1
|
Klijn A, Baylis C, Xiao Y, Li H, Cabon A, Antonie-Zijlstra S, De Benito A, Ellingsen AB, Wells-Bennik MHJ. Overview of endospore-forming bacteria in food: The road towards a harmonised method for the enumeration of their spores. Int J Food Microbiol 2025; 432:111046. [PMID: 39922036 DOI: 10.1016/j.ijfoodmicro.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
Endospore-forming bacteria are an important challenge for the food industry due to their ubiquitous nature, widespread presence in the food chain and sophisticated survival mechanisms. An accurate method is needed that can provide insight into the quality of raw materials, predict spoilage potential and ensure food safety. A plethora of methods exist for the enumeration of spore-forming bacteria which vary among countries, industries and food producers. These methods describe a wide range of values in the key method parameters, such as heat treatment, growth medium, incubation time, and temperature. Consequently the results obtained can vary leading to misalignment and confusion. In addition, many of these methods are empirical and have not been validated. A harmonised international approach for the enumeration of spores is needed to provide consistent and reliable results on which to base food safety and quality decisions. A group of experts associated with the Internal Standardisation Organisation working group undertaking this task has identified the main endospore-forming bacterial species occurring in foods based on a wide selection of publications. Endospores are typically formed by bacteria belonging to twelve families originating from the Negativicutes, Bacilli and Clostridia classes, with the latter two being the most important for the food industry. This review will be used as a first step in method standardisation.
Collapse
Affiliation(s)
- Adrianne Klijn
- Nestlé Research, Route du Jorat 57, Vers-Chez-Les-Blanc, 1000 Lausanne 26, Switzerland.
| | - Chris Baylis
- Mondelēz International, Bournville Lane, Birmingham B30 2LU, United Kingdom.
| | - Yinghua Xiao
- Arla Innovation Center, Arla Foods amba, Agro Food Park 19, 8200 Aarhus N, Denmark.
| | - Haiping Li
- USDA Agriculture Marketing Service Dairy Program, 1400 Independence Av, SW, Washington, DC, 25250, United States.
| | - Antoine Cabon
- Danone Analytical Excellence, 800 Rue des Vignes Rouges, 74500 Publier, France.
| | | | - Amparo De Benito
- AINIA, Parque Tecnológico de Valencia, Av. Benjamín Franklin, 5-11, 46980 Paterna, Valencia, Spain.
| | | | | |
Collapse
|
2
|
Field CJ, Bowerman KL, Hugenholtz P. Multiple independent losses of sporulation and peptidoglycan in the Mycoplasmatales and related orders of the class Bacilli. Microb Genom 2024; 10:001176. [PMID: 38189216 PMCID: PMC10868615 DOI: 10.1099/mgen.0.001176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
Many peptidoglycan-deficient bacteria such as the Mycoplasmatales are known host-associated lineages, lacking the environmental resistance mechanisms and metabolic capabilities necessary for a free-living lifestyle. Several peptidoglycan-deficient and non-sporulating orders of interest are thought to be descended from Gram-positive sporulating Bacilli through reductive evolution. Here we annotate 2650 genomes belonging to the class Bacilli, according to the Genome Taxonomy Database, to predict the peptidoglycan and sporulation phenotypes of three novel orders, RFN20, RF39 and ML615J-28, known only through environmental sequence surveys. These lineages are interspersed between peptidoglycan-deficient non-sporulating orders including the Mycoplasmatales and Acholeplasmatales, and more typical Gram-positive orders such as the Erysipelotrichales and Staphylococcales. We use the extant genotypes to perform ancestral state reconstructions. The novel orders are predicted to have small genomes with minimal metabolic capabilities and to comprise a mix of peptidoglycan-deficient and/or non-sporulating species. In contrast to expectations based on cultured representatives, the order Erysipelotrichales lacks many of the genes involved in peptidoglycan and endospore formation. The reconstructed evolutionary history of these traits suggests multiple independent whole-genome reductions and loss of phenotype via intermediate transition states that continue into the present. We suggest that the evolutionary history of the reduced-genome lineages within the class Bacilli is one driven by multiple independent transitions to host-associated lifestyles, with the degree of reduction in environmental resistance and metabolic capabilities correlated with degree of host association.
Collapse
Affiliation(s)
- Christian J. Field
- School of Chemistry and Molecular Biosciences, The Australian Centre for Ecogenomics, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kate L. Bowerman
- School of Chemistry and Molecular Biosciences, The Australian Centre for Ecogenomics, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, The Australian Centre for Ecogenomics, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Bhattacharjee D, Flores C, Woelfel-Monsivais C, Seekatz AM. Diversity and Prevalence of Clostridium innocuum in the Human Gut Microbiota. mSphere 2023; 8:e0056922. [PMID: 36541771 PMCID: PMC9942572 DOI: 10.1128/msphere.00569-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Clostridia are a polyphyletic group of Gram-positive, spore-forming anaerobes in the Firmicutes phylum that significantly impact metabolism and functioning of the human gastrointestinal tract. Recently, Clostridia were divided into two separate classes, Clostridia and Erysipelotrichia, based on phenotypic and 16S rRNA gene-based differences. While Clostridia include many well-known pathogenic bacteria, Erysipelotrichia remain relatively uncharacterized, particularly regarding their role as a pathogen versus commensal. Despite wide recognition as a commensal, the erysipelotrichial species Clostridium innocuum has recently been associated with various disease states. To further understand the ecological and potential virulent role of C. innocuum, we conducted a genomic comparison across 38 C. innocuum isolates and 194 publicly available genomes. Based on colony morphology, we isolated multiple C. innocuum cultivars from the feces of healthy human volunteers (n = 5). Comparison of the 16S rRNA gene of our isolates against publicly available microbiota data sets in healthy individuals suggests a high prevalence of C. innocuum across the human population (>80%). Analysis of single nucleotide polymorphisms (SNPs) across core genes and average nucleotide identify (ANI) revealed the presence of four clades among all available genomes (n = 232 total). Investigation of carbohydrate and protein utilization pathways, including comparison against the carbohydrate-activating enzyme (CAZyme) database, demonstrated inter- and intraclade differences that were further substantiated in vitro. Collectively, these data indicate genetic variance within the C. innocuum species that may help clarify its role in human disease and health. IMPORTANCE Clostridia are a group of medically important anaerobes as both commensals and pathogens. Recently, a new class of Erysipelotrichia containing a number of reassigned clostridial species has emerged, including Clostridium innocuum. Recent studies have implicated C. innocuum as a potential causative agent of diarrhea in patients from whom Clostridioides difficile could not be isolated. Using genomic and in vitro comparison, this study sought to characterize C. innocuum in the healthy human gut. Our analyses suggest that C. innocuum is a highly prevalent and diverse species, demonstrating clade-specific differences in metabolism and potential virulence. Collectively, this study is the first investigation into a broader description of C. innocuum as a human gut inhabitant.
Collapse
Affiliation(s)
- Disha Bhattacharjee
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Clara Flores
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | | | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
To Feed or to Stick? Genomic Analysis Offers Clues for the Role of a Molecular Machine in Endospore Formers. J Bacteriol 2022; 204:e0018722. [PMID: 35913150 PMCID: PMC9487464 DOI: 10.1128/jb.00187-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sporulation in Firmicutes starts with the formation of two adjacent cells and proceeds with the engulfment of the smaller one, the forespore, by the larger one, the mother cell. This critical step involves a core set of conserved genes, some transcribed in the forespore, such as spoIIQ, and others transcribed in the mother cell, such as the eight-gene spoIIIA operon. A model has been proposed in which the SpoIIIA and the SpoIIQ proteins form a channel connecting the mother cell and the forespore, playing the role of a secretion apparatus allowing the mother cell to nurture the fully engulfed forespore. Exploration of the genomes of Caryophanaceae and Erysipelotrichales has provided informations that are not fully congruent with data from Bacillaceae or Clostridia. The differences observed are correlated with specific physiological features, and alternate, not mutually exclusive views of the function of the SpoIIIA-SpoIIQ complex are presented.
