1
|
Paulchamy C, Vakkattuthundi Premji S, Shanmugam S. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol 2024; 59:337-362. [PMID: 39488737 DOI: 10.1080/10409238.2024.2418639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.
Collapse
Affiliation(s)
- Chellapandi Paulchamy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sreekutty Vakkattuthundi Premji
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Saranya Shanmugam
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
2
|
Pradel N, Bartoli M, Koenen M, Bale N, Neumann-Schaal M, Spröer C, Bunk B, Rohde M, Pester M, Spring S. Description and genome analysis of a novel archaeon isolated from a syntrophic pyrite-forming enrichment culture and reclassification of Methanospirillum hungatei strains GP1 and SK as Methanospirillum purgamenti sp. nov. PLoS One 2024; 19:e0308405. [PMID: 39186748 PMCID: PMC11346949 DOI: 10.1371/journal.pone.0308405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
The archaeal isolate J.3.6.1-F.2.7.3T was obtained from an anaerobic enrichment culture, where it may play an important role in methane production during pyrite formation. The new isolate formed a species-level clade with Methanospirillum hungatei strains GP1 and SK, which is separate from the type strain JF-1T. Cultivation-independent surveys indicate the occurrence of this phylogenetic group in sediments and anaerobic digesters. The abundance of this clade appears to be negatively affected by high nitrogen loads, indicating a sensitivity to certain nitrogen compounds that is not known in M. hungatei JF-1T. The relatively large core genome of this Methanospirillum clade is indicative of niche specialization and efficient control of horizontal gene transfer. Genes for nitrogenase and F420-dependent secondary alcohol dehydrogenase contribute to the metabolic versatility of this lineage. Characteristics of the new isolate such as the ability to utilize 2-propanol as an electron donor or the requirement for acetate as a carbon source are found also in the strains GP1 and SK, but not in the type strain M. hungatei JF-1T. Based on the genomic differences to related species, a new species within the genus Methanospirillum is proposed with the name M. purgamenti sp. nov. The determined phenotypic characteristics support this proposal and indicate a metabolic adaptation to a separate ecological niche.
Collapse
Affiliation(s)
- Nathalie Pradel
- CNRS/INSU, IRD, MIO, UM 110, Aix-Marseille Université, Université du Sud Toulon-Var, Marseille, France
| | - Manon Bartoli
- CNRS/INSU, IRD, MIO, UM 110, Aix-Marseille Université, Université du Sud Toulon-Var, Marseille, France
| | - Michel Koenen
- Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Nicole Bale
- Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Meina Neumann-Schaal
- Research Group Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department Bioinformatics, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Bioinformatics, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Michael Pester
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Stefan Spring
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
3
|
Pei S, Fan X, Qiu C, Liu N, Li F, Li J, Qi L, Wang S. Effect of biochar addition on the anaerobic digestion of food waste: microbial community structure and methanogenic pathways. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:894-907. [PMID: 39141040 DOI: 10.2166/wst.2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
This study assessed the effects of the addition of biochar prepared at 700 °C with different dosages on the anaerobic digestion of food waste. The biochar addition at a concentration of 10.0 g/L increased the cumulative methane yield by 128%, and daily methane production was also significantly promoted. The addition of biochar derived from poplar sawdust significantly increased the relative abundance of dominant bacteria for anaerobic digestion by 85.54-2530% and promoted the degradation of refractory organic matter and the transfer of materials between the hydrolysis and acid production stages. Further analysis has demonstrated that Bathyarchaeia and hydrogenotrophic methanogens were enriched by the biochar addition. Meanwhile, the relative abundances of functional genes, including C5-branched dibasic acid metabolism, and pyruvate metabolism, were increased by 11.38-26.27%. The relative abundances of genes related to major amino acid metabolism, including histidine metabolism, lysine biosynthesis, and phenylalanine, tyrosine, and tryptophan biosynthesis, were increased by 11.96-15.71%. Furthermore, the relative abundances of genes involved in major replication and repair were increased by 14.76-22.76%, and the major folding, sorting, degradation, and translation were increased by 14.47-19.95%, respectively. The relative abundances of genes related to major membrane transport and cell motility were increased by 10.02 and 83.09%, respectively.
Collapse
Affiliation(s)
- Siyao Pei
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaodan Fan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China E-mail:
| | - Fei Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jiakang Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Li Qi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| |
Collapse
|
4
|
Conrad R. Complexity of temperature dependence in methanogenic microbial environments. Front Microbiol 2023; 14:1232946. [PMID: 37485527 PMCID: PMC10359720 DOI: 10.3389/fmicb.2023.1232946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
There is virtually no environmental process that is not dependent on temperature. This includes the microbial processes that result in the production of CH4, an important greenhouse gas. Microbial CH4 production is the result of a combination of many different microorganisms and microbial processes, which together achieve the mineralization of organic matter to CO2 and CH4. Temperature dependence applies to each individual step and each individual microbe. This review will discuss the different aspects of temperature dependence including temperature affecting the kinetics and thermodynamics of the various microbial processes, affecting the pathways of organic matter degradation and CH4 production, and affecting the composition of the microbial communities involved. For example, it was found that increasing temperature results in a change of the methanogenic pathway with increasing contribution from mainly acetate to mainly H2/CO2 as immediate CH4 precursor, and with replacement of aceticlastic methanogenic archaea by thermophilic syntrophic acetate-oxidizing bacteria plus thermophilic hydrogenotrophic methanogenic archaea. This shift is consistent with reaction energetics, but it is not obligatory, since high temperature environments exist in which acetate is consumed by thermophilic aceticlastic archaea. Many studies have shown that CH4 production rates increase with temperature displaying a temperature optimum and a characteristic apparent activation energy (Ea). Interestingly, CH4 release from defined microbial cultures, from environmental samples and from wetland field sites all show similar Ea values around 100 kJ mol-1 indicating that CH4 production rates are limited by the methanogenic archaea rather than by hydrolysis of organic matter. Hence, the final rather than the initial step controls the methanogenic degradation of organic matter, which apparently is rarely in steady state.
Collapse
|
5
|
Xiang X, Wang H, Man B, Xu Y, Gong L, Tian W, Yang H. Diverse Bathyarchaeotal Lineages Dominate Archaeal Communities in the Acidic Dajiuhu Peatland, Central China. MICROBIAL ECOLOGY 2023; 85:557-571. [PMID: 35332366 DOI: 10.1007/s00248-022-01990-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Bathyarchaeota are believed to have roles in the carbon cycle in marine systems. However, the ecological knowledge of Bathyarchaeota is limited in peatland ecosystems. Here, we investigated the vertical distribution of Bathyarchaeota community structure using quantitative PCR and high-throughput sequencing technology of ribosomal 16S rRNA gene integrated with detailed chemical profiling in the Dajiuhu Peatland, central China. Eight archaeal phyla were observed in peat samples, which mainly composed of Bathyarchaeota with a mean relative abundance about 88%, followed by Thaumarchaeota (9%). Bathