1
|
Arunrat N, Uttarotai T, Kongsurakan P, Sereenonchai S, Hatano R. Bacterial Community Structure in Soils With Fire-Deposited Charcoal Under Rotational Shifting Cultivation of Upland Rice in Northern Thailand. Ecol Evol 2025; 15:e70851. [PMID: 39911415 PMCID: PMC11794992 DOI: 10.1002/ece3.70851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Rotational shifting cultivation (RSC) is a traditional agricultural practice in mountainous areas that uses fire to clear land after cutting vegetation for cultivation. However, few studies have assessed the effect of fire-deposited charcoal on the diversity and composition of soil microbial communities, and none have been conducted in Thailand. Therefore, this study was conducted 1 year after a fire in an abandoned 12-year RSC in Chiang Mai Province, northern Thailand. Charcoal samples were collected from the surface litter layer, while charcoal-soil mixtures were taken from the surface soil (0-2 cm). Soil samples from 2 to 7 cm captured the charcoal-soluble layer, and samples from 7 to 15 cm represented soil without charcoal incorporation. The results revealed that charcoal led to higher pH and electrical conductivity in the charcoal layer, with notable differences in soil texture across layers, including the highest sand and silt content in the charcoal-mixed soil layer (0-2 cm). Soil organic matter and total nitrogen were significantly higher in the charcoal-mixed layer compared to deeper layers, indicating improved nutrient retention due to charcoal presence. Enhanced microbial diversity was observed in the charcoal and charcoal-mixed soil layers, with Proteobacteria, Chloroflexi, and Planctomycetota dominating across all soil samples. The bacterial genus Ilumatobacter exhibited significant changes in abundance in the charcoal layer. Additionally, Pseudolabrys was more abundant in charcoal-leached soil, while JG30a-KF-32 showed greater abundance in soil without charcoal. Shifts in Proteobacteria and Planctomycetota abundance were evident in the charcoal leaching and non-charcoal layers. Network analysis indicated more complex bacterial interactions in the charcoal-mixed soil layer, with reduced network complexity observed in the charcoal leaching layer and the layer without charcoal. These findings imply that charcoal provides a favorable environment for diverse and interactive bacterial communities, potentially benefiting soil health and fertility recovery in RSC fields.
Collapse
Affiliation(s)
- Noppol Arunrat
- Faculty of Environment and Resource StudiesMahidol UniversityNakhon PathomThailand
| | - Toungporn Uttarotai
- Department of Highland Agriculture and Natural Resources, Faculty of AgricultureChiang Mai UniversityChiang MaiThailand
| | - Praeploy Kongsurakan
- Laboratory of Terrestrial Ecosystem Modeling, Research Faculty of AgricultureHokkaido UniversitySapporoJapan
| | - Sukanya Sereenonchai
- Faculty of Environment and Resource StudiesMahidol UniversityNakhon PathomThailand
| | - Ryusuke Hatano
- Laboratory of Soil Science, Research Faculty of AgricultureHokkaido UniversitySapporoJapan
| |
Collapse
|
2
|
Silva-Solar S, Viver T, Wang Y, Orellana LH, Knittel K, Amann R. Acidimicrobiia, the actinomycetota of coastal marine sediments: Abundance, taxonomy and genomic potential. Syst Appl Microbiol 2024; 47:126555. [PMID: 39342656 DOI: 10.1016/j.syapm.2024.126555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Microbial communities in marine sediments represent some of the densest and most diverse biological communities known, with up to a billion cells and thousands of species per milliliter. Among this taxonomic diversity, the class Acidimicrobiia, within the phylum Actinomycetota, stands out for its consistent presence, yet its limited taxonomic understanding obscures its ecological role. We used metagenome-assembled genomes from a 5-year Arctic fjord sampling campaign and compared them to publicly available Acidimicrobiia genomes using 16S rRNA gene and whole-genome phylogenies, alongside gene prediction and annotation to study their taxonomy and genomic potential. Overall, we provide a taxonomic overview of the class Acidimicrobiia and show its significant prevalence in Isfjorden and Helgoland coastal sediments, representing over 90% of Actinomycetota 16S rRNA gene sequences, and 3-7% of Bacteria. We propose Benthobacter isfjordensis gen. nov., sp. nov., Hadalibacter litoralis gen. nov., sp. nov., and two new species from Ilumatobacter, following SeqCode guidelines. In addition, we report the first in situ quantification of the family Ilumatobacteraceae, revealing its substantial presence (1-6%) in coastal sediments. This work highlights the need of refining the taxonomy of Acidimicrobiia to better understand their ecological contributions.
Collapse
Affiliation(s)
- Sebastián Silva-Solar
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Tomeu Viver
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Yueqing Wang
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany.
| |
Collapse
|
3
|
Girão M, Alexandrino DAM, Cao W, Costa I, Jia Z, Carvalho MF. Unveiling the culturable and non-culturable actinobacterial diversity in two macroalgae species from the northern Portuguese coast. Environ Microbiol 2024; 26:e16620. [PMID: 38627038 DOI: 10.1111/1462-2920.16620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Actinomycetota, associated with macroalgae, remains one of the least explored marine niches. The secondary metabolism of Actinomycetota, the primary microbial source of compounds relevant to biotechnology, continues to drive research into the distribution, dynamics, and metabolome of these microorganisms. In this study, we employed a combination of traditional cultivation and metagenomic analysis to investigate the diversity of Actinomycetota in two native macroalgae species from the Portuguese coast. We obtained and taxonomically identified a collection of 380 strains, which were distributed across 12 orders, 15 families, and 25 genera affiliated with the Actinomycetia class, with Streptomyces making up approximately 60% of the composition. Metagenomic results revealed the presence of Actinomycetota in both Chondrus crispus and Codium tomentosum datasets, with relative abundances of 11% and 2%, respectively. This approach identified 12 orders, 16 families, and 17 genera affiliated with Actinomycetota, with minimal overlap with the cultivation results. Acidimicrobiales emerged as the dominant actinobacterial order in both macroalgae, although no strain affiliated with this taxonomic group was successfully isolated. Our findings suggest that macroalgae represent a hotspot for Actinomycetota. The synergistic use of both culture-dependent and independent approaches proved beneficial, enabling the identification and recovery of not only abundant but also rare taxonomic members.
Collapse
Affiliation(s)
- Mariana Girão
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Diogo A M Alexandrino
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Environmental Health, School of Health, Porto, Portugal
| | - Weiwei Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Isabel Costa
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Maria F Carvalho
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Wu X, Yang F, Zhang J, Gao F, Hu YC, Yang K, Wang P. Biochar's role in improving pakchoi quality and microbial community structure in rhizosphere soil. PeerJ 2024; 12:e16733. [PMID: 38515457 PMCID: PMC10956520 DOI: 10.7717/peerj.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/07/2023] [Indexed: 03/23/2024] Open
Abstract
Background Biochar amendments enhance crop productivity and improve agricultural quality. To date, studies on the correlation between different amounts of biochar in pakchoi (Brassica campestris L.) quality and rhizosphere soil microorganisms are limited, especially in weakly alkaline soils. The experiment was set up to explore the effect of different concentrations of biochar on vegetable quality and the correlation between the index of quality and soil bacterial community structure changes. Methods The soil was treated in the following ways via pot culture: the blank control (CK) without biochar added and with biochar at different concentrations of 1% (T1), 3% (T2), 5% (T3), and 7% (T4). Here, we investigatedthe synergistic effect of biochar on the growth and quality of pakchoi, soil enzymatic activities, and soil nutrients. Microbial communities from pakchoi rhizosphere soil were analyzed by Illumina MiSeq. Results The results revealed that adding 3% biochar significantly increased plant height, root length, and dry weight of pakchoi and increased the contents of soluble sugars, soluble proteins, Vitamin C (VC), cellulose, and reduced nitrate content in pakchoi leaves. Meanwhile, soil enzyme activities and available nutrient content in rhizosphere soil increased. This study demonstrated that the the microbial community structure of bacteria in pakchoi rhizosphere soil was changed by applying more than 3% biochar. Among the relatively abundant dominant phyla, Gemmatimonadetes, Anaerolineae, Deltaproteobacteria and Verrucomicrobiae were reduced, and Alphaproteobacteria, Gammaproteobacteria, Bacteroidia, and Acidimicrobiia relative abundance increased. Furthermore, adding 3% biochar reduced the relative abundance of Gemmatimonas and increased the relative abundances of Ilumatobacter, Luteolibacter, Lysobacter, Arthrobacter, and Mesorhizobium. The nitrate content was positively correlated with the abundance of Gemmatimonadetes, and the nitrate content was significantly negatively correlated with the relative abundance of Ilumatobacter. Carbohydrate transport and metabolism in the rhizosphere soil of pakchoi decreased, and lipid transport and metabolism increased after biochar application. Conclusion Overall, our results indicated that applying biochar improved soil physicochemical states and plant nutrient absorption, and affected the abundance of dominant bacterial groups (e.g., Gemmatimonadetes and Ilumatobacter), these were the main factors to increase pakchoi growth and promote quality of pakchoi. Therefore, considering the growth, quality of pakchoi, and soil environment, the effect of using 3% biochar is better.
Collapse
Affiliation(s)
- Xia Wu
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- Heilongjiang Bayi Agricultural University, Ministry of Agriculture and Rural Aûairs, Key Laboratory of Low-carbon Green Agriculture Carbon in Northeastrn China, Daqing, Heilongjiang, China
| | - Fengjun Yang
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jili Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Feng Gao
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yi Chen Hu
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Kejun Yang
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Peng Wang
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
5
|
Liang J, Li C, Mo J, Iwata H, Rehman F, Song J, Guo J. Metatranscriptomic profiles reveal the biotransformation potential of azithromycin in river periphyton. WATER RESEARCH 2024; 251:121140. [PMID: 38246076 DOI: 10.1016/j.watres.2024.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Assessment of the interaction between the biotransformation of chemical contaminants and enzyme activity from aquatic microbial communities is critical for improving the micropollutant degradation in river remediation. Here, association mining based on metatranscriptomic analysis was initially applied to determine the genes encoding enzymes involved in the azithromycin (AZI) transformation process and the corresponding microbial hosts in periphyton, followed by revealing the dynamic variation in the community structure and function. In terms of the biotransformation potential, the highly correlated 15 enzymes were suggested to be primarily involved in AZI biotransformation, energy supply, and antibiotic resistance processes, especially aryl-alcohol dehydrogenases (EC: 1.1.1.90), hydroxylamine dehydrogenase (EC: 1.7.2.6), and monooxygenases (EC: 1.14.11.57) that were involved in the biotransformation of AZI. In the matter of community ecological function, the photosystem II (PSII) reaction center in the periphytic photosynthetic process, as indicated by Fv/Fm, was inhibited after AZI exposure, which may be attributed to the down-regulated genes enriched in the photosynthesis - antenna proteins (ko00196), photosynthesis (ko00195), and two-component system (ko02020) pathways. Furthermore, the periphytic utilization capacity for carbohydrates and phenolic acids was enhanced, which was in accordance with all the increased expression of transcripts involved in the corresponding molecular pathways, including aminobenzoate degradation (ko00627), starch and sucrose metabolism (ko00500), ABC transporters (ko02010), phosphotransferase system (ko02060), galactose metabolism (ko00052), amino sugar and nucleotide sugar metabolism (ko00520). Taken together, this study highlighted the critical role of river periphyton in the micropollutant degradation and unraveled the molecular mechanism of antibiotic biotransformation as well as the structural and functional damage in the periphyton.
Collapse
Affiliation(s)
- Jiayi Liang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chenghao Li
- School of Economics & Management, Northwest University, Xi'an 710127, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Campus, Lahore, Pakistan
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
6
|
Gao L, Liu L, Lv AP, Fu L, Lian ZH, Nunoura T, Hedlund BP, Xu QY, Wu D, Yang J, Ali M, Li MM, Liu YH, Antunes A, Jiang HC, Cheng L, Jiao JY, Li WJ, Fang BZ. Reversed oxidative TCA (roTCA) for carbon fixation by an Acidimicrobiia strain from a saline lake. THE ISME JOURNAL 2024; 18:wrae147. [PMID: 39073917 PMCID: PMC11697166 DOI: 10.1093/ismejo/wrae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
Acidimicrobiia are widely distributed in nature and suggested to be autotrophic via the Calvin-Benson-Bassham (CBB) cycle. However, direct evidence of chemolithoautotrophy in Acidimicrobiia is lacking. Here, we report a chemolithoautotrophic enrichment from a saline lake, and the subsequent isolation and characterization of a chemolithoautotroph, Salinilacustristhrix flava EGI L10123T, which belongs to a new Acidimicrobiia family. Although strain EGI L10123T is autotrophic, neither its genome nor Acidimicrobiia metagenome-assembled genomes from the enrichment culture encode genes necessary for the CBB cycle. Instead, genomic, transcriptomic, enzymatic, and stable-isotope probing data hinted at the activity of the reversed oxidative TCA (roTCA) coupled with the oxidation of sulfide as the electron donor. Phylogenetic analysis and ancestral character reconstructions of Acidimicrobiia suggested that the essential CBB gene rbcL was acquired through multiple horizontal gene transfer events from diverse microbial taxa. In contrast, genes responsible for sulfide- or hydrogen-dependent roTCA carbon fixation were already present in the last common ancestor of extant Acidimicrobiia. These findings imply the possibility of roTCA carbon fixation in Acidimicrobiia and the ecological importance of Acidimicrobiia. Further research in the future is necessary to confirm whether these characteristics are truly widespread across the clade.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lin Fu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610000, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, United States
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, United States
| | - Qing-Yu Xu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Dildar Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jian Yang
- Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Mukhtiar Ali
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yong-Hong Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR 999078, PR China
| | - Hong-Chen Jiang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
- Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610000, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Bao-Zhu Fang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| |
Collapse
|
7
|
Freyria NJ, Góngora E, Greer CW, Whyte LG. High Arctic seawater and coastal soil microbiome co-occurrence and composition structure and their potential hydrocarbon biodegradation. ISME COMMUNICATIONS 2024; 4:ycae100. [PMID: 39101031 PMCID: PMC11296632 DOI: 10.1093/ismeco/ycae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
The accelerated decline in Arctic sea-ice cover and duration is enabling the opening of Arctic marine passages and improving access to natural resources. The increasing accessibility to navigation and resource exploration and production brings risks of accidental hydrocarbon releases into Arctic waters, posing a major threat to Arctic marine ecosystems where oil may persist for many years, especially in beach sediment. The composition and response of the microbial community to oil contamination on Arctic beaches remain poorly understood. To address this, we analyzed microbial community structure and identified hydrocarbon degradation genes among the Northwest Passage intertidal beach sediments and shoreline seawater from five high Arctic beaches. Our results from 16S/18S rRNA genes, long-read metagenomes, and metagenome-assembled genomes reveal the composition and metabolic capabilities of the hydrocarbon microbial degrader community, as well as tight cross-habitat and cross-kingdom interactions dominated by lineages that are common and often dominant in the polar coastal habitat, but distinct from petroleum hydrocarbon-contaminated sites. In the polar beach sediment habitats, Granulosicoccus sp. and Cyclocasticus sp. were major potential hydrocarbon-degraders, and our metagenomes revealed a small proportion of microalgae and algal viruses possessing key hydrocarbon biodegradative genes. This research demonstrates that Arctic beach sediment and marine microbial communities possess the ability for hydrocarbon natural attenuation. The findings provide new insights into the viral and microalgal communities possessing hydrocarbon degradation genes and might represent an important contribution to the removal of hydrocarbons under harsh environmental conditions in a pristine, cold, and oil-free environment that is threatened by oil spills.
Collapse
Affiliation(s)
- Nastasia J Freyria
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Esteban Góngora
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
- Energy, Mining and Environment, Research Centre, National Research Council Canada, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
8
|
Galván V, Pascutti F, Sandoval NE, Lanfranconi MP, Lozada M, Arabolaza AL, Mac Cormack WP, Alvarez HM, Gramajo HC, Dionisi HM. High wax ester and triacylglycerol biosynthesis potential in coastal sediments of Antarctic and Subantarctic environments. PLoS One 2023; 18:e0288509. [PMID: 37459319 PMCID: PMC10351704 DOI: 10.1371/journal.pone.0288509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
The wax ester (WE) and triacylglycerol (TAG) biosynthetic potential of marine microorganisms is poorly understood at the microbial community level. The goal of this work was to uncover the prevalence and diversity of bacteria with the potential to synthesize these neutral lipids in coastal sediments of two high latitude environments, and to characterize the gene clusters related to this process. Homolog sequences of the key enzyme, the wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) were retrieved from 13 metagenomes, including subtidal and intertidal sediments of a Subantarctic environment (Ushuaia Bay, Argentina), and subtidal sediments of an Antarctic environment (Potter Cove, Antarctica). The abundance of WS/DGAT homolog sequences in the sediment metagenomes was 1.23 ± 0.42 times the abundance of 12 single-copy genes encoding ribosomal proteins, higher than in seawater (0.13 ± 0.31 times in 338 metagenomes). Homolog sequences were highly diverse, and were assigned to the Pseudomonadota, Actinomycetota, Bacteroidota and Acidobacteriota phyla. The genomic context of WS/DGAT homologs included sequences related to WE and TAG biosynthesis pathways, as well as to other related pathways such as fatty-acid metabolism, suggesting carbon recycling might drive the flux to neutral lipid synthesis. These results indicate the presence of abundant and taxonomically diverse bacterial populations with the potential to synthesize lipid storage compounds in marine sediments, relating this metabolic process to bacterial survival.
Collapse
Affiliation(s)
- Virginia Galván
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Federico Pascutti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Natalia E. Sandoval
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana P. Lanfranconi
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana Lozada
- Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Puerto Madryn, Chubut, Argentina
| | - Ana L. Arabolaza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Walter P. Mac Cormack
- Instituto de Nanobiotecnología (NANOBIOTEC-UBA-CONICET), San Martín, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Antártico Argentino (IAA), San Martín, Buenos Aires, Argentina
| | - Héctor M. Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Hugo C. Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Hebe M. Dionisi
- Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
9
|
Nguyen VH, Wemheuer B, Song W, Bennett H, Webster N, Thomas T. Identification, classification, and functional characterization of novel sponge-associated acidimicrobiial species. Syst Appl Microbiol 2023; 46:126426. [PMID: 37141831 DOI: 10.1016/j.syapm.2023.126426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum Actinobacteriota. While members of the actinobacteriotal class Actinomycetia have been studied intensively due to their potential for secondary metabolite production, the sister class of Acidimicrobiia is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated Acidimicrobiia are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of Acidimicrobiia from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order Acidimicrobiales) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic Acidimicrobiia with respect to amino acid biosynthesis and utilization of sulfur compounds. However, sponge-associated Acidimicrobiia differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel Acidimicrobiia may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Australian Antarctic Division, Hobart, Tasmania, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Dionisi HM, Lozada M, Campos E. Diversity of GH51 α-L-arabinofuranosidase homolog sequences from subantarctic intertidal sediments. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Plante CJ, Hill-Spanik KM, Emerson R. Inputs don't equal outputs: bacterial microbiomes of the ingesta, gut, and feces of the keystone deposit feeder Ilyanassa obsoleta. FEMS Microbiol Ecol 2022; 99:6887277. [PMID: 36496168 DOI: 10.1093/femsec/fiac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteria drive energy fluxes and geochemical processes in estuarine sediments. Deposit-feeding invertebrates alter the structure and activity of microbial communities through sediment ingestion, gut passage, and defecation. The eastern mud snail, Ilyanassa obsoleta, is native to estuaries of the northwestern Atlantic, ranging from Nova Scotia, Canada, to Florida in the USA. Given extremely high densities, their deposit-feeding and locomotory activities exert ecological influence on other invertebrates and microbes. Our aim was to characterize the bacterial microbiome of this 'keystone species' and determine how its feeding alters the native bacterial microbiota. We gathered snails from both mudflat and sandflat habitats and collected their fresh fecal pellets in the laboratory. Dissection of these same snails allowed us to compare bacterial assemblages of ingested sediments, shell surfaces, gut sections (esophagus, stomach, intestine), and feces using DNA metabarcoding. Our findings indicate a diverse, resident gut microbiota. The stomach and intestines were dominated by bacteria of the genus Mycoplasma. Comparison of ingesta and feces revealed digestion of several bacterial taxa, introduction of gut residents during passage, in addition to unique bacterial taxa within the feces of unknown provenance. Our results demonstrate that I. obsoleta has the potential to modify microbial community structure in estuarine sediments.
Collapse
Affiliation(s)
- Craig J Plante
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| | | | - Rowan Emerson
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| |
Collapse
|
12
|
Redfern LK, Jayasundara N, Singleton DR, Di Giulio RT, Carlson J, Sumner SJ, Gunsch CK. The role of gut microbial community and metabolomic shifts in adaptive resistance of Atlantic killifish (Fundulus heteroclitus) to polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145955. [PMID: 33647645 PMCID: PMC8294123 DOI: 10.1016/j.scitotenv.2021.145955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 05/14/2023]
Abstract
Altered gut microbiomes may play a role in rapid evolution to anthropogenic change but remain poorly understood. Atlantic killifish (Fundulus heteroclitus) in the Elizabeth River, VA have evolved resistance to polycyclic aromatic hydrocarbons (PAHs) and provide a unique opportunity to examine the links between shifts in the commensal microbiome and organismal physiology associated with evolved resistance. Here, 16S rRNA sequence libraries derived from fish guts and sediments sampled from a highly PAH contaminated site revealed significant differences collected at similar samples from an uncontaminated site. Phylogenetic groups enriched in the libraries derived from PAH-resistant fish were dissimilar to their associated sediment libraries, suggesting the specific environment within the PAH-resistant fish intestine influence the gut microbiome composition. Gut metabolite analysis revealed shifts between PAH-resistant and non-resistant subpopulations. Notably, PAH-resistant fish exhibited reduced levels of tryptophan and increased levels of sphingolipids. Exposure to PAHs appears to impact several bacterial in the gut microbiome, particularly sphingolipid containing bacteria. Bacterial phylotypes known to include species containing sphingolipids were generally lower in the intestines of fish subpopulations exposed to high concentrations of PAHs, inferring a complex host-microbiome relationship. Overall, killifish microbial community shifts appear to be related to a suppression of overall metabolite level, indicating a potential role of the gut in organismal response to anthropogenic environmental change. These results on microbial and metabolomics shifts are potentially linked to altered bioenergetic phenotype observed in the same PAH-resistant killifish populations in other studies.
Collapse
Affiliation(s)
- Lauren K Redfern
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States of America; Department of Environmental and Civil Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27713, United States of America
| | - David R Singleton
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States of America
| | - Richard T Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27713, United States of America
| | - James Carlson
- Alternative BioMedical Solutions, Carrollton, TX 75006, United States of America
| | - Susan J Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Claudia K Gunsch
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States of America.
| |
Collapse
|
13
|
Chen RW, He YQ, Cui LQ, Li C, Shi SB, Long LJ, Tian XP. Diversity and Distribution of Uncultured and Cultured Gaiellales and Rubrobacterales in South China Sea Sediments. Front Microbiol 2021; 12:657072. [PMID: 34220745 PMCID: PMC8248818 DOI: 10.3389/fmicb.2021.657072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Actinobacteria are ubiquitous in marine ecosystems, and they are regarded as an important, underexplored, potential pharmaceutical resource. The orders Gaiellales and Rubrobacterales are deep taxonomic lineages of the phylum Actinobacteria, both are represented by a single genus and contain only a few species. Although they have been detected frequently by high-throughput sequencing, their functions and characteristics in marine habitats remain unknown due to the lack of indigenous phenotypes. Here, we investigated the status of the orders in South China Sea (SCS) sediments using culture-independent and culture-dependent methods. Gaiellales is the second-most abundant order of Actinobacteria and was widely distributed in SCS sediments at water depths of 42-4,280 m, and four novel marine representatives in this group were successfully cultured. Rubrobacterales was present at low abundance in energy-limited marine habitats. An isolation strategy for Rubrobacterales from marine samples was proposed, and a total of 138 mesophilic Rubrobacterales strains were isolated under conditions of light and culture time combined with high-salinity or low-nutrient media. Marine representatives recovered in this study formed branches with a complex evolutionary history in the phylogenetic tree. Overall, the data indicate that both Gaiellales and Rubrobacterales can adapt to and survive in extreme deep-sea environments. This study lays the groundwork for further analysis of the distribution and diversity of the orders Gaiellales and Rubrobacterales in the ocean and provides a specific culture strategy for each group. The results open a window for further research on the ecological roles of the two orders in marine ecosystems.
Collapse
Affiliation(s)
- Rou-Wen Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qiu He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Qing Cui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song-Biao Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Juan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xin-Peng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
14
|
Lipko IA, Belykh OI. Environmental Features of Freshwater Planktonic Actinobacteria. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521020074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
He YQ, Chen RW, Li C, Shi SB, Cui LQ, Long LJ, Tian XP. Actinomarinicola tropica gen. nov. sp. nov., a new marine actinobacterium of the family Iamiaceae, isolated from South China Sea sediment environments. Int J Syst Evol Microbiol 2020; 70:3852-3858. [PMID: 32501198 DOI: 10.1099/ijsem.0.004251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A novel marine actinobacterium, strain SCSIO 58843T, was isolated from the sediment sample collected from the South China Sea. Strain SCSIO 58843T was Gram-stain-positive, aerobic and rod shaped. The whole-cell hydrolysis of amino acids contained dd-DAP, alanine, glutamic acid, glycine and aspartic acid. The main menaquinone was MK-9(H8). The major fatty acids were C17 : 1 ω8c and C17 : 0. The major phospholipids were diphosphatidylglycerol (DPG), phosphatidylinositol (PI), phospatidylcholine (PC) and phosphatidylinositolmannoside (PIM). The G+C content of the genomic DNA was 72.5 %. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain SCSIO 58843T formed a new lineage in the family Iamiaceae and had the highest similarity of 93.8 % with Iamia majanohamensis DSM 19957T. Strain SCSIO 58843T can be distinguished from these known genera in the family Iamiaceae by polyphasic data analyses, and represents a novel genus and novel species, for which Actinomarinicola tropica gen. nov., sp. nov is proposed with the type strain SCSIO 58843T(=KCTC 49408T=CGMCC 1.17503T).
Collapse
Affiliation(s)
- Yuan-Qiu He
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Rou-Wen Chen
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Cun Li
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Song-Biao Shi
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Lin-Qing Cui
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Li-Juan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Xin-Peng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, CAS RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| |
Collapse
|
16
|
Abstract
Eph receptor (Eph) and ephrin signaling regulate fundamental developmental processes through both forward and reverse signaling triggered upon cell-cell contact. In vertebrates, they are both classified into classes A and B, and some representatives have been identified in many metazoan groups, where their expression and functions have been well studied. We have extended previous phylogenetic analyses and examined the presence of Eph and ephrins in the tree of life to determine their origin and evolution. We have found that 1) premetazoan choanoflagellates may already have rudimental Eph/ephrin signaling as they have an Eph-/ephrin-like pair and homologs of downstream-signaling genes; 2) both forward- and reverse-downstream signaling might already occur in Porifera since sponges have most genes involved in these types of signaling; 3) the nonvertebrate metazoan Eph is a type-B receptor that can bind ephrins regardless of their membrane-anchoring structure, glycosylphosphatidylinositol, or transmembrane; 4) Eph/ephrin cross-class binding is specific to Gnathostomata; and 5) kinase-dead Eph receptors can be traced back to Gnathostomata. We conclude that Eph/ephrin signaling is of older origin than previously believed. We also examined the presence of protein domains associated with functional characteristics and the appearance and conservation of downstream-signaling pathways to understand the original and derived functions of Ephs and ephrins. We find that the evolutionary history of these gene families points to an ancestral function in cell-cell interactions that could contribute to the emergence of multicellularity and, in particular, to the required segregation of cell populations.