Collapse
|
5
|
Wan S, Sun N, Li H, Khan A, Zheng X, Sun Y, Fan R. Deoxynivalenol damages the intestinal barrier and biota of the broiler chickens. BMC Vet Res 2022; 18:311. [PMID: 35965338 PMCID: PMC9377127 DOI: 10.1186/s12917-022-03392-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background In the livestock feed industry, feed and feed raw materials are extremely susceptible to mycotoxin contamination. Deoxynivalenol (DON) is one of the main risk factors for mycotoxin contamination in broiler feed and feedstuff, however, there is still little knowledge about this. Hence, the purpose of this study was to explore the toxicity effect of DON on the intestinal barrier and the microecological balance of the biota in broiler chickens. Results In our present study, we compared the pathological scores of the small intestines of broilers on the 5th, 7th, and 10th day, and chose the 7th day to analyze the small intestine histomorphology, tight junctions, and cecal biota of the broilers. The results showed the damage to the small intestine worsened over time, the small intestinal villi of broilers were breakage, the tight junctions of the small intestine were destroyed, the cecal biota was unbalanced, and the growth performance of broilers was reduced on the 7th day. Conclusions DON could damage the functional and structural completeness of the intestinal tract, disorder the Intestinal biota, and finally lead to declined broiler performance. Our study provided a basis for the prevention and treatment of DON in broiler production. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03392-4.
Collapse
Affiliation(s)
- Shuangxiu Wan
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.,College of Pharmacy, Heze University, Heze, Shangdong, 274000, People's Republic of China
| | - Na Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hongquan Li
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ajab Khan
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Yaogui Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
6
|
Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the Firmicutes. J Bacteriol 2022; 204:e0007922. [PMID: 35638784 DOI: 10.1128/jb.00079-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The current classification of the phylum Firmicutes (new name, Bacillota) features eight distinct classes, six of which include known spore-forming bacteria. In Bacillus subtilis, sporulation involves up to 500 genes, many of which do not have orthologs in other bacilli and/or clostridia. Previous studies identified about 60 sporulation genes of B. subtilis that were shared by all spore-forming members of the Firmicutes. These genes are referred to as the sporulation core or signature, although many of these are also found in genomes of nonsporeformers. Using an expanded set of 180 firmicute genomes from 160 genera, including 76 spore-forming species, we investigated the conservation of the sporulation genes, in particular seeking to identify lineages that lack some of the genes from the conserved sporulation core. The results of this analysis confirmed that many small acid-soluble spore proteins (SASPs), spore coat proteins, and germination proteins, which were previously characterized in bacilli, are missing in spore-forming members of Clostridia and other classes of Firmicutes. A particularly dramatic loss of sporulation genes was observed in the spore-forming members of the families Planococcaceae and Erysipelotrichaceae. Fifteen species from diverse lineages were found to carry skin (sigK-interrupting) elements of different sizes that all encoded SpoIVCA-like recombinases but did not share any other genes. Phylogenetic trees built from concatenated alignments of sporulation proteins and ribosomal proteins showed similar topology, indicating an early origin and subsequent vertical inheritance of the sporulation genes. IMPORTANCE Many members of the phylum Firmicutes (Bacillota) are capable of producing endospores, which enhance the survival of important Gram-positive pathogens that cause such diseases as anthrax, botulism, colitis, gas gangrene, and tetanus. We show that the core set of sporulation genes, defined previously through genome comparisons of several bacilli and clostridia, is conserved in a wide variety of sporeformers from several distinct lineages of Firmicutes. We also detected widespread loss of sporulation genes in many organisms, particularly within the families Planococcaceae and Erysipelotrichaceae. Members of these families, such as Lysinibacillus sphaericus and Clostridium innocuum, could be excellent model organisms for studying sporulation mechanisms, such as engulfment, formation of the spore coat, and spore germination.
Collapse
|
7
|
Dietary supplementation with microalgae enhances the zebrafish growth performance by modulating immune status and gut microbiota. Appl Microbiol Biotechnol 2022; 106:773-788. [PMID: 34989826 DOI: 10.1007/s00253-021-11751-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023]
Abstract
Microalgae are known to be abundant in various habitats around the globe, and are rich in high value-added products such as fatty acids, polysaccharides, proteins, and pigments. Microalgae can be exploited as the basic and primitive food source of aquatic animals. We investigated the effects of dietary supplementation with Schizochytrium sp., Spirulina platensis, Chloroella sorokiniana, Chromochloris zofingiensis, and Dunaliella salina on the growth performance, immune status, and intestinal health of zebrafish (Danio rerio). The results showed that these five microalgae diets could improve the feed conversion rate (FCR), especially the D. salina (FCR = 1.02%) and Schizochytrium sp. (FCR = 1.20%) additive groups. Moreover, the microalgae diets decreased the gene expression level of the pro-inflammatory cytokines IL6, IL8, and IL1β at a normal physiological state of the intestine, especially the Schizochytrium sp., S. platensis, and D. salina dietary groups. The expression of neutrophil marker b7r was increased in the C. sorokiniana diet group; after, the zebrafish were challenged with Vibrio anguillarum, improving the ability to resist this disease. We also found that microalgae diets could regulate the gut microbiota of fish as well as increase the relative abundance of probiotics. To further explain, Cetobacterium was significantly enriched in the S. platensis additive group and Stenotrophomonas was higher in the Schizochytrium sp. additive group than in the other groups. Conversely, harmful bacteria Mycoplasma reduced in all tested microalgae diet groups. Our study indicated that these microalgae could serve as a food source supplement and benefit the health of fish. KEY POINTS: • Microalgae diets enhanced the growth performance of zebrafish. • Microalgae diets attenuated the intestinal inflammatory responses of zebrafish. • Microalgae diets modulated the gut microbiota composition to improve fish health.
Collapse
|
8
|
Tria FDK, Martin WF. Gene Duplications Are At Least 50 Times Less Frequent than Gene Transfers in Prokaryotic Genomes. Genome Biol Evol 2021; 13:6380140. [PMID: 34599337 PMCID: PMC8536544 DOI: 10.1093/gbe/evab224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
The contribution of gene duplications to the evolution of eukaryotic genomes is well studied. By contrast, studies of gene duplications in prokaryotes are scarce and generally limited to a handful of genes or careful analysis of a few prokaryotic lineages. Systematic broad-scale studies of prokaryotic genomes that sample available data are lacking, leaving gaps in our understanding of the contribution of gene duplications as a source of genetic novelty in the prokaryotic world. Here, we report conservative and robust estimates for the frequency of recent gene duplications within prokaryotic genomes relative to recent lateral gene transfer (LGT), as mechanisms to generate multiple copies of related sequences in the same genome. We obtain our estimates by focusing on evolutionarily recent events among 5,655 prokaryotic genomes, thereby avoiding vagaries of deep phylogenetic inference and confounding effects of ancient events and differential loss. We find that recent, genome-specific gene duplications are at least 50 times less frequent and probably 100 times less frequent than recent, genome-specific, gene acquisitions via LGT. The frequency of gene duplications varies across lineages and functional categories. The findings improve our understanding of genome evolution in prokaryotes and have far-reaching implications for evolutionary models that entail LGT to gene duplications ratio as a parameter.
