1
|
Shrestha P, Karmacharya J, Han SR, Lee JH, Oh TJ. Elucidation of cold adaptation in Glaciimonas sp. PAMC28666 with special focus on trehalose biosynthesis. Front Microbiol 2023; 14:1280775. [PMID: 37920266 PMCID: PMC10618363 DOI: 10.3389/fmicb.2023.1280775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Glaciimonas sp. PAMC28666, an extremophilic bacterium thriving in Antarctic soil and belonging to the Oxalobacteraceae family, represents the only complete genome of its genus available in the NCBI database. Its genome measures 5.2 Mb and comprises 4,476 genes (4,350 protein-coding and 72 non-coding). Phylogenetic analysis shows the strain PAMC28666 in a unique branch within the genus Glaciimonas, closely related to Glaciimonas alpine Cr9-12, supported by robust bootstrap values. In addition, strain PAMC28666 showed 77.08 and 23.3% ANI and DDH, respectively, with Glaciimonas sp. PCH181.This study focuses on how polar strain PAMC28666 responds to freeze-thaw conditions, Experimental results revealed a notable survival rate of 47.28% when subjected to a temperature of 15°C for a period of 10 days. Notably, two genes known to be responsive to cold stress, Trehalose 6-phosphate synthase (otsA) and Trehalose 6-phosphate phosphatase (otsB), exhibited increased expression levels as the temperature shifted from 25°C to 15°C. The upregulation of otsAB and the consequent synthesis of trehalose play pivotal roles in enhancing the cold resistance of strain PAMC28666, offering valuable insights into the correlation between trehalose production and adaptation to cold stress. Furthermore, research into this neglected cold-adapted variation, like Glaciimonas sp. PAMC28666, has the potential to shed light on how trehalose is produced in cold-adapted environments Additionally, there is potential to extract trehalose compounds from this strain for diverse biotechnological applications, including food and cosmetics, with ongoing research exploring its unique properties.
Collapse
Affiliation(s)
- Prasansah Shrestha
- Department of Life Sciences and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - Jayram Karmacharya
- Department of Life Sciences and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - So-Ra Han
- Department of Life Sciences and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Sciences and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
2
|
Huang WS, Wang LT, Sun JN, Chen JS, Huang SP, Lin ST, Huang L, Shieh WY. Glaciimonas soli sp. nov., a soil bacterium isolated from the forest of a high elevation mountain. Antonie van Leeuwenhoek 2020; 113:1213-1223. [PMID: 32468220 DOI: 10.1007/s10482-020-01428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
A Gram-negative, psychrophilic bacterium, designated strain GS1T, was isolated from a forest soil sample collected from the West Peak of Mt. Yushan, Yushan National Park, Taiwan. Cells grown in broth cultures were mostly non-motile and non-flagellated, whereas motile cells with monotrichous, subpolar flagella were also observed. The novel strain grew over a temperature range of 4-25 °C with optimum growth at 10-15 °C. It grew aerobically and was not capable of anaerobic growth by fermentation of D-glucose or other carbohydrates. Ubiquinone 8 was the predominant isoprenoid quinone. The major polar lipids comprised phosphatidylethanolamine, diphosphatidylglycerol and dimethylaminoethanol. Cellular fatty acids were dominated by C16:1ω7c (35.2%), C16:0 (19.5%), C18:1ω7c (18.8%) and C17:0ω7c cyclo (15.5%). The DNA G + C content was 49.2 mol% evaluated according to the genomic sequencing data. Strain GS1T shared more than 96.5% 16S rRNA gene sequence similarities with type strains of four Collimonas species (97.2-97.5%), three Glaciimonas species (97.3% for each of the three) and Oxalicibacterium solurbis (96.5%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GS1T formed a stable genus-level clade with type strains of species in the genus Glaciimonas in the family Oxalobacteraceae and GS1T was an outgroup with respect to these Glaciimonas species. Characteristically, strain GS1T could be easily distinguished from the recognised Glaciimonas species by exhibition of swimming motility with monotrichous, subpolar flagellum in some of the cells, ability to grow in NaCl at 2% but not at 3% and the distinguishable fatty acid profiles. On the basis of the polyphasic taxonomic data from this study, strain GS1T is considered to represent a novel species of the genus Glaciimonas, for which the name Glaciimonas soli sp. nov. is proposed. The type strain is GS1T (= JCM 33275T = BCRC 81091T).