Collapse
Affiliation(s)
- Aida Arcas
- Instituto de Neurociencias (CSIC-UMH), Avda, San Juan de Alicante, Spain
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, London, United Kingdom
| | - M Ángela Nieto
- Instituto de Neurociencias (CSIC-UMH), Avda, San Juan de Alicante, Spain
| |
Collapse
|
17
|
Abed RMM, Muthukrishnan T, Al Khaburi M, Al-Senafi F, Munam A, Mahmoud H. Degradability and biofouling of oxo-biodegradable polyethylene in the planktonic and benthic zones of the Arabian Gulf. MARINE POLLUTION BULLETIN 2020; 150:110639. [PMID: 31706724 DOI: 10.1016/j.marpolbul.2019.110639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 05/21/2023]
Abstract
Little is known about the degradability of oxo-biodegradable polyethylene (OXO-PE) and its surface fouling bacterial communities in the marine environment. The degradation of OXO-PE, PE and polyethylene terephthalate (PET) was compared at two depths (2 m and 6 m) in the Arabian Gulf. Scanning electron microcopy (SEM) revealed more fissure formation on OXO-PE and PE than on PET, indicating physical degradation. The formation of hydroxyl groups and carbonyl bonds, by Fourier-transform infrared spectroscopy (FTIR), suggests chemical degradation of OXO-PE. Plastisphere bacterial communities on OXO-PE and PE were different than on PET. Proteobacteria, Bacteriodetes and Planctomycetes were detected on all plastics, however, sequences of Alteromonas and Zoogloea were OXO-PE-specific suggesting a possible involvement of these bacterial genera in OXO-PE degradation. We conclude that OXO-PE shows increased signs of degradation with time owing to the combination of abiotic and biotic processes, and its degradation is higher in the benthic than in the planktonic zone.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman.
| | - Thirumahal Muthukrishnan
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Maryam Al Khaburi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Fahad Al-Senafi
- Department of Marine Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, Kuwait
| | - Abdul Munam
- Chemistry Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Huda Mahmoud
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, Kuwait
| |
Collapse
|
18
|
Li K, Shi J, Han Y, Xu C, Han H. Enhanced anaerobic degradation of quinoline, pyriding, and indole with polyurethane (PU), Fe 3O 4@PU, powdered activated carbon (PAC), Fe(OH) 3@PAC, biochar, and Fe(OH) 3@biochar and analysis of microbial succession in different reactors. BIORESOURCE TECHNOLOGY 2019; 291:121866. [PMID: 31374417 DOI: 10.1016/j.biortech.2019.121866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The study was to explore the feasibility of polyurethane (PU), Fe3O4@PU, powdered activated carbon (PAC), Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar as biological carriers in strengthening anaerobic degradation of quinoline, pyridine, and indole. When the concentrations of pollutants were 25 mg/L and 50 mg/L, reactors based on PAC and Fe(OH)3@PAC had higher degradation ratios than the other reactors. However, when the concentrations of pollutants were 75 mg/L and 100 mg/L, with the addition of PU and Fe3O4@PU, reactors began to show their superiority in the degradation of the selected NHCs. Among these, the reactor based on Fe3O4@PU had the optimal degradation ratio on quinoline, pyridine, and indole. PU, PAC, Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar benefited the enrichment of Acinetobacter, Comamonas, Levilinea, Longilinea, and Desulfomicrobium. The reactor with the carrier of Fe3O4@PU had some specificity, which benefited the enrichment of Zoogloea, Thiobacillus, Anaeromyxobacter, Sphingobium, Terrimonas, Parcubacteria genera incertae sedis, Bdellovibrio, Rhizobium, and Acidovorax.
Collapse
Affiliation(s)
- Kun Li
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China
| | - Jingxin Shi
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China.
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Chunyan Xu
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
19
|
Foysal MJ, Nguyen TTT, Chaklader MR, Siddik MAB, Tay CY, Fotedar R, Gupta SK. Marked variations in gut microbiota and some innate immune responses of fresh water crayfish, marron ( Cherax cainii, Austin 2002) fed dietary supplementation of Clostridium butyricum. PeerJ 2019; 7:e7553. [PMID: 31523510 PMCID: PMC6716501 DOI: 10.7717/peerj.7553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the effects of Clostridium butyricum as a dietary probiotic supplement in fishmeal based diet on growth, gut microbiota and immune performance of marron (Cherax cainii). Marron were randomly distributed into two different treatment groups, control and probiotic fed group. After 42 days of feeding trial, the results revealed a significant (P < 0.05) increase in growth due to increase in number of moults in marron fed probiotics. The probiotic diet also significantly enhanced the total haemocyte counts (THC), lysozyme activity in the haemolymph and protein content of the tail muscle in marron. Compared to control, the 16S rRNA sequences data demonstrated an enrichment of bacterial diversity in the probiotic fed marron where significant increase of Clostridium abundance was observed. The abundance for crayfish pathogen Vibrio and Aeromonas were found to be significantly reduced post feeding with probiotic diet. Predicted metabolic pathway revealed an increased activity for the metabolism and absorption of carbohydrate, degradation of amino acid, fatty acid and toxic compounds, and biosynthesis of secondary metabolites. C. butyricum supplementation also significantly modulated the expression level of immune-responsive genes of marron post challenged with Vibrio mimicus. The overall results suggest that C. butyricum could be used as dietary probiotic supplement in marron aquaculture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.,Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Thi Thu Thuy Nguyen
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Md Reaz Chaklader
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Muhammad A B Siddik
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.,Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
20
|
Gao Y, Wang G, Zhou A, Yue X, Duan Y, Kong X, Zhang X. Effect of nitrate on indole degradation characteristics and methanogenesis under mixed denitrification and methanogenesis culture. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Subramani R, Sipkema D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Mar Drugs 2019; 17:E249. [PMID: 31035452 PMCID: PMC6562664 DOI: 10.3390/md17050249] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
Collapse
Affiliation(s)
- Ramesh Subramani
- School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji.