Collapse
Affiliation(s)
- Fernando D K Tria
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - William F Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Zheng R, Liu R, Shan Y, Cai R, Liu G, Sun C. Characterization of the first cultured free-living representative of Candidatus Izemoplasma uncovers its unique biology. ISME JOURNAL 2021; 15:2676-2691. [PMID: 33746205 PMCID: PMC8397711 DOI: 10.1038/s41396-021-00961-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Candidatus Izemoplasma, an intermediate in the reductive evolution from Firmicutes to Mollicutes, was proposed to represent a novel class of free-living wall-less bacteria within the phylum Tenericutes. Unfortunately, the paucity of pure cultures has limited further insights into their physiological and metabolic features as well as ecological roles. Here, we report the first successful isolation of an Izemoplasma representative from the deep-sea methane seep, strain zrk13, using a DNA degradation-driven method given Izemoplasma’s prominent DNA-degradation potentials. We further present a detailed description of the physiological, genomic and metabolic traits of the novel strain, which allows for the first time the reconstruction of the metabolic potential and lifestyle of a member of the tentatively defined Candidatus Izemoplasma. On the basis of the description of strain zrk13, the novel species and genus Xianfuyuplasma coldseepsis is proposed. Using a combined biochemical and transcriptomic method, we further show the supplement of organic matter, thiosulfate or bacterial genomic DNA could evidently promote the growth of strain zrk13. In particular, strain zrk13 could degrade and utilize the extracellular DNA for growth in both laboraterial and deep-sea conditions. Moreover, the predicted genes determining DNA-degradation broadly distribute in the genomes of other Izemoplasma members. Given that extracellular DNA is a particularly crucial phosphorus as well as nitrogen and carbon source for microorganisms in the seafloor, Izemoplasma bacteria are thought to be important contributors to the biogeochemical cycling in the deep ocean.
Collapse
Affiliation(s)
- Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ge Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
10
|
Histamine H 2-Receptor Antagonists Improve Non-Steroidal Anti-Inflammatory Drug-Induced Intestinal Dysbiosis. Int J Mol Sci 2020; 21:ijms21218166. [PMID: 33142910 PMCID: PMC7662336 DOI: 10.3390/ijms21218166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Dysbiosis, an imbalance of intestinal flora, can cause serious conditions such as obesity, cancer, and psychoneurological disorders. One cause of dysbiosis is inflammation. Ulcerative enteritis is a side effect of non-steroidal anti-inflammatory drugs (NSAIDs). To counteract this side effect, we proposed the concurrent use of histamine H2 receptor antagonists (H2RA), and we examined the effect on the intestinal flora. We generated a murine model of NSAID-induced intestinal mucosal injury, and we administered oral H2RA to the mice. We collected stool samples, compared the composition of intestinal flora using terminal restriction fragment length polymorphism, and performed organic acid analysis using high-performance liquid chromatography. The intestinal flora analysis revealed that NSAID [indomethacin (IDM)] administration increased Erysipelotrichaceae and decreased Clostridiales but that both had improved with the concurrent administration of H2RA. Fecal levels of acetic, propionic, and n-butyric acids increased with IDM administration and decreased with the concurrent administration of H2RA. Although in NSAID-induced gastroenteritis the proportion of intestinal microorganisms changes, leading to the deterioration of the intestinal environment, concurrent administration of H2RA can normalize the intestinal flora.
Collapse
|
11
|
Kovalchuk SN, Babii AV. Draft genome sequence data and comparative analysis of Erysipelothrix Rhusiopathiae vaccine strain VR-2. 3 Biotech 2020; 10:455. [PMID: 33088652 DOI: 10.1007/s13205-020-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022] Open
Abstract
Erysipelothrix rhusiopathiae VR-2 is a commercially available live attenuated vaccine strain widely used in Russia, Kazakhstan, and a number of European countries for immunization of pigs against swine erysipelas. The draft genome sequence of E. rhusiopathiae strain VR-2 reported in this paper is 1,704,727 bp in length, has CG content of 36.5%, and contains 1680 genes, including 51 tRNA, 3 rRNA, and 1408 protein-coding genes. Comparative sequence analysis between Fujisawa (serovar 1a), VR-2 and six other serovar N strains of E. rhusiopathiae revealed wide genetic variability of the chromosomal region essential for serovar-specific antigenicity and virulence of E. rhusiopathiae strains. We have performed a BLAST search and found 12 genomic loci potentially specific for the E. rhusiopathiae VR-2 strain. These data could be helpful for developing genetic assays for differentiation of field isolates and this live attenuated vaccine strain, which is especially important for epizootical monitoring of swine erysipelas in countries, where the live vaccine strain E. rhusiopathiae VR-2 is used for pig immunization, as well as for the design of recombinant vaccines against swine erysipelas. The genome of E. rhusiopathiae VR-2 has been submitted in GenBank under accession number RJTK00000000.1.
Collapse
Affiliation(s)
- Svetlana N Kovalchuk
- Federal Science Center for Animal Husbandry Named After Academy Member L.K. Ernst, Dubrovitsy 60, Podolsk Municipal District, 142132 Moscow Region Russian Federation
| | - Anna V Babii
- Federal Science Center for Animal Husbandry Named After Academy Member L.K. Ernst, Dubrovitsy 60, Podolsk Municipal District, 142132 Moscow Region Russian Federation
| |
Collapse
|
12
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
13
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
14
|
Cao Y, Trivellone V, Dietrich CH. A timetree for phytoplasmas (Mollicutes) with new insights on patterns of evolution and diversification. Mol Phylogenet Evol 2020; 149:106826. [PMID: 32283136 DOI: 10.1016/j.ympev.2020.106826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
The first comprehensive timetree is presented for phytoplasmas, a diverse group of obligate intracellular bacteria restricted to phloem sieve elements of vascular plants and tissues of their hemipteran insect vectors. Maximum likelihood-based phylogenetic analysis of DNA sequence data from the 16S rRNA and methionine aminopeptidase (map) genes yielded well resolved estimates of phylogenetic relationships among major phytoplasma lineages, 16Sr groups and known strains of phytoplasmas. Age estimates for divergences among two major lineages of Mollicutes based on a previous comprehensive bacterial timetree were used to calibrate an initial 16S timetree. A separate timetree was estimated based on the more rapidly-evolving map gene, with an internal calibration based on a recent divergence within two related 16Sr phytoplasma subgroups in group 16SrV thought to have been driven by the introduction of the North American leafhopper vector Scaphoideus titanus Ball into Europe during the early part of the 20th century. Combining the resulting divergence time estimates into a final 16S timetree suggests that evolutionary rates have remained relatively constant overall through the evolution of phytoplasmas and that the origin of this lineage, at ~641 million years ago (Ma), preceded the origin of land plants and hemipteran insects. Nevertheless, the crown group of phytoplasmas is estimated to have begun diversifying ~316 Ma, roughly coinciding with the origin of seed plants and Hemiptera. Some phytoplasma groups apparently associated with particular plant families or insect vector lineages generally arose more recently than their respective hosts and vectors, suggesting that vector-mediated host shifts have been an important mechanism in the evolutionary diversification of phytoplasmas. Further progress in understanding macroevolutionary patterns in phytoplasmas is hindered by large gaps in knowledge of the identity of competent vectors and lack of data on phytoplasma associations with non-economically important plants.
Collapse
Affiliation(s)
- Yanghui Cao
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA.
