrophic H2 consumption. While evidence for catabolic oxygen respiration was limited to two phylogenetic clusters, the presence of genes encoding putative reductive dehalogenases throughout the phylum expanded the phylogenetic boundary for potential organohalide respiration past the Dehalococcoidia class.
Collapse
Affiliation(s)
- Maeva Fincker
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Michael S Rappé
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Andreas Teske
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
31
|
Kochetkova TV, Zayulina KS, Zhigarkov VS, Minaev NV, Chichkov BN, Novikov AA, Toshchakov SV, Elcheninov AG, Kublanov IV. Tepidiforma bonchosmolovskayae gen. nov., sp. nov., a moderately thermophilic Chloroflexi bacterium from a Chukotka hot spring (Arctic, Russia), representing a novel class, Tepidiformia, which includes the previously uncultivated lineage OLB14. Int J Syst Evol Microbiol 2020; 70:1192-1202. [PMID: 31769750 DOI: 10.1099/ijsem.0.003902] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel aerobic moderately thermophilic bacterium, strain 3753OT, was isolated from a Chukotka hot spring (Arctic, Russia) using the newly developed technology of laser engineering of microbial systems. Сells were regular short rods, 0.4×0.8-2.0 µm in size, with a monoderm-type envelope and a single flagellum. The temperature and pH ranges for growth were 42-60 °C and pH 6.5-8.5, the optima being 50-54 °C and pH 7.3. Strain 3753OT grew chemoorganoheterotrophically on a number of carbohydrates or peptidic substrates and volatile fatty acids, and chemolithoautotrophically with siderite (FeCO3) as the electron donor. The major cellular fatty acid was branched C19 : 0. Phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids as well as two yellow carotenoid-type pigments were detected in the polar lipid extract. Strain 3753OT was inhibited by chloramphenicol, polymyxin B, vancomycin, streptomycin, neomycin and kanamycin, but resistant to the action of novobiocin and ampicillin. The DNA G+C content was 69.9 mol%. The 16S rRNA gene as well as 51 conservative protein sequence-based phylogenetic analyses placed strain 3753OT within the previously uncultivated lineage OLB14 in the phylum Chloroflexi. Taking into account the phylogenetic position as well as phenotypic properties of the novel isolate, the novel genus and species Tepidiforma bonchosmolovskayae gen. nov., sp. nov., within the Tepidiformaceae fam. nov., the Tepidiformales ord. nov. and the Tepidiformia classis nov. are proposed. The type strain of Tepidiforma bonchosmolovskayae is 3753OT (=VKM B-3389T=KTCT 72284T).
Collapse
Affiliation(s)
- Tatiana V Kochetkova
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 60-let Oktyabrya prospect 7/2, Russia
| | - Kseniya S Zayulina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 60-let Oktyabrya prospect 7/2, Russia
| | - Vyacheslav S Zhigarkov
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Troitsk, Pionerskaya, Russia
| | - Nikita V Minaev
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Troitsk, Pionerskaya, Russia
| | - Boris N Chichkov
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Troitsk, Pionerskaya, Russia
| | | | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 60-let Oktyabrya prospect 7/2, Russia
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 60-let Oktyabrya prospect 7/2, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 60-let Oktyabrya prospect 7/2, Russia
| |
Collapse
|
32
|
Sui Q, Wang Y, Wang H, Yue W, Chen Y, Yu D, Chen M, Wei Y. Roles of hydroxylamine and hydrazine in the in-situ recovery of one-stage partial nitritation-anammox process: Characteristics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135648. [PMID: 31780172 DOI: 10.1016/j.scitotenv.2019.135648] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Nitrate built-up is a serious operational difficulty in one-stage partial nitritation anammox (PN/A) process. To investigate an effective method for in-situ restoration, hydroxylamine (NH2OH) and hydrazine (N2H4) of 2 mgN/L were dosed in PN/A process with nitrate built-up in a comparative study. NH2OH treatment showed better performances on TN removal and nitrate reduction than N2H4 and blank control. Through 104 days' addition of NH2OH, MRNN (mole ratio of NO3--N production to NH4+-N removal) was decreased from 70% to 19.91%; TN removal was increased from 0.01 to 0.18 kgN/(m3 d). After stopping the chemical addition, nitrate rebounded for N2H4 treatment, but the restoration effect was stable and persistent for NH2OH. NH2OH addition resulted in a low reductive potential (-250 mV) and exerted strong inhibitions on nitrite oxidizing bacteria activities. Additionally, rapid enhancement of ammonia oxidizing bacteria activities, functional gene (hao) and Nitrosomonas gave rise to the restoration of PN/A with NH2OH addition.