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
22
|
Asem MD, Shi L, Jiao JY, Wang D, Han MX, Dong L, Liu F, Salam N, Li WJ. Desertimonas flava gen. nov., sp. nov. isolated from a desert soil, and proposal of Ilumatobacteraceae fam. nov. Int J Syst Evol Microbiol 2018; 68:3593-3599. [PMID: 30285911 DOI: 10.1099/ijsem.0.003038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A non-motile, coccobacilli-shaped and yellow-coloured bacterium, designated strain SYSU D60003T, was isolated from a desert soil sample. Cells were Gram-stain-positive, catalase-negative and oxidase-positive. The whole cell hydrolysates contained ll-diaminopimelic acid as the diagnostic amino acid. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and iso-C16 : 0. The respiratory menaquinones were MK-9(H8), MK-9(H4) and MK-9(H6). The DNA G+C content was determined to be 70.2 % (genome). The polar lipids detected were diphosphatidylglycerol, an unidentified glycolipid and seven unidentified polar lipids. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SYSU D60003T belonged to the order Acidimicrobiales (class Acidimicrobiia), but formed a clade closely linked to members of the genus Ilumatobacter. Data from a polyphasic taxonomy study suggested that the isolate represents a novel species of a novel genus in the order Acidimicrobiales, for which the name Desertimonas flava gen. nov., sp. nov. is proposed. The type strain of the proposed new taxon is SYSU D60003T (=KCTC 39917T=NBRC 112924T). Additionally, the new taxon along with the genus Ilumatobater (family unassigned) were distinctly separated from the related families Acidimicrobiaceae, Iamiaceae and 'Microtrichaceae' in the phylogenetic trees, besides presenting a unique 16S rRNA gene signature nucleotides. Therefore, we propose a new family Ilumatobacteraceae fam. nov. within the order Acidimicrobiales to accommodate members of these two genera.
Collapse
Affiliation(s)
- Mipeshwaree Devi Asem
- 1State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lei Shi
- 2Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Jian-Yu Jiao
- 1State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Dong Wang
- 1State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, 510275, PR China.,3College of Life Science and Technology, Honghe University, Mengzi, 661199, PR China
| | - Ming-Xian Han
- 1State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lei Dong
- 1State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Feng Liu
- 3College of Life Science and Technology, Honghe University, Mengzi, 661199, PR China
| | - Nimaichand Salam
- 1State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Jun Li
- 4Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Űrűmqi, 830011, PR China.,1State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, 510275, PR China
| |
Collapse
|
23
|
Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk HP, Goodfellow M, Göker M. Genome-Based Taxonomic Classification of the Phylum Actinobacteria. Front Microbiol 2018; 9:2007. [PMID: 30186281 PMCID: PMC6113628 DOI: 10.3389/fmicb.2018.02007] [Citation(s) in RCA: 466] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022] Open
Abstract
The application of phylogenetic taxonomic procedures led to improvements in the classification of bacteria assigned to the phylum Actinobacteria but even so there remains a need to further clarify relationships within a taxon that encompasses organisms of agricultural, biotechnological, clinical, and ecological importance. Classification of the morphologically diverse bacteria belonging to this large phylum based on a limited number of features has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft genome sequences of a large collection of actinobacterial type strains were used to infer phylogenetic trees from genome-scale data using principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families, and genera, as well as many species and a few subspecies were shown to be in need of revision leading to proposals for the recognition of 2 orders, 10 families, and 17 genera, as well as the transfer of over 100 species to other genera. In addition, emended descriptions are given for many species mainly involving the addition of data on genome size and DNA G+C content, the former can be considered to be a valuable taxonomic marker in actinobacterial systematics. Many of the incongruities detected when the results of the present study were compared with existing classifications had been recognized from 16S rRNA gene trees though whole-genome phylogenies proved to be much better resolved. The few significant incongruities found between 16S/23S rRNA and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences. Similarly good congruence was found between the discontinuous distribution of phenotypic properties and taxa delineated in the phylogenetic trees though diverse non-monophyletic taxa appeared to be based on the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorena Carro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Rüdiger Pukall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
24
|
Tiralerdpanich P, Sonthiphand P, Luepromchai E, Pinyakong O, Pokethitiyook P. Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis. MARINE POLLUTION BULLETIN 2018; 133:595-605. [PMID: 30041354 DOI: 10.1016/j.marpolbul.2018.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Hydrocarbon contamination is a serious problem that degrades the quality of mangrove ecosystems, and bioremediation using autochthonous bacteria is a promising technology to recover an impacted environment. This research investigates the biodegradation rates of diesel, hexadecane and phenanthrene, by conducting a microcosm study and survey of the autochthonous microbial community in contaminated mangrove sediment, using an Illumina MiSeq platform. The biodegradation rates of diesel, hexadecane and phenanthrene were 82, 86 and 8 mg kg-1 sediment day-1, respectively. The removal efficiencies of hexadecane and phenanthrene were >99%, whereas the removal efficiency of diesel was 88%. A 16S rRNA gene amplicon sequence analysis revealed that the major bacterial assemblages detected were Gammaproteobacteria, Deltaproteobacteria, Alphaproteobacteria. The bacterial compositions were relatively constant, while reductions of the supplemented hydrocarbons were observed. The results imply that the autochthonous microorganisms in the mangrove sediment were responsible for the degradation of the respective hydrocarbons. Diesel-, hexadecane- and phenanthrene-degrading bacteria, namely Bacillus sp., Pseudomonas sp., Acinetobacter sp. and Staphylococcus sp., were also isolated from the mangrove sediment. The mangrove sediment provides a potential resource of effective hydrocarbon-degrading bacteria that can be used as an inoculum or further developed as a ready-to-use microbial consortium for the purpose of bioremediation.