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
15
|
Yang X, Liang S, Guo F, Ren Z, Yang X, Long F. Gut microbiota mediates the protective role of Lactobacillus plantarum in ameliorating deoxynivalenol-induced apoptosis and intestinal inflammation of broiler chickens. Poult Sci 2020; 99:2395-2406. [PMID: 32359574 PMCID: PMC7597391 DOI: 10.1016/j.psj.2019.10.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/02/2022] Open
Abstract
The protection of Lactobacillus plantarum JM113 against deoxynivalenol (DON)-induced apoptosis and intestinal inflammation on the jejunum of broiler chickens and the potential roles of gut microbiota were determined. A total of 144 one-day-old male broilers (Arbor Acres) were randomly divided into 3 treatment groups consisting of 6 replicates with 8 birds per replicate, including the CON (basal diet), the DON (basal diet + 10 mg/kg DON), and the DL (basal diet + 10 mg/kg DON + 1 × 109 CFU/kg L. plantarum JM113). The DON-diet decreased (P < 0.05) the mRNA expression of mucosal defense proteins and mechanistic target of rapamycin pathway genes. Meanwhile, DON challenge significantly increased Bcl-2-associated X gene/B-cell lymphoma 2 gene (Bcl-2) in the jejunum (P < 0.05) and demonstrated proapoptosis status. In contrast, the DL group showed normal immunity-related gene expression of jejunal mucosa and manifested a superior antiapoptosis status. Adding L. plantarum JM113 significantly raised (P < 0.05) propionic acid, n-butyric acid, and total short-chain fatty acids concentrations in cecal contents of birds fed with DON diet. In addition, DON exposure altered bacterial community structure and disturbed the abundance of several bacterial phyla, families, and genera, leading to dysbiosis. Supplementation with JM113 shifted the gut microbiota composition to that of the CON group. Finally, Spearman correlation analysis suggested that most positive correlations with the mRNA expression of immunity-related and apoptosis-regulatory gene were observed within the phylum Bacteroidetes, and most negative correlations with the indicators were observed within the phylum Firmicutes. The mRNA expression of Bcl-2, TLR2, mTOR, Raptor, and RPS6KB1 (P < 0.05), which are regarded as important cell proliferation and antiapoptosis parameters, were significantly negatively associated with the relative abundances of norank_f__Erysipelotrichaceae, Subdoligranulum, and Anaeroplasma, whereas they had a strong positive correlation with Ruminococcaceae_UCG-004, Alistipes, and Ruminococcaceae_NK4A214_group. These results implied that L. plantarum JM113 supplementation could ameliorate DON-induced apoptosis and intestinal inflammation via manipulating the bacterial community composition and could be used as a potential candidate to attenuate intestinal impairments.
Collapse
Affiliation(s)
- Xin Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Fangshen Guo
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China.
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China.
| |
Collapse
|
16
|
Bernstein DB, Dewhirst FE, Segrè D. Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome. eLife 2019; 8:39733. [PMID: 31194675 PMCID: PMC6609349 DOI: 10.7554/elife.39733] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The biosynthetic capabilities of microbes underlie their growth and interactions, playing a prominent role in microbial community structure. For large, diverse microbial communities, prediction of these capabilities is limited by uncertainty about metabolic functions and environmental conditions. To address this challenge, we propose a probabilistic method, inspired by percolation theory, to computationally quantify how robustly a genome-derived metabolic network produces a given set of metabolites under an ensemble of variable environments. We used this method to compile an atlas of predicted biosynthetic capabilities for 97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in biomass composition, and makes it possible to estimate inter-microbial metabolic distances that correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding metabolic interactions in complex microbial ecosystems.
Collapse
Affiliation(s)
- David B Bernstein
- Department of Biomedical Engineering, Boston University, Boston, United States.,Biological Design Center, Boston University, Boston, United States
| | - Floyd E Dewhirst
- The Forsyth Institute, Cambridge, United States.,Harvard School of Dental Medicine, Boston, United States
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, United States.,Biological Design Center, Boston University, Boston, United States.,Bioinformatics Program, Boston University, Boston, United States.,Department of Biology, Boston University, Boston, United States.,Department of Physics, Boston University, Boston, United States
| |
Collapse
|
17
|
Identification of the Chromosomal Region Essential for Serovar-Specific Antigen and Virulence of Serovar 1 and 2 Strains of Erysipelothrix rhusiopathiae. Infect Immun 2018; 86:IAI.00324-18. [PMID: 29891546 DOI: 10.1128/iai.00324-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Erysipelothrix rhusiopathiae causes swine erysipelas, an infection characterized by acute septicemia or chronic endocarditis and polyarthritis. Among 17 E. rhusiopathiae serovars, determined based on heat-stable peptidoglycan antigens, serovars 1 and 2 are most commonly associated with the disease; however, the molecular basis for the association between these serovars and virulence is unknown. To search for the genetic region defining serovar 1a (Fujisawa) strain antigenicity, we examined the 15-kb chromosomal region encompassing a putative pathway for polysaccharide biosynthesis, which was previously identified in the E. rhusiopathiae Fujisawa strain. Six transposon mutants of Fujisawa strain possessing a mutation in this region lost antigenic reactivity with serovar 1a-specific rabbit serum. Sequence analysis of this region in wild-type strains of serovars 1a, 1b, and 2 and serovar N, which lacks serovar-specific antigens, revealed that gene organization was similar among the strains and that serovar 2 strains showed variation. Serovar N strains displayed the same gene organization as the serovar 1a, 1b, or 2 strain and possessed certain mutations in this region. In two of the analyzed serovar N strains, restoration of the mutations via complementation with sequences derived from serovar 1a and 2 strains recovered antigenic reactivity with 1a- and 2-specific rabbit serum, respectively. Several gene mutations in this region resulted in altered capsule expression and attenuation of virulence in mice. These results indicate a functional connection between the biosynthetic pathways for the capsular polysaccharide and peptidoglycan antigens used for serotyping, which may explain variation in virulence among strains of different serovars.
Collapse
|
18
|
Crossland WL, Tedeschi LO, Callaway TR, Miller MD, Smith WB, Cravey M. Effects of rotating antibiotic and ionophore feed additives on volatile fatty acid production, potential for methane production, and microbial populations of steers consuming a moderate-forage diet. J Anim Sci 2018; 95:4554-4567. [PMID: 29108045 DOI: 10.2527/jas2017.1665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ionophores and antibiotics have been shown to decrease ruminal methanogenesis both in vitro and in vivo but have shown little evidence toward a sustainable means of mitigation. Feed additive rotation was proposed and investigated for methane, VFA, and microbial population response. In the present study, cannulated steers ( = 12) were fed a moderate-forage basal diet in a Calan gate facility for 13 wk. In addition to the basal diet, steers were randomly assigned to 1 of 6 treatments: 1) control, no additive; 2) bambermycin, 20 mg bambermycin/d; 3) monensin, 200 mg monensin/d; 4) the basal diet + weekly rotation of bambermycin and monensin treatments (B7M); 5) the basal diet + rotation of bambermycin and monensin treatments every 14 d (B14M); and 6) the basal diet + rotation of bambermycin and monensin treatments every 21 d (B21M). Steers were blocked by weight in a randomized complete block design where the week was the repeated measure. Rumen fluid was collected weekly for analysis ( = 13), and results were normalized according to individual OM intake (OMI; kg/d). Potential activity of methane production was not significantly different among treatments ( > 0.05). However, treatment tended to affect the CH-to-propionate ratio ( = 0.0565), which was highest in the control and lowest in the monensin, B21M, and B14M treatments (0.42 vs. 0.36, 0.36, and 0.33, respectively). The CH:propionate ratio was lowest in wk 2 and 3 ( < 0.05) but the ratio in wk 4 to 12 was not different from the ratio in wk 0. Week also affected total VFA, with total VFA peaking at wk 3 and plummeting at wk 4 (4.02 vs. 2.86 m/kg OMI; < 0.05). A significant treatment × week interaction was observed for the acetate-to-propionate (A:P) ratio, where bambermycin- and rotationally fed steers did not have a reduced A:P ratio compared with monensin-fed steers throughout the feeding period ( < 0.0001). Microbial analysis revealed significant shifts, but several predominant classes showed adaptation between 4 and 6 wk after additive initiation. There was no significant evidence to suggest that rotations of monensin and bambermycin provided additional benefits to steers consuming a moderate-forage diet at the microbial/animal and environmental level versus those continuously fed.