Collapse
Affiliation(s)
- Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyue Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongyan Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meixue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
33
|
Lin XQ, Li ZL, Zhu YY, Chen F, Liang B, Nan J, Wang AJ. Palladium/iron nanoparticles stimulate tetrabromobisphenol a microbial reductive debromination and further mineralization in sediment. ENVIRONMENT INTERNATIONAL 2020; 135:105353. [PMID: 31830727 DOI: 10.1016/j.envint.2019.105353] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA) has aroused serious pollution in surface sediment. To date, whether and how iron-based nanoparticles could stimulate TBBPA in situ anaerobic biodegradation in sediment remains poorly understood. In this study, the distinctly enhanced TBBPA degradation activity with the rate constant k improved 4.7 times by fed with Pd/Fe nanoparticles (0.412 g L-1 dosage, 0.5 wt% Pd loading) was observed. TBBPA degradation first went through reductive dehalogenation with bisphenol A (BPA) as the metabolites, and after the addition of Pd/Fe nanoparticles, BPA was further degraded to 4-(allene)phenol and 2,2-bis(4-hydroxyphenyl) propanoic acid via UPLC-QTOF-MS analysis, suggesting the complete detoxification potential. By the addition of Pd/Fe nanoparticles, the large amount of H2 production (560 times higher) and the significant inhibition of methane generation facilitated the metabolism of potential reductive dehalogenators (Desulfovibrio, Clostridium, etc.), demonstrated by their increased ecological abundance and the tighter cooperative interrelations between each other. Meanwhile, the addition of Pd/Fe nanoparticles largely promoted the ecological abundance of Fe(III) reducing and aromatics degrading bacteria (Bacillus, Cryptanaerobacter, etc.), resulting in BPA further degradation. The bacterial ecological network further revealed that the potential BPA degrading bacteria shared the more positive interactions with the potential dehalogenators in the presence of Pd/Fe nanoparticles. The study firstly revealed the addition of Pd/Fe nanoparticles obviously enhanced the respiratory metabolic activities and cooperative interrelations of reductive dehalogenators and BPA degraders, which gives suggestions for in situ remediation and detoxification of BFRs in contaminated sediment.
Collapse
Affiliation(s)
- Xiao-Qiu Lin
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China.
| | - Ying-Ying Zhu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Fan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090 China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
34
|
Song W, Lee LY, You H, Shi X, Ng HY. Microbial community succession and its correlation with reactor performance in a sponge membrane bioreactor coupled with fiber-bundle anoxic bio-filter for treating saline mariculture wastewater. BIORESOURCE TECHNOLOGY 2020; 295:122284. [PMID: 31669869 DOI: 10.1016/j.biortech.2019.122284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The application of MBR in high saline wastewater treatment is mainly constrained by poor nitrogen removal and severe membrane fouling caused by high salinity stress. A novel carriers-enhanced MBR system was successfully developed for treating saline mariculture wastewater, which showed efficient TN removal (93.2%) and fouling control. High-throughput sequencing revealed the enhancement mechanism of bio-carriers under high saline condition. Bio-carriers substantially improved the community structure, representatively, nitrifiers abundance (Nitrosomonas, Nitrospira) increased from 2.18% to 9.57%, abundance of denitrifiers (Sulfurimonas, Thermogutta, etc.) also rose from 3.81% to 14.82%. Thereby, the nitrogen removal process was enhanced. Noteworthy, ammonia oxidizer (Nitrosomonas, 8.26%) was the absolute dominant nitrifiers compared with nitrite oxidizer (Nitrospira, 1.13%). This supported the finding of shortcut nitrification-denitrification process in hybrid system. Moreover, a series of biomacromolecule degraders (Lutibacterium, Cycloclasticus, etc.) were detected in bio-carriers, which could account for the mitigation of membrane fouling as result of EPS and SMP degradation.