Collapse
Affiliation(s)
- Wei-Sheng Huang
- Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, 10617, Taiwan
| | - Li-Ting Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu, 30062, Taiwan
| | - Jun-Ning Sun
- Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, 10617, Taiwan
| | - Jwo-Sheng Chen
- College of Health Care, China Medical University, No. 91, Shyue-Shyh Rd, Taichung, Taiwan
| | - Ssu-Po Huang
- Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, 10617, Taiwan
| | - Shih-Ting Lin
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu, 30062, Taiwan
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd., Hsinchu, 30062, Taiwan
| | - Wung Yang Shieh
- Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Kumar V, Thakur V, Ambika, Kumar V, Kumar R, Singh D. Genomic insights revealed physiological diversity and industrial potential for Glaciimonas sp. PCH181 isolated from Satrundi glacier in Pangi-Chamba Himalaya. Genomics 2020; 112:637-646. [DOI: 10.1016/j.ygeno.2019.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/17/2022]
|
4
|
Lacisediminimonas profundi gen. nov., sp. nov., a member of the family Oxalobacteraceae isolated from freshwater sediment. Antonie van Leeuwenhoek 2019; 113:253-264. [DOI: 10.1007/s10482-019-01334-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
|
5
|
Chen WM, Xie PB, Hsu MY, Sheu SY. Parvibium lacunae gen. nov., sp. nov., a new member of the family Alcaligenaceae isolated from a freshwater pond. Int J Syst Evol Microbiol 2018; 68:1291-1299. [PMID: 29498621 DOI: 10.1099/ijsem.0.002667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated KMB9T was isolated from a freshwater pond in Taiwan and characterized using a polyphasic taxonomy approach. Cells of strain KMB9T were Gram-stain-negative, aerobic, poly-β-hydroxybutyrate-accumulating, motile by means of a monopolar flagellum, non-spore-forming and rods surrounded by a thick capsule and forming white-coloured colonies. Growth occurred at 20-40 °C (optimum, 25-37 °C), at pH 6.5-7.5 (optimum, pH 7.0) and with 0-0.5 % NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene and four housekeeping gene sequences (recA, rpoA, rpoB and atpD) showed that strain KMB9T forms a distinct phyletic line within the family Alcaligenaceae, and the levels of 16S rRNA gene sequence similarity to its closest relatives with validly published names were less than 93.3 %. The predominant fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω7c. The major isoprenoid quinone was Q-8. The major polyamine was putrescine. The polar lipid profile revealed the presence of phosphatidylethanolamine, phosphatidylglycerol and several uncharacterized aminophospholipids, aminolipids, phospholipids and lipids. The genomic DNA G+C content of strain KMB9T was 54.5 mol%. On the basis of the genotypic and phenotypic data, strain KMB9T represents a novel species of a new genus in the family Alcaligenaceae, for which the name Parvibium lacunae gen. nov., sp. nov. is proposed. The type strain is KMB9T (=BCRC 81053T=LMG 30055T=KCTC 52814T).
Collapse
Affiliation(s)
- Wen-Ming Chen
- Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Pei-Bei Xie
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Ming-Yuan Hsu
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
6
|
Sheu SY, Li YS, Chen WM. Piscinibacterium candidicorallinum gen. nov., sp. nov., a member of the order Burkholderiales isolated from a fish pond. Int J Syst Evol Microbiol 2016; 66:5260-5267. [PMID: 27665758 DOI: 10.1099/ijsem.0.001505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated LYH-15T was isolated from a freshwater fish pond in Taiwan and characterized using a polyphasic taxonomy approach. Cells of LYH-15T were Gram-staining-negative, aerobic, motile by means of a single polar flagellum, poly-β-hydroxybutyrate-containing, non-spore forming, straight rods and formed light-coral-colored colonies. Growth occurred at 15-40 °C (optimum, 30 °C), at pH 5.0-9.0 (optimum, pH 7.0) and with 0-0.5 % NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that LYH-15T forms a distinct phyletic line within the order Burkholderiales, with less than 94 % sequence similarity to its closest relatives with validly published names. The predominant fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω7c. The major isoprenoid quinone was Q-8 and the DNA G+C content was 63.8 mol%. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized lipids. The major polyamines were 2-hydroxyputrescine and putrescine. On the basis of the genotypic and phenotypic data, LYH-15T represents a novel species of a new genus in the order Burkholderiales, for which the name Piscinibacterium candidicorallinum gen. nov., sp. nov. is proposed. The type strain is LYH-15T (=BCRC 80969T=LMG 29480T=KCTC 52168T).