Collapse
|
19
|
Candidatus Mycoplasma girerdii replicates, diversifies, and co-occurs with Trichomonas vaginalis in the oral cavity of a premature infant. Sci Rep 2017. [PMID: 28630471 PMCID: PMC5476646 DOI: 10.1038/s41598-017-03821-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genital mycoplasmas, which can be vertically transmitted, have been implicated in preterm birth, neonatal infections, and chronic lung disease of prematurity. Our prior work uncovered 16S rRNA genes belonging to a novel, as-yet-uncultivated mycoplasma (lineage ‘Mnola’) in the oral cavity of a premature neonate. Here, we characterize the organism’s associated community, growth status, metabolic potential, and population diversity. Sequencing of genomic DNA from the infant’s saliva yielded 1.44 Gbp of high-quality, non-human read data, from which we recovered three essentially complete (including ‘Mnola’) and three partial draft genomes (including Trichomonas vaginalis). The completed 629,409-bp ‘Mnola’ genome (Candidatus Mycoplasma girerdii str. UC-B3) was distinct at the strain level from its closest relative, vaginally-derived Ca. M. girerdii str. VCU-M1, which is also associated with T. vaginalis. Replication rate measurements indicated growth of str. UC-B3 within the infant. Genes encoding surface-associated proteins and restriction-modification systems were especially diverse within and between strains. In UC-B3, the population genetic underpinnings of phase variable expression were evident in vivo. Unique among mycoplasmas, Ca. M. girerdii encodes pyruvate-ferredoxin oxidoreductase and may be sensitive to metronidazole. This study reveals a metabolically unique mycoplasma colonizing a premature neonate, and establishes the value of genome-resolved metagenomics in tracking phase variation.
Collapse
|
20
|
Abstract
BACKGROUND The majority of environmental bacteria and around a third of oral bacteria remain uncultivated. Furthermore, several bacterial phyla have no cultivable members and are recognised only by detection of their DNA by molecular methods. Possible explanations for the resistance of certain bacteria to cultivation in purity in vitro include: unmet fastidious growth requirements; inhibition by environmental conditions or chemical factors produced by neighbouring bacteria in mixed cultures; or conversely, dependence on interactions with other bacteria in the natural environment, without which they cannot survive in isolation. Auxotrophic bacteria, with small genomes lacking in the necessary genetic material to encode for essential nutrients, frequently rely on close symbiotic relationships with other bacteria for survival, and may therefore be recalcitrant to cultivation in purity. HIGHLIGHT Since in-vitro culture is essential for the comprehensive characterisation of bacteria, particularly with regard to virulence and antimicrobial resistance, the cultivation of uncultivated organisms has been a primary focus of several research laboratories. Many targeted and open-ended strategies have been devised and successfully used. Examples include: the targeted detection of specific bacteria in mixed plate cultures using colony hybridisation; growth in simulated natural environments or in co-culture with 'helper' strains; and modified media preparation techniques or development of customised media eg. supplementation of media with potential growth-stimulatory factors such as siderophores. CONCLUSION Despite significant advances in recent years in methodologies for the cultivation of previously uncultivated bacteria, a substantial proportion remain to be cultured and efforts to devise high-throughput strategies should be a high priority.
Collapse
Affiliation(s)
- Sonia R. Vartoukian
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
21
|
Antunes LC, Poppleton D, Klingl A, Criscuolo A, Dupuy B, Brochier-Armanet C, Beloin C, Gribaldo S. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. eLife 2016; 5. [PMID: 27580370 PMCID: PMC5007114 DOI: 10.7554/elife.14589] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022] Open
Abstract
One of the major unanswered questions in evolutionary biology is when and how the transition between diderm (two membranes) and monoderm (one membrane) cell envelopes occurred in Bacteria. The Negativicutes and the Halanaerobiales belong to the classically monoderm Firmicutes, but possess outer membranes with lipopolysaccharide (LPS-OM). Here, we show that they form two phylogenetically distinct lineages, each close to different monoderm relatives. In contrast, their core LPS biosynthesis enzymes were inherited vertically, as in the majority of bacterial phyla. Finally, annotation of key OM systems in the Halanaerobiales and the Negativicutes shows a puzzling combination of monoderm and diderm features. Together, these results support the hypothesis that the LPS-OMs of Negativicutes and Halanaerobiales are remnants of an ancient diderm cell envelope that was present in the ancestor of the Firmicutes, and that the monoderm phenotype in this phylum is a derived character that arose multiple times independently through OM loss. DOI:http://dx.doi.org/10.7554/eLife.14589.001 The cell envelope is one of the evolutionarily oldest parts of a bacterium. This structure – made up of a cell wall and either one or two cell membranes – surrounds the bacterial cell, maintaining the cell’s structure and providing an interface through which bacteria can sense their environment and communicate. Bacteria can be broadly classed based on the number of cell membranes that their envelope consists of. Bacteria that have a single cell membrane are known as “monoderm”, whereas those with two membranes are termed “diderm”. The number of membranes that bacteria have can affect how well they resist antibacterial compounds. When, how and why bacteria switched between monoderm and diderm cell envelopes are some of the major unanswered questions in evolutionary biology. The textbook example of a monoderm cell envelope can be found in bacteria called Firmicutes. This group includes some notoriously harmful bacteria such as Staphylococcus, which can cause conditions ranging from abscesses to pneumonia. However, some Firmicutes possess two cell membranes. It was unclear how these unusual diderm Firmicutes developed a second membrane, and how they are related to their monoderm relatives. Antunes, Poppleton et al. set out to answer these questions by analyzing the information contained in the thousands of bacterial genomes that have already been described. The results indicate that Firmicutes originally had diderm envelopes, and that species with monoderm envelopes arose independently several times through the loss of their outermost membrane. Future work is needed to investigate the driving forces and the precise mechanism that led most Firmicutes to lose their outer membrane. Also, further characterization of diderm Firmicutes will provide key information about the biology of these poorly understood bacteria. DOI:http://dx.doi.org/10.7554/eLife.14589.002
Collapse
Affiliation(s)
- Luisa Cs Antunes
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Daniel Poppleton
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Andreas Klingl
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU, Munich, Germany
| | - Alexis Criscuolo
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Département de Microbiologie, Institut Pasteur, Paris
| | | | - Christophe Beloin
- Unité de Génétique des Biofilms, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Simonetta Gribaldo
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
| |
Collapse
|
22
|
Tegtmeier D, Riese C, Geissinger O, Radek R, Brune A. Breznakia blatticola gen. nov. sp. nov. and Breznakia pachnodae sp. nov., two fermenting bacteria isolated from insect guts, and emended description of the family Erysipelotrichaceae. Syst Appl Microbiol 2016; 39:319-29. [PMID: 27270136 DOI: 10.1016/j.syapm.2016.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/30/2022]
Abstract
Two novel, obligately anaerobic Firmicutes from the family Erysipelotrichaceae were isolated from the intestinal tracts of a cockroach (strain ErySL, Shelfordella lateralis) and a scarab beetle larva (strain Pei061, Pachnoda ephippiata). Phylogenetic analysis indicated that the strains belong to a monophyletic group of hitherto uncultured bacteria from insect guts that are only distantly related to any described species (<90% 16S rRNA gene sequence similarity). Ultrastructural analysis revealed a Gram-positive cell envelope and, in the case of strain ErySL, a wide electron-lucent space between the cytoplasmic membrane and cell wall. In older cultures, cells formed pleomorphic rods with a thicker peptidoglycan layer. Both strains were obligately anaerobic and fermented glucose to formate, ethanol, and acetate as major products, but strain Pei061 tolerated up to 1% oxygen in the headspace. The same type of metabolism was observed with Erysipelothrix inopinata, except that the latter grew, albeit poorly, even under air. However, previous claims of a microaerophilic or facultatively anaerobic metabolism in the genus Erysipelothrix could not be substantiated. Based on phenotypic and phylogenetic evidence, we propose to classify the isolates as members of a new genus, Breznakia blatticola gen. nov. sp. nov. and Breznakia pachnodae sp. nov., with strain ErySL(T) (=DSM 28867(T)=JCM 30190(T)) and strain Pei061(T) (=DSM 16784(T)=JCM 30191(T)) as type strains, and provide an emended description of the family Erysipelotrichaceae.