Collapse
Affiliation(s)
- Weilong Song
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lai Yoke Lee
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqing Shi
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
35
|
Goh KM, Shahar S, Chan KG, Chong CS, Amran SI, Sani MH, Zakaria II, Kahar UM. Current Status and Potential Applications of Underexplored Prokaryotes. Microorganisms 2019; 7:E468. [PMID: 31635256 PMCID: PMC6843859 DOI: 10.3390/microorganisms7100468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications. However, researchers may neglect or pay little attention to the uncommon prokaryotes and hard-to-cultivate microorganisms. In this review, we provide a systematic update on the discovery of underexplored culturable and unculturable prokaryotes and discuss the insights accumulated from various research efforts. Examining these neglected prokaryotes may elucidate their novelties and functions and pave the way for their industrial applications. In addition, we hope that this review will prompt the scientific community to reconsider these untapped pragmatic resources.
Collapse
Affiliation(s)
- Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Saleha Shahar
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- International Genome Centre, Jiangsu University, ZhenJiang 212013, China.
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Syazwani Itri Amran
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Mohd Helmi Sani
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| | - Ummirul Mukminin Kahar
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
36
|
Podosokorskaya OA, Teplyuk AV, Zayulina KS, Kopitsyn DS, Dominova IN, Elcheninov AG, Toshchakov SV, Kublanov IV. The Metabolism of Thermophilic Hydrolytic Bacterium Thauera hydrothermalis Strain par-f-2 Isolated from the West Siberian Subsurface Biosphere. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Complete genome sequence of Pelolinea submarina MO-CFX1T within the phylum Chloroflexi, isolated from subseafloor sediment. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Li Y, Wu X, Wang W, Wang M, Zhao C, Chen T, Liu G, Zhang W, Li S, Zhou H, Wu M, Yang R, Zhang G. Microbial taxonomical composition in spruce phyllosphere, but not community functional structure, varies by geographical location. PeerJ 2019; 7:e7376. [PMID: 31355059 PMCID: PMC6644631 DOI: 10.7717/peerj.7376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies indicate that the plant phenotypic traits eventually shape its microbiota due to the community assembly based on the functional types. If so, the distance-related variations of microbial communities are mostly only in taxonomical composition due to the different seeds pool, and there is no difference in microbial community functional structure if the location associated factors would not cause phenotypical variations in plants. We test this hypothesis by investigating the phyllospheric microbial community from five species of spruce (Picea spp.) trees that planted similarly but at three different locations. Results indicated that the geographical location affected microbial taxonomical compositions and had no effect on the community functional structure. In fact, this actually leads to a spurious difference in the microbial community. Our findings suggest that, within similar host plants, the phyllosphere microbial communities with differing taxonomical compositions might be functionally similar.
Collapse
Affiliation(s)
- Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wanfu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Conservation Institute, Dunhuang Academy, Dunhuang, China
| | - Minghao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Shiweng Li
- Lanzhou Jiaotong University, School of Environmental and Municipal Engineering, Lanzhou, China
| | - Huaizhe Zhou
- National University of Defense Technology, College of Computer, Changsha, China
| | - Minghui Wu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| |
Collapse
|
39
|
A challenge in anaerobic digestion of swine wastewater: recalcitrance and enhanced-degradation of dietary fibres. Biodegradation 2019; 30:389-400. [PMID: 31123941 DOI: 10.1007/s10532-019-09879-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
Dietary fibres are main substances in the pig's feed. Because of the recalcitrance, they could enter swine wastewater and become a serious obstruction factor for the anaerobic digestion process. In this work, three dietary fibres abundant in pig feedstocks: Wheat Bran Fibre (WBF), Alfalfa Fibre (AF) and Rice Chaff Fibre (RCF) were chosen and their anaerobic degradability was determined. The results showed that the biochemical methane potential in 10 days (BMP10) of WBF, AF and RCF was 258, 176 and 86 mL/g-VS, respectively. The size, purity, crystallinity, and lignin coating in particular, were found having influences on the anaerobic biodegradability of dietary fibres. To surprise, a negative rather than positive effect was observed for the direct addition of extraneous cellulase into the anaerobic digestion systems, leading to a longer lag time and a smaller BMP10. The enhancement was achieved for the addition of extraneous bacteria in the form of anaerobic granular sludge (AnGS), shortening the lag time of WBF and AF by 36% and 13%, respectively. By high-throughput sequencing analysis, abundant protein and amino acids degraders found in anaerobic activated sludge (AnAS) could degrade the exogenous enzymes. Abundant members affiliated to the family Anaerolineaceae, and Syntrophobacteraceae in AnGS, related to the cellulolytic and syntrophic activity respectively, probably contribute to the acceleration effect of AnGS.