Collapse
Affiliation(s)
- Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Yi-Shu Li
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
7
|
Sundararaman A, Srinivasan S, Lee SS. Noviherbaspirillum humi sp. nov., isolated from soil. Antonie van Leeuwenhoek 2016; 109:697-704. [PMID: 26940744 DOI: 10.1007/s10482-016-0670-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/24/2016] [Indexed: 11/24/2022]
Abstract
Two novel Gram-stain negative, motile, non-spore forming, facultative aerobic and short rod shaped bacterial strains, designated U15(T) and U32, were isolated from soil obtained from Ukraine. The sequence similarity of the 16S rRNA gene between strains U15(T) and U32 was found to be 99.5 %. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that new bacteria belong to the genus Noviherbaspirillum. The closest member of the genus was found to be Noviherbaspirillum malthae (97.0 %) followed by Noviherbaspirillum suwonensis (96.3 %). The novel isolates was observed to grow optimally at 30 °C and pH 7.0. The major fatty acids present in the two strains were identified as summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:0, and summed feature 8 (C18:1 ω7c/C18:1 ω6c). Ubiquinone 8 was identified as the respiratory quinone component for both the strains. The polar lipid (L) profile contained phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, unidentified aminolipid and unidentified Ls, and putrescine and 2-hydroxyputrescine as major polyamines. The G+C content of the DNA for the strain U15(T) was found to be 61.2 mol%. The DNA-DNA relatedness between U15(T) and U32 and closely related species was less than 40 %. Based on the polyphasic taxonomic analysis, a new species, Noviherbaspirillum humi sp. nov., is proposed. The type strain is strain U15(T) = JCM 19873(T) = KEMB 7305-102(T).
Collapse
Affiliation(s)
- Aravind Sundararaman
- Department of Life Science, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon, 443-760, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Life Science, School of Natural Science, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon, 443-760, Republic of Korea
| | - Sang-Seob Lee
- Department of Life Science, School of Natural Science, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon, 443-760, Republic of Korea.
| |
Collapse
|
8
|
Sedláček I, Kwon SW, Švec P, Mašlanˇová I, Kýrová K, Holochová P, Černohlávková J, Busse HJ. Aquitalea pelogenes sp. nov., isolated from mineral peloid. Int J Syst Evol Microbiol 2015; 66:962-967. [PMID: 26637813 DOI: 10.1099/ijsem.0.000819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Strain P1297T was isolated in the frame of a project aimed on the psychrotolerant microbiota occurring in water sources. The strain initially identified as a tentative species of the genus Aeromonas was rod-shaped, Gram-stain-negative, facultatively anaerobic and oxidase-positive. Subsequently, 16S rRNA gene sequence analysis placed strain P1297T within the class Betaproteobacteria and showed Aquitalea magnusonii TRO-001DR8T as the closest phylogenetic relative with 99.28 % 16S rRNA gene sequence similarity. Digital DDH and average nucleotide identity (ANI) were determined to evaluate the genomic relationship between strain P1297T and Aquitalea magnusonii CCM 7607T. Digital DDH estimation (31.3 ± 2.46 %) as well as ANI (85.6001 %; reciprocal value 85.3277 %) proved the dissimilarity of strain P1297T. Further investigation using phenotyping, automated ribotyping, whole-cell protein profiling and PCR-fingerprinting methods showed a distinct taxonomic position of strain P1297T among hitherto described species of the genus Aquitalea. DNA-DNA hybridization experiments revealed low binding values between strain P1297T and Aquitalea magnusonii CCM 7607T (57 ± 3 %) and Aquitalea denitrificans CCM 7935T (41 ± 5 %). The DNA G+C content of strain P1297T was 60.3 mol%. The predominant fatty acids were C16 : 1ω7c/ iso-C15 : 0 2-OH (47.0 %), C16 : 0 (24.5 %) and C18 : 1ω7c (10.6 %), and the quinone system contained predominantly ubiquinone Q-8. The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids and one unidentified aminophospholipid. Obtained results of genotypic and chemotaxonomic methods clearly proved that strain P1297T represents a novel species of the genus Aquitalea, for which the name Aquitalea pelogenes sp. nov. is proposed. The type strain is P1297T ( = CCM 7557T = LMG 28989T = CCUG 67440T).