Collapse
Affiliation(s)
- Dorothee Tegtmeier
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Cornelius Riese
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Oliver Geissinger
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany.
| |
Collapse
|
23
|
Vartoukian SR, Moazzez RV, Paster BJ, Dewhirst FE, Wade WG. First Cultivation of Health-Associated Tannerella sp. HOT-286 (BU063). J Dent Res 2016; 95:1308-13. [PMID: 27193146 DOI: 10.1177/0022034516651078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite significant advances in recent years in culture-independent molecular microbiology methods, the detailed study of individual bacterial species still relies on having pure cultures in the laboratory. Yet, more than a third of the approximately 700 bacterial taxa found in the human oral cavity are as yet uncultivated in vitro. One such taxon, Tannerella sp. HOT-286 (phylotype BU063), is the focus of much interest since it is associated with periodontal health, while Tannerella forsythia, its closest phylogenetic neighbor, is strongly associated with periodontal disease. HOT-286, however, has remained uncultivated despite the efforts of several research groups, spanning over a decade. The aim of this study was to cultivate Tannerella sp. HOT-286. A heavily diluted sample of subgingival plaque was inoculated onto culture plates supplemented with siderophores (pyoverdines-Fe complex or desferricoprogen) or a neat plaque suspension. After 8 d of anaerobic incubation, microcolonies and colonies showing satellitism were passaged onto fresh culture plates cross-streaked with potential helper strains or onto cellulose-acetate membranes placed over lawn cultures of helper strains. Subcultured colonies were identified by 16S rRNA gene sequencing, and purity was confirmed by sequencing 20 clones per library prepared from a single colony. Three colonies of interest (derived from pyoverdines- and plaque-supplemented plates) were identified as Tannerella sp. HOT-286. The isolates were found to be incapable of independent growth, requiring helpers such as Propionibacterium acnes and Prevotella intermedia for stimulation, with best growth on membranes over "helper" lawns. A representative isolate was subjected to phenotypic characterization and found to produce a range of glycosidic and proteolytic enzymes. Further comparison of this novel "periodontal health-associated" taxon with T. forsythia will be valuable in investigating virulence factors of the latter and possible health benefits of the former.
Collapse
Affiliation(s)
- S R Vartoukian
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - R V Moazzez
- King's College London Dental Institute, London, UK
| | - B J Paster
- The Forsyth Institute, Cambridge, MA, USA Harvard School of Dental Medicine, Boston, MA, USA
| | - F E Dewhirst
- The Forsyth Institute, Cambridge, MA, USA Harvard School of Dental Medicine, Boston, MA, USA
| | - W G Wade
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
24
|
Phylogenomic analysis of Candidatus 'Izimaplasma' species: free-living representatives from a Tenericutes clade found in methane seeps. ISME JOURNAL 2016; 10:2679-2692. [PMID: 27058507 DOI: 10.1038/ismej.2016.55] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/29/2016] [Accepted: 03/04/2016] [Indexed: 11/09/2022]
Abstract
Tenericutes are a unique class of bacteria that lack a cell wall and are typically parasites or commensals of eukaryotic hosts. Environmental 16S rDNA surveys have identified a number of tenericute clades in diverse environments, introducing the possibility that these Tenericutes may represent non-host-associated, free-living microorganisms. Metagenomic sequencing of deep-sea methane seep sediments resulted in the assembly of two genomes from a Tenericutes-affiliated clade currently known as 'NB1-n' (SILVA taxonomy) or 'RF3' (Greengenes taxonomy). Metabolic reconstruction revealed that, like cultured members of the Mollicutes, these 'NB1-n' representatives lack a tricarboxylic acid cycle and instead use anaerobic fermentation of simple sugars for substrate level phosphorylation. Notably, the genomes also contained a number of unique metabolic features including hydrogenases and a simplified electron transport chain containing an RNF complex, cytochrome bd oxidase and complex I. On the basis of the metabolic potential predicted from the annotated genomes, we devised an anaerobic enrichment media that stimulated the growth of these Tenericutes at 10 °C, resulting in a mixed culture where these organisms represented ~60% of the total cells by targeted fluorescence in situ hybridization (FISH). Visual identification by FISH confirmed these organisms were not directly associated with Eukaryotes and electron cryomicroscopy of cells in the enrichment culture confirmed an ultrastructure consistent with the defining phenotypic property of Tenericutes, with a single membrane and no cell wall. On the basis of their unique gene content, phylogenetic placement and ultrastructure, we propose these organisms represent a novel class within the Tenericutes, and suggest the names Candidatus 'Izimaplasma sp. HR1' and Candidatus 'Izimaplasma sp. HR2' for the two genome representatives.
Collapse
|
25
|
Son JS, Zheng LJ, Rowehl LM, Tian X, Zhang Y, Zhu W, Litcher-Kelly L, Gadow KD, Gathungu G, Robertson CE, Ir D, Frank DN, Li E. Comparison of Fecal Microbiota in Children with Autism Spectrum Disorders and Neurotypical Siblings in the Simons Simplex Collection. PLoS One 2015; 10:e0137725. [PMID: 26427004 PMCID: PMC4591364 DOI: 10.1371/journal.pone.0137725] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/21/2015] [Indexed: 12/31/2022] Open
Abstract
In order to assess potential associations between autism spectrum disorder (ASD) phenotype, functional GI disorders and fecal microbiota, we recruited simplex families, which had only a single ASD proband and neurotypical (NT) siblings, through the Simons Simplex Community at the Interactive Autism Network (SSC@IAN). Fecal samples and metadata related to functional GI disorders and diet were collected from ASD probands and NT siblings of ASD probands (age 7-14). Functional gastrointestinal disorders (FGID) were assessed using the parent-completed ROME III questionnaire for pediatric FGIDs, and problem behaviors were assessed using the Child Behavior Check List (CBCL). Targeted quantitative polymerase chain reaction (qPCR) assays were conducted on selected taxa implicated in ASD, including Sutterella spp., Bacteroidetes spp. and Prevotella spp. Illumina sequencing of the V1V2 and the V1V3 regions of the bacterial 16S rRNA genes from fecal DNA was performed to an average depth of 208,000 and 107,000 high-quality reads respectively. Twenty-five of 59 ASD children and 13 of 44 NT siblings met ROME III criteria for at least one FGID. Functional constipation was more prevalent in ASD (17 of 59) compared to NT siblings (6 of 44, P = 0.035). The mean CBCL scores in NT siblings with FGID, ASD children with FGID and ASD without FGID were comparably higher (58-62 vs. 44, P < 0.0001) when compared to NT children without FGID. There was no significant difference in macronutrient intake between ASD and NT siblings. There was no significant difference in ASD severity scores between ASD children with and without FGID. No significant difference in diversity or overall microbial composition was detected between ASD children with NT siblings. Exploratory analysis of the 16S rRNA sequencing data, however, identified several low abundance taxa binned at the genus level that were associated with ASD and/or first order ASD*FGID interactions (FDR <0.1).