Collapse
|
40
|
Tan L, Nishimura H, Wang YF, Sun ZY, Tang YQ, Kida K, Morimura S. Effect of organic loading rate on thermophilic methane fermentation of stillage eluted from ethanol fermentation of waste paper and kitchen waste. J Biosci Bioeng 2019; 127:582-588. [DOI: 10.1016/j.jbiosc.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 10/27/2022]
|
41
|
Zhao L, Lu Z, Tan S, Ciren J, Tan C. Effects of glucose and starch on the toxicity of nitrobenzene to plants and microbes in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:809-817. [PMID: 30583176 DOI: 10.1016/j.scitotenv.2018.12.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Photosynthetic pigment content, antioxidant enzyme activities of plants, microbial enzyme activities and community structure were analyzed to investigate the effects of glucose and starch on the toxicity of nitrobenzene (NB) to plants and microbes in constructed wetlands (CWs). As the influent NB concentration increased from 10 mg/L to 100 mg/L, the NB removal efficiency of the blank group decreased from 97.1% to 75.02%. However, the NB removal efficiencies of the external carbon source groups were maintained at nearly 100%. External carbon sources accelerated the transformation process of NB to aniline (AN), thus decreasing NB toxicity to the microbes and plants. When the influent NB concentration reached 100 mg/L, the NB removal rates and NB reductase activities of the external carbon source groups were 2.4 times and 4 times higher, respectively, than those of the blank group. Most of the dominant genera found in the three CWs could reduce nitroaromatics to the corresponding aromatic amines according to the results of high-throughput sequencing. The performance of NB removal in the CWs indicated the potential of CWs for NB treatment and the necessity of external carbon sources under high NB concentrations.
Collapse
Affiliation(s)
- Lianfang Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Xikang Road, Nanjing 210098, China.
| | - Zongren Lu
- College of Environment, Hohai University, Xikang Road, Nanjing 210098, China
| | - Shaowen Tan
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, Hunan, China
| | - Jibao Ciren
- College of Environment, Hohai University, Xikang Road, Nanjing 210098, China
| | - Chen Tan
- College of Environment, Hohai University, Xikang Road, Nanjing 210098, China
| |
Collapse
|
42
|
Nakahara N, Nobu MK, Takaki Y, Miyazaki M, Tasumi E, Sakai S, Ogawara M, Yoshida N, Tamaki H, Yamanaka Y, Katayama A, Yamaguchi T, Takai K, Imachi H. Aggregatilinea lenta gen. nov., sp. nov., a slow-growing, facultatively anaerobic bacterium isolated from subseafloor sediment, and proposal of the new order Aggregatilineales ord. nov. within the class Anaerolineae of the phylum Chloroflexi. Int J Syst Evol Microbiol 2019; 69:1185-1194. [PMID: 30775966 DOI: 10.1099/ijsem.0.003291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel slow-growing, facultatively anaerobic, filamentous bacterium, strain MO-CFX2T, was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediment collected off the Shimokita Peninsula of Japan. Cells were multicellular filamentous, non-motile and Gram-stain-negative. The filaments were generally more than 20 µm (up to approximately 200 µm) long and 0.5-0.6 µm wide. Cells possessed pili-like structures on the cell surface and a multilayer structure in the cytoplasm. Growth of the strain was observed at 20-37 °C (optimum, 30 °C), pH 5.5-8.0 (pH 6.5-7.0), and 0-30 g l-1 NaCl (5 g l-1 NaCl). Under optimum growth conditions, doubling time and maximum cell density were estimated to be approximately 19 days and ~105 cells ml-1, respectively. Strain MO-CFX2T grew chemoorganotrophically on a limited range of organic substrates in anaerobic conditions. The major cellular fatty acids were saturated C16 : 0 (47.9 %) and C18 : 0 (36.9 %), and unsaturated C18 : 1ω9c (6.0 %) and C16 : 1ω7 (5.1 %). The G+C content of genomic DNA was 63.2 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-CFX2T shares a notably low sequence identity with its closest relatives, which were Thermanaerothrix daxensis GNS-1T and Thermomarinilinea lacunifontana SW7T (both 85.8 % sequence identity). Based on these phenotypic and genomic properties, we propose the name Aggregatilinea lenta gen. nov., sp. nov. for strain MO-CFX2T (=KCTC 15625T, =JCM 32065T). In addition, we also propose the associated family and order as Aggregatilineaceae fam. nov. and Aggregatilineales ord. nov., respectively.