Collapse
Affiliation(s)
- Ivo Sedláček
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 565-851, Republic of Korea
| | - Pavel Švec
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivana Mašlanˇová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kamila Kýrová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavla Holochová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jitka Černohlávková
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Hans-Jürgen Busse
- Institut für Bakteriology, Mykology und Hygiene, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| |
Collapse
|
9
|
Margesin R, Zhang DC, Frasson D, Brouchkov A. Glaciimonas frigoris sp. nov., a psychrophilic bacterium isolated from ancient Siberian permafrost sediment, and emended description of the genus Glaciimonas. Int J Syst Evol Microbiol 2015; 66:744-748. [PMID: 26597157 DOI: 10.1099/ijsem.0.000783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial strain N1-38T was isolated from ancient Siberian permafrost sediment. The strain was Gram-reaction-negative, motile by gliding, rod-shaped and psychrophilic, and showed good growth over a temperature range of - 5 to 25 °C. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain N1-38T was most closely related to members of the genus Glaciimonas and shared the highest 16S rRNA gene sequence similarities with the type strains of Glaciimonas alpina (99.3 %), Glaciimonas immobilis (98.9 %) and Glaciimonas singularis (96.5 %). The predominant cellular fatty acids of strain N1-38T were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and C18 : 1ω7c. The major respiratory quinone was ubiquinone 8 and the major polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The genomic DNA G+C content was 53.0 mol%. Combined data of phenotypic, phylogenetic and DNA-DNA relatedness studies demonstrated that strain N1-38T represents a novel species of the genus Glaciimonas, for which the name Glaciimonas frigoris sp. nov. is proposed. The type strain is N1-38T ( = LMG 28868T = CCOS 838T). An emended description of the genus Glaciimonas is also provided.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - De-Chao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, PRChina
| | - David Frasson
- Institute of Biotechnology, Zurich University of Applied Sciences, Life Sciences & Facility Management, 8820 Waedenswil, Switzerland
| | - Anatoli Brouchkov
- Moscow University, Geology Faculty, 1 Leninskye Gory, Moscow, 119899, Russia
| |
Collapse
|
10
|
Frasson D, Udovičić M, Frey B, Lapanje A, Zhang DC, Margesin R, Sievers M. Glaciimonas alpina sp. nov. isolated from alpine glaciers and reclassification of Glaciimonas immobilis Cr9-12 as the type strain of Glaciimonas alpina sp. nov. Int J Syst Evol Microbiol 2015; 65:1779-1785. [PMID: 26184665 DOI: 10.1099/ijs.0.000174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Psychrophilic bacterial strains were isolated from alpine glaciers in Switzerland and characterized taxonomically. On the basis of phylogenetic analysis of partial 16S rRNA and rpoB genes, three of those strains, strain 79 ( = CCOS 247), strain 4/58 ( = CCOS 250) and strain 4/56 ( = CCOS 258) clustered together with strain Cr9-12T and separately from the type strains Glaciimonas immobilis Cr9-30T and Glaciimonas singularis LMG 27070T. Strain Cr9-12T has been previously described as a strain of G. immobilis. The three newly isolated strains were compared phenotypically with strain Cr9-12T and with the type strains of the species G. immobilis and G. singularis. Cr9-12T and the three novel strains from an alpine glacier in Switzerland were Gram-stain-negative, non-motile, rod-shaped and psychrophilic and showed good growth throughout a temperature range of 1-20 °C and characteristically oxidized d-mannitol, l-fucose and bromosuccinic acid. The predominant cellular fatty acids of strain Cr9-12T and the three novel strains were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and C18 : 1ω7c. The respiratory quinone of these strains was ubiquinone 8 (UQ-8). The genomic DNA G+C content of Cr9-12T was 49.2 mol%. The combined data from phenotypic, phylogenetic and DNA-DNA relatedness studies strongly support the reclassification of strain Cr9-12T as representing a novel species. This strain and the isolates 79 ( = CCOS 247), 4/58 ( = CCOS 250) and 4/56 ( = CCOS 258) are representatives of a novel species of the genus Glaciimonas, for which the name Glaciimonas alpina sp. nov. is proposed. The type strain of Glaciimonas alpina is Cr9-12T ( = CCOS 761T = DSM 22814T).
Collapse
Affiliation(s)
- David Frasson
- Institute of Biotechnology, Zurich University of Applied Sciences, Life Sciences & Facility Management, 8820 Waedenswil, Switzerland
| | - Matije Udovičić
- Institute of Biotechnology, Zurich University of Applied Sciences, Life Sciences & Facility Management, 8820 Waedenswil, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Aleš Lapanje
- Institute of Metagenomics and Microbial Technologies, Trata XIV/3, SI-1330 Kočevje, Slovenia
| | - De-Chao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, PR China
| | - Rosa Margesin
- Institute of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Sievers
- Institute of Biotechnology, Zurich University of Applied Sciences, Life Sciences & Facility Management, 8820 Waedenswil, Switzerland
| |
Collapse
|