Collapse
Affiliation(s)
- Joshua S. Son
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Ling J. Zheng
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Leahana M. Rowehl
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Xinyu Tian
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| | - Yuanhao Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| | - Wei Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States of America
| | - Leighann Litcher-Kelly
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, United States of America
| | - Kenneth D. Gadow
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, United States of America
| | - Grace Gathungu
- Department of Pediatrics, Stony Brook University, Stony Brook, NY, United States of America
| | - Charles E. Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Diana Ir
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Ellen Li
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
26
|
Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, Morris MJ. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One 2015; 10:e0126931. [PMID: 25992554 PMCID: PMC4436290 DOI: 10.1371/journal.pone.0126931] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/09/2015] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.
Collapse
Affiliation(s)
- Virginie Lecomte
- School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Nadeem O. Kaakoush
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | | | - Mukesh Raipuria
- School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Karina D. Huinao
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Hazel M. Mitchell
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Margaret J. Morris
- School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Zhang W, Lu Z. Phylogenomic evaluation of members above the species level within the phylum Firmicutes based on conserved proteins. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:273-281. [PMID: 25403554 DOI: 10.1111/1758-2229.12241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 10/08/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Currently, numerous taxonomic units above species level of the phylum Firmicutes are ambiguously placed in the phylogeny determined by 16S rRNA gene. Here, we evaluated the use of 16S rRNA gene compared with 81 conserved proteins (CPs) or 41 ribosomal proteins (RPs) as phylogenetic markers and applied this to the analysis of the phylum Firmicutes. Results show that the phylogenetic trees constructed are in good agreement with each other; however, the protein-based trees are able to resolve the relationships between several branches where so far only ambiguous classifications are possible. Thus, the phylogeny deduced based on concatenated proteins provides significant basis for re-classifying members in this phylum. It indicates that the genera Coprothermobacter and Thermodesulfobium represent two new phyla; the families Paenibacillaceae and Alicyclobacillaceae should be elevated to order level; and the families Bacillaceae and Thermodesulfobiaceae should be separated to 2 and 3 families respectively. We also suggest that four novel families should be proposed in the orders Clostridiales and Bacillales, and 11 genera should be moved to other existing families different from the current classification status. Moreover, notably, RPs are a well-suited subset of CPs that could be applied to Firmicutes phylogenetic analysis instead of the 16S rRNA gene.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | | |
Collapse
|
28
|
Elkhal CK, Kean KM, Parsonage D, Maenpuen S, Chaiyen P, Claiborne A, Karplus PA. Structure and proposed mechanism of L-α-glycerophosphate oxidase from Mycoplasma pneumoniae. FEBS J 2015; 282:3030-42. [PMID: 25688572 DOI: 10.1111/febs.13233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 02/12/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED The formation of H2 O2 by the FAD-dependent L-α-glycerophosphate oxidase (GlpO) is important for the pathogenesis of Streptococcus pneumoniae and Mycoplasma pneumoniae. The structurally known GlpO from Streptococcus sp. (SspGlpO) is similar to the pneumococcal protein (SpGlpO) and provides a guide for drug design against that target. However, M. pneumoniae GlpO (MpGlpO), having < 20% sequence identity with structurally known GlpOs, appears to represent a second type of GlpO that we designate as type II GlpOs. In the present study, the recombinant His-tagged MpGlpO structure is described at an approximate resolution of 2.5 Å, solved by molecular replacement using, as a search model, the Bordetella pertussis protein 3253 (Bp3253), comprising a protein of unknown function solved by structural genomics efforts. Recombinant MpGlpO is an active oxidase with a turnover number of approximately 580 min(-1), whereas Bp3253 showed no GlpO activity. No substantial differences exist between the oxidized and dithionite-reduced MpGlpO structures. Although, no liganded structures were determined, a comparison with the tartrate-bound Bp3253 structure and consideration of residue conservation patterns guided the construction of a model for L-α-glycerophosphate (Glp) recognition and turnover by MpGlpO. The predicted binding mode also appears relevant for the type I GlpOs (such as SspGlpO) despite differences in substrate recognition residues, and it implicates a histidine conserved in type I and II Glp oxidases and dehydrogenases as the catalytic acid/base. The present study provides a solid foundation for guiding further studies of the mitochondrial Glp dehydrogenases, as well as for continued studies of M. pneumoniae and S. pneumoniae glycerol metabolism and the development of novel therapeutics targeting MpGlpO and SpGlpO. DATABASE Structural data have been deposited in the Protein Data Bank under accession numbers 4X9M (oxidized) and 4X9N (reduced).
Collapse
Affiliation(s)
- Callia K Elkhal
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Kelsey M Kean
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Derek Parsonage
- Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Al Claiborne
- Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
29
|
Flass T, Tong S, Frank DN, Wagner BD, Robertson CE, Kotter CV, Sokol RJ, Zemanick E, Accurso F, Hoffenberg EJ, Narkewicz MR. Intestinal lesions are associated with altered intestinal microbiome and are more frequent in children and young adults with cystic fibrosis and cirrhosis. PLoS One 2015; 10:e0116967. [PMID: 25658710 PMCID: PMC4319904 DOI: 10.1371/journal.pone.0116967] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/17/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Cirrhosis (CIR) occurs in 5-7% of cystic fibrosis (CF) patients. We hypothesized that alterations in intestinal function in CF contribute to the development of CIR. AIMS Determine the frequency of macroscopic intestinal lesions, intestinal inflammation, intestinal permeability and characterize fecal microbiome in CF CIR subjects and CF subjects with no liver disease (CFnoLIV). METHODS 11 subjects with CFCIR (6 M, 12.8 yrs ± 3.8) and 19 matched with CFnoLIV (10 M, 12.6 yrs ± 3.4) underwent small bowel capsule endoscopy, intestinal permeability testing by urinary lactulose: mannitol excretion ratio, fecal calprotectin determination and fecal microbiome characterization. RESULTS CFCIR and CFnoLIV did not differ in key demographics or CF complications. CFCIR had higher GGT (59±51 U/L vs 17±4 p = 0.02) and lower platelet count (187±126 vs 283±60 p = 0.04) and weight (-0.86 ± 1.0 vs 0.30 ± 0.9 p = 0.002) z scores. CFCIR had more severe intestinal mucosal lesions on capsule endoscopy (score ≥4, 4/11 vs 0/19 p = 0.01). Fecal calprotectin was similar between CFCIR and CFnoLIV (166 μg/g ±175 vs 136 ± 193 p = 0.58, nl <120). Lactulose:mannitol ratio was elevated in 27/28 subjects and was slightly lower in CFCIR vs CFnoLIV (0.08±0.02 vs 0.11±0.05, p = 0.04, nl ≤0.03). Small bowel transit time was longer in CFCIR vs CFnoLIV (195±42 min vs 167±68 p<0.001, nl 274 ± 41). Bacteroides were decreased in relative abundance in CFCIR and were associated with lower capsule endoscopy score whereas Clostridium were more abundant in CFCIR and associated with higher capsule endoscopy score. CONCLUSIONS CFCIR is associated with increased intestinal mucosal lesions, slower small bowel transit time and alterations in fecal microbiome. Abnormal intestinal permeability and elevated fecal calprotectin are common in all CF subjects. Disturbances in intestinal function in CF combined with changes in the microbiome may contribute to the development of hepatic fibrosis and intestinal lesions.