Collapse
Affiliation(s)
- Nozomi Nakahara
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.,Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan
| | - Masayuki Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Eiji Tasumi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Sanae Sakai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Miyuki Ogawara
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Naoko Yoshida
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Yuko Yamanaka
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
43
|
Korzhenkov AA, Teplyuk AV, Lebedinsky AV, Khvashchevskaya AA, Kopylova YG, Arakchaa KD, Golyshin PN, Lunev EA, Golyshina OV, Kublanov IV, Toshchakov SV, Gavrilov SN. Members of the Uncultured Taxon OP1 (“Acetothermia”) Predominate in the Microbial Community of an Alkaline Hot Spring at East-Tuvinian Upland. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
44
|
Bovio P, Cabezas A, Etchebehere C. Preliminary analysis of Chloroflexi populations in full-scale UASB methanogenic reactors. J Appl Microbiol 2018; 126:667-683. [PMID: 30269410 DOI: 10.1111/jam.14115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
Abstract
AIMS The phylum Chloroflexi is frequently found in high abundance in methanogenic reactors, but their role is still unclear as most of them remain uncultured and understudied. Hence, a detailed analysis was performed in samples from five up-flow anaerobic sludge blanket (UASB) full-scale reactors fed different industrial wastewaters. METHODS AND RESULTS Quantitative PCR show that the phylum Chloroflexi was abundant in all UASB methanogenic reactors, with higher abundance in the reactors operated for a long period of time, which presented granular biomass. Both terminal restriction fragment length polymorphism and 16S rRNA gene amplicon sequencing revealed diverse Chloroflexi populations apparently determined by the different inocula. According to the phylogenetic analysis, the sequences from the dominant Chloroflexi were positioned in branches where no sequences of the cultured representative strains were placed. Fluorescent in situ hybridization analysis performed in two of the reactors showed filamentous morphology of the hybridizing cells. CONCLUSIONS While members of the Anaerolineae class within phylum Chloroflexi were predominant, their diversity is still poorly described in anaerobic reactors. Due to their filamentous morphology, Chloroflexi may have a key role in the granulation in methanogenic UASB reactors. SIGNIFICANCE AND IMPACT OF THE STUDY Our results bring new insights about the diversity, stability, dynamics and abundance of this phylum in full-scale UASB reactors which aid in understanding their function within the reactor biomass. However, new methodological approaches and analysis of bulking biomass are needed to completely unravel their role in these reactors. Combining all this knowledge with reactor operational parameters will allow to understand their participation in granulation and bulking episodes and design strategies to prevent Chloroflexi overgrowth.
Collapse
Affiliation(s)
- P Bovio
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - A Cabezas
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay.,Department of Environmental Sciences, Uruguay Technological University (UTEC), Durazno, Uruguay
| | - C Etchebehere
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| |
Collapse
|
45
|
Xu XJ, Shao B, Chen C, Zhang RC, Xie P, Wang XT, Yuan Y, Wang AJ, Lee DJ, Yuan YX, Ren NQ. Response of the reactor performance and microbial community to a shift of ISDD process from micro-aerobic to anoxic condition. CHEMOSPHERE 2018; 212:837-844. [PMID: 30193232 DOI: 10.1016/j.chemosphere.2018.08.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/04/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Micro-aerobic condition has proven to be effective in enhancing sulfide oxidation to elemental sulfur (S0) during integrated simultaneous desulfurization and denitrification process (ISDD). In this study we investigated and compared the performance and microbial community of ISDD process operating under initially anoxic, then micro-aerobic and finally switch back to anoxic condition. For all the three tested scenarios, comparable bioreactor performance in terms of sulfate (95.0 ± 4.4%, 90.6 ± 3.8%, 89.8 ± 3.5%) and nitrate (∼100%) removal was achieved. However, a shift of ISDD bioreactor from micro-aerobic to anoxic environment clearly increased the S0 production (30.6%), relative to that at initial anoxic condition (14.2%). Further anoxic bioreactor operation with different influent nitrate concentrations also obtained satisfactory performance particularly in terms of S0 production. Microbial community analysis results showed that functional microorganisms selectively enriched at micro-aerobic condition, particularly sulfide-oxidizing bacteria (SOB), could also function well and enhance S0 production when bioreactor switching from micro-aerobic to anoxic environment. We proposed that micro-aerobic strategy could function as a bio-selector and provide a new idea in functional microorganisms selectively enrichment for wastewater treatment.