Collapse
Affiliation(s)
- Parichaya Tiralerdpanich
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, 9th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Ekawan Luepromchai
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, 8th Floor, CU Research Building, Phayathai Road, Bangkok 10330, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
25
|
Nakashima T, Takahashi Y, Ōmura S. Search for new compounds from Kitasato microbial library by physicochemical screening. Biochem Pharmacol 2016; 134:42-55. [PMID: 27687642 DOI: 10.1016/j.bcp.2016.09.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/23/2016] [Indexed: 11/26/2022]
Abstract
The Ōmura research group of the Kitasato Institute has isolated multiple microorganisms over a period of five decades. The resulting collection comprises a broad spectrum of microbes, including strains producing novel and diverse compounds with biological activities. A bioassay-guided fractionation of microbial culture broths has been employed to screen the microbial collection for compounds with new biological activities. And numerous novel natural products have been discovered among the microbial metabolites produced by members of the collection. However, dereplication of already known compounds and their potential analogs is a vital part of the discovery process of new microbial natural products. Recently, it has become easy to acquire the ultraviolet (UV) and mass spectrometry (MS) spectra of many single components of microbial culture broths in combination with high-performance liquid chromatography. To achieve most effective utilization of our microbial library, new compounds from microbial culture broths were investigated by employing an approach based on the physico-chemical properties using spectral analyses such as UV and MS and color reaction, collectively designated as physicochemical (PC) screening. As a result of physicochemical screening, many new compounds were identified among the secondary metabolites of fresh isolated rare actinomycetes and Streptomyces spp. preserved for a long time as producer of biological compounds. In this review, we introduce the Kitasato microbial library and the new compounds discovered from the library by PC screening.
Collapse
Affiliation(s)
- Takuji Nakashima
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Yōko Takahashi
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| |
Collapse
|
26
|
Zhang M, Sun Y, Chen L, Cai C, Qiao F, Du Z, Li E. Symbiotic Bacteria in Gills and Guts of Chinese Mitten Crab (Eriocheir sinensis) Differ from the Free-Living Bacteria in Water. PLoS One 2016; 11:e0148135. [PMID: 26820139 PMCID: PMC4731060 DOI: 10.1371/journal.pone.0148135] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Aquatic animals have a close relationship with water, but differences in their symbiotic bacteria and the bacterial composition in water remains unclear. Wild or domestic Chinese mitten crabs (Eriocheir sinensis) and the water in which they live were collected from four sampling sites in Jiangsu and Shanghai, China. Bacterial composition in water, gills or guts of E. sinensis, were compared by high-throughput sequencing using 16S rRNA genes. Analysis of >660,000 sequences indicated that bacterial diversity was higher in water than in gills or guts. Tenericutes and Proteobacteria were dominant phyla in guts, while Actinobacteria, Proteobacteria and Bacteroidetes were dominant in gills and water. Non-metric multidimensional scaling analysis indicated that microbiota from gills, guts or water clearly separated into three groups, suggesting that crabs harbor a more specific microbial community than the water in which they live. The dominant OTUs in crab gut were related to Mycoplasmataceae, which were low in abundance in gills, showing that, like mammals, crabs have body-site specific microbiota. OTUs related to Ilumatobacter and Albimonas, which are commonly present in sediment and seawater, were dominant in gills but almost absent from the sampled water. Considering E. sinensis are bottom-dwelling crustacean and they mate in saline water or seawater, behavior and life cycle of crabs may play an important role in shaping the symbiotic bacterial pattern. This study revealed the relationship between the symbiotic bacteria of Chinese mitten crab and their habitat, affording information on the assembly factors of commensal bacteria in aquatic animals.
Collapse
Affiliation(s)
- Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
- * E-mail: (MLZ); (ECL)
| | - Yuhong Sun
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chunfang Cai
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhenyu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
- * E-mail: (MLZ); (ECL)
| |
Collapse
|
27
|
Duran R, Bielen A, Paradžik T, Gassie C, Pustijanac E, Cagnon C, Hamer B, Vujaklija D. Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15215-29. [PMID: 25712885 DOI: 10.1007/s11356-015-4240-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 05/27/2023]
Abstract
The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a "core" Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France.
- Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1155, 64013, Pau Cedex, France.
| | - Ana Bielen
- Division of Molecular Biology, Institute Ruđer Bošković, Bijenička 54, 10000, Zagreb, Croatia
| | - Tina Paradžik
- Division of Molecular Biology, Institute Ruđer Bošković, Bijenička 54, 10000, Zagreb, Croatia
| | - Claire Gassie
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Emina Pustijanac
- Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Christine Cagnon
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Bojan Hamer
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210, Rovinj, Croatia
| | - Dušica Vujaklija
- Division of Molecular Biology, Institute Ruđer Bošković, Bijenička 54, 10000, Zagreb, Croatia
| |
Collapse
|
28
|
|
29
|
Fujinami S, Takarada H, Kasai H, Sekine M, Omata S, Harada T, Fukai R, Hosoyama A, Horikawa H, Kato Y, Nakazawa H, Fujita N. Complete genome sequence of Ilumatobacter coccineum YM16-304(T.). Stand Genomic Sci 2013; 8:430-40. [PMID: 24501628 PMCID: PMC3910706 DOI: 10.4056/sigs.4007734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ilumatobacter coccineum YM16-304(T) (=NBRC 103263(T)) is a novel marine actinobacterium isolated from a sand sample collected at a beach in Shimane Prefecture, Japan. Strain YM16-304(T) is the type strain of the species. Phylogenetically, strain YM16-304(T) is close to Ilumatobacter nonamiense YM16-303(T) (=NBRC 109120(T)), Ilumatobacter fluminis YM22-133(T) and some uncultured bacteria including putative marine sponge symbionts. Whole genome sequence of these species has not been reported. Here we report the complete genome sequence of strain YM16-304(T). The 4,830,181 bp chromosome was predicted to encode a total of 4,291 protein-coding genes.
Collapse
Affiliation(s)
- Shun Fujinami
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama, Japan
| | - Hiromi Takarada
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Hiroaki Kasai
- Marine Biosciences Kamaishi Research Laboratory, Kitasato University, Ofunato, Iwate, Japan
| | - Mitsuo Sekine
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Seiha Omata
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Takeshi Harada
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Rieko Fukai
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Akira Hosoyama
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Hiroshi Horikawa
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Yumiko Kato
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Hidekazu Nakazawa
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| | - Nobuyuki Fujita
- Biological Resource Center, National Institute of Technology and Evaluation, Shibuya, Tokyo, Japan
| |
Collapse
|