Collapse
Affiliation(s)
- Thomas Flass
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States of America
| | - Suhong Tong
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital, Aurora, Colorado, United States of America
| | - Daniel N. Frank
- Department of Infectious Diseases, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Brandie D. Wagner
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital, Aurora, Colorado, United States of America
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, United States of America
| | - Charles E. Robertson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Cassandra Vogel Kotter
- Department of Infectious Diseases, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Ronald J. Sokol
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States of America
- Colorado Clinical and Translational Sciences Institute, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Edith Zemanick
- Section of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States of America
| | - Frank Accurso
- Section of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States of America
| | - Edward J. Hoffenberg
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States of America
| | - Michael R. Narkewicz
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, United States of America
| |
Collapse
|
30
|
Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc Natl Acad Sci U S A 2015; 112:244-9. [PMID: 25535390 PMCID: PMC4291631 DOI: 10.1073/pnas.1419038112] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The candidate phylum TM7 is globally distributed and often associated with human inflammatory mucosal diseases. Despite its prevalence, the TM7 phylum remains recalcitrant to cultivation, making it one of the most enigmatic phyla known. In this study, we cultivated a TM7 phylotype (TM7x) from the human oral cavity. This extremely small coccus (200-300 nm) has a distinctive lifestyle not previously observed in human-associated microbes. It is an obligate epibiont of an Actinomyces odontolyticus strain (XH001) yet also has a parasitic phase, thereby killing its host. This first completed genome (705 kb) for a human-associated TM7 phylotype revealed a complete lack of amino acid biosynthetic capacity. Comparative genomics analyses with uncultivated environmental TM7 assemblies show remarkable conserved gene synteny and only minimal gene loss/gain that may have occurred as TM7x adapted to conditions within the human host. Transcriptomic and metabolomic profiles provided the first indications, to our knowledge, that there is signaling interaction between TM7x and XH001. Furthermore, the induction of TNF-α production in macrophages by XH001 was repressed in the presence of TM7x, suggesting its potential immune suppression ability. Overall, our data provide intriguing insights into the uncultivability, pathogenicity, and unique lifestyle of this previously uncharacterized oral TM7 phylotype.
Collapse
|
31
|
Mazin PV, Fisunov GY, Gorbachev AY, Kapitskaya KY, Altukhov IA, Semashko TA, Alexeev DG, Govorun VM. Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium. Nucleic Acids Res 2014; 42:13254-68. [PMID: 25361977 PMCID: PMC4245973 DOI: 10.1093/nar/gku976] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The avian bacterial pathogen Mycoplasma gallisepticum is a good model for systems studies due to small genome and simplicity of regulatory pathways. In this study, we used RNA-Seq and MS-based proteomics to accurately map coding sequences, transcription start sites (TSSs) and transcript 3′-ends (T3Es). We used obtained data to investigate roles of TSSs and T3Es in stress-induced transcriptional responses. We identified 1061 TSSs at a false discovery rate of 10% and showed that almost all transcription in M. gallisepticum is initiated from classic TATAAT promoters surrounded by A/T-rich sequences. Our analysis revealed the pronounced operon structure complexity: on average, each coding operon has one internal TSS and T3Es in addition to the primary ones. Our transcriptomic approach based on the intervals between the two nearest transcript ends allowed us to identify two classes of T3Es: strong, unregulated, hairpin-containing T3Es and weak, heat shock-regulated, hairpinless T3Es. Comparing gene expression levels under different conditions revealed widespread and divergent transcription regulation in M. gallisepticum. Modeling suggested that the core promoter structure plays an important role in gene expression regulation. We have shown that the heat stress activation of cryptic promoters combined with the hairpinless T3Es suppression leads to widespread, seemingly non-functional transcription.
Collapse
Affiliation(s)
- Pavel V Mazin
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny 19, Moscow 127994, Russian Federation
| | - Gleb Y Fisunov
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Alexey Y Gorbachev
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Kristina Y Kapitskaya
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation
| | - Ilya A Altukhov
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation
| | - Tatiana A Semashko
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Dmitry G Alexeev
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russian Federation
| | - Vadim M Govorun
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
32
|
Pfeiffer S, Pastar M, Mitter B, Lippert K, Hackl E, Lojan P, Oswald A, Sessitsch A. Improved group-specific primers based on the full SILVA 16S rRNA gene reference database. Environ Microbiol 2014; 16:2389-407. [PMID: 25229098 DOI: 10.1111/1462-2920.12350] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis,are well-suited techniques for the examination of microbial community structures. The use of phylum and class-specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain-specific primers. To date, several phylum- and class-specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non-target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T-RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above-mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics.
Collapse
|
33
|
Abstract
In recent decades, bacterial cell biology has seen great advances, and numerous model systems have been developed to study a wide variety of cellular processes, including cell division, motility, assembly of macromolecular structures, and biogenesis of cell polarity. Considerable attention has been given to these model organisms, which include Escherichia coli, Bacillus subtilis, Caulobacter crescentus, and Myxococcus xanthus. Studies of these processes in the pathogenic bacterium Mycoplasma pneumoniae and its close relatives have also been carried out on a smaller scale, but this work is often overlooked, in part due to this organism's reputation as minimalistic and simple. In this minireview, I discuss recent work on the role of the M. pneumoniae attachment organelle (AO), a structure required for adherence to host cells, in these processes. The AO is constructed from proteins that generally lack homology to those found in other organisms, and this construction occurs in coordination with cell cycle events. The proteins of the M. pneumoniae AO share compositional features with proteins with related roles in model organisms. Once constructed, the AO becomes activated for its role in a form of gliding motility whose underlying mechanism appears to be distinct from that of other gliding bacteria, including Mycoplasma mobile. Together with the FtsZ cytoskeletal protein, motility participates in the cell division process. My intention is to bring this deceptively complex organism into alignment with the better-known model systems.
Collapse
|
34
|
Characterization and identification of a novel candidate vaccine protein through systematic analysis of extracellular proteins of Erysipelothrix rhusiopathiae. Infect Immun 2013; 81:4333-40. [PMID: 24019408 DOI: 10.1128/iai.00549-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, is a facultative intracellular Gram-positive bacterium. It has been shown that animals immunized with a filtrate from E. rhusiopathiae cultures are protected against lethal challenge. In this study, we identified and characterized the extracellular proteins of E. rhusiopathiae to search for novel vaccine antigens. A concentrated culture supernatant from the E. rhusiopathiae Fujisawa strain, which has been found to induce protection in mice, was analyzed using two-dimensional electrophoresis. From more than 40 confirmed protein spots, 16 major protein spots were selected and subjected to N-terminal amino acid sequence determination, and 14 protein spots were successfully identified. The identified proteins included housekeeping proteins and other metabolic enzymes. We searched for surface-localized proteins by analyzing the genomes of two E. rhusiopathiae strains: Fujisawa and ATCC 19414. Genome analysis revealed that the ATCC 19414 strain has three putative surface-exposed choline-binding proteins (CBPs): CbpA, CbpB, and CbpC. Each CBP contains a putative choline-binding domain. The CbpC gene is mutated in Fujisawa, becoming a nonfunctional pseudogene. Immunogold electron microscopy confirmed that CbpA and CbpB, as well as the majority of the metabolic enzymes examined, are associated with the cell surface of E. rhusiopathiae Fujisawa. Immunization with recombinant CbpB, but not with other recombinant CBPs or metabolic enzymes, protected mice against lethal challenge. A phagocytosis assay revealed that antiserum against CbpB promoted opsonin-mediated phagocytosis by murine macrophages in vitro. The protective capabilities of CbpB were confirmed in pigs, suggesting that CbpB could be used as a vaccine antigen.
Collapse
|