Collapse
Affiliation(s)
- Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China.
| | - Ruo-Chen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yi-Xing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
46
|
Nierychlo M, Miłobędzka A, Petriglieri F, McIlroy B, Nielsen PH, McIlroy SJ. The morphology and metabolic potential of the Chloroflexi in full-scale activated sludge wastewater treatment plants. FEMS Microbiol Ecol 2018; 95:5199189. [DOI: 10.1093/femsec/fiy228] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/20/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Aleksandra Miłobędzka
- Microbial Ecology and Environmental Biotechnology Department, Faculty of Biology, Institute of Botany, Biological and Chemical Research Centre, University of Warsaw; Żwirki i Wigury 101, Warsaw 02–089, Poland
- Department of Biology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw 00–653, Poland
| | - Francesca Petriglieri
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Bianca McIlroy
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Simon Jon McIlroy
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| |
Collapse
|
47
|
Tomazini A, Lal S, Munir R, Stott M, Henrissat B, Polikarpov I, Sparling R, Levin DB. Analysis of carbohydrate-active enzymes in Thermogemmatispora sp. strain T81 reveals carbohydrate degradation ability. Can J Microbiol 2018; 64:992-1003. [PMID: 30338698 DOI: 10.1139/cjm-2018-0336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phylum Chloroflexi is phylogenetically diverse and is a deeply branching lineage of bacteria that express a broad spectrum of physiological and metabolic capabilities. Members of the order Ktedonobacteriales, including the families Ktedonobacteriaceae, Thermosporotrichaceae, and Thermogemmatisporaceae, all have flexible aerobic metabolisms capable of utilizing a wide range of carbohydrates. A number of species within these families are considered cellulolytic and are capable of using cellulose as a sole carbon and energy source. In contrast, Ktedonobacter racemifer, the type strain of the order, does not appear to possess this cellulolytic phenotype. In this study, we confirmed the ability of Thermogemmatispora sp. strain T81 to hydrolyze cellulose, determined the whole-genome sequence of Thermogemmatispora sp. T81, and using comparative bioinformatics analyses, identified genes encoding putative carbohydrate-active enzymes (CAZymes) in the Thermogemmatispora sp. T81, Thermogemmatispora onikobensis, and Ktedonobacter racemifer genomes. Analyses of the Thermogemmatispora sp. T81 genome identified 64 CAZyme gene sequences belonging to 57 glycoside hydrolase families. The genome of Thermogemmatispora sp. T81 encodes 19 genes for putative extracellular CAZymes, similar to the number of putative extracellular CAZymes identified in T. onikobensis (17) and K. racemifer (17), despite K. racemifer not possessing a cellulolytic phenotype. These results suggest that these members of the order Ktedonobacteriales may use a broader range of carbohydrate polymers than currently described.
Collapse
Affiliation(s)
- Atilio Tomazini
- a São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil
| | - Sadhana Lal
- b Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Riffat Munir
- b Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Matthew Stott
- c School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Bernard Henrissat
- d Architecture et fonction des macromolécules biologiques (AFMB), CNRS-INRA, Aix-Marseille Université, Marseille, France USC1408
| | - Igor Polikarpov
- a São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil
| | - Richard Sparling
- e Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David B Levin
- b Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
48
|
Aarti C, Khusro A, Agastian P. Carboxymethyl cellulase production optimization from Glutamicibacter arilaitensis strain ALA4 and its application in lignocellulosic waste biomass saccharification. Prep Biochem Biotechnol 2018; 48:853-866. [PMID: 30303451 DOI: 10.1080/10826068.2018.1514513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this context, carboxymethyl cellulase (CMCase) production from Glutamicibacter arilaitensis strain ALA4 was initially optimized by one factor at a time (OFAT) method using goat dung as proficient feedstock. Two-level full factorial design (25 factorial matrix) using first-order polynomial model revealed the significant (p < 0.05) influence of pH, moisture, and peptone on CMCase activity. Central composite design at N = 20 was further taken into account using a second-order polynomial equation, and thereby liberated maximum CMCase activity of 4925.56 ± 31.61 U/g in the goat dung medium of pH 8.0 and 100% moisture containing 1% (w/w) peptone, which was approximately two fold increment with respect to OFAT method. Furthermore, the partially purified CMCase exhibited stability not only at high pH and temperature but also in the presence of varied metal ions, organic solvents, surfactants, and inhibitors with pronounced residual activities. The enzymatic hydrolysis using partially purified CMCase depicted the maximum liberation of fermentable sugars from alkali pretreated lignocellulosic wastes biomass in the order of paddy straw (13.8 ± 0.15 mg/g) > pomegranate peel (9.1 ± 0.18 mg/g) > sweet lime peel (8.37 ± 0.16 mg/g), with saccharification efficiency of 62.1 ± 0.8, 40.95 ± 0.4, and 37.66 ± 0.4%, respectively after 72 hr of treatment.
Collapse
Affiliation(s)
- Chirom Aarti
- a Research Department of Plant Biology and Biotechnology , Loyola College , Chennai , India
| | - Ameer Khusro
- a Research Department of Plant Biology and Biotechnology , Loyola College , Chennai , India
| | - Paul Agastian
- a Research Department of Plant Biology and Biotechnology , Loyola College , Chennai , India
| |
Collapse
|
49
|
Zhou Y, Zhao S, Yin L, Zhang J, Bao Y, Shi H. Development of a Novel Membrane-less Microbial Fuel Cell (ML-MFC) with a Sandwiched Nitrifying Chamber for Efficient Wastewater Treatment. ELECTROANAL 2018. [DOI: 10.1002/elan.201800232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yuhong Zhou
- Department of Environmental Engineering; Zhejiang University; Yuhangtang Road 866# Hangzhou 310058 China
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province; Hangzhou 310058 China
| | - Simeng Zhao
- Department of Environmental Engineering; Zhejiang University; Yuhangtang Road 866# Hangzhou 310058 China
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province; Hangzhou 310058 China
| | - Lu Yin
- Zhejiang Design Institute of Water Conservancy and Hydroelectric Power; Hangzhou 310000 China
| | - Jing Zhang
- Department of Environmental Engineering; Zhejiang University; Yuhangtang Road 866# Hangzhou 310058 China
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province; Hangzhou 310058 China
| | - Yue Bao
- Zhejiang Province Environmental Science and Technology Co., Ltd.; Hangzhou 311100 China
| | - Huixiang Shi
- Department of Environmental Engineering; Zhejiang University; Yuhangtang Road 866# Hangzhou 310058 China
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province; Hangzhou 310058 China
| |
Collapse
|
50
|
Wang D, Han Y, Han H, Li K, Xu C, Zhuang H. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite. BIORESOURCE TECHNOLOGY 2018; 257:147-156. [PMID: 29499496 DOI: 10.1016/j.biortech.2018.02.084] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
In this study, magnetite (Fe3O4), as the typical conductive material, was supplemented in anaerobic sequential batch reactor (ASBR) with the attempt to enhance pollutants removal and methane production during Fischer-Tropsch wastewater treatment. The results showed that COD removal efficiency and cumulative methane production with the addition of optimum magnetite dosage (0.4 g) were as high as 84.3 ± 2.0% and 7.46 ± 0.24 L, which were higher than other test groups (0, 0.2 and 0.6 g). Furthermore, the combination of high-throughput 16S rRNA gene pyrosequencing and metagenomic analysis in this study further confirmed that the Geobacter and Methanosaeta species were specially enriched in bacterial and archaeal community at the optimum magnetite dosage, suggesting that magnetite-mediated direct interspecies electron transfer (DIET) between Geobacter and Methanosaeta species was likely a crucial reason to promote syntrophic metabolism of propionic acid and butyric acid, and further enhance final methanogenesis.
Collapse
Affiliation(s)
- Dexin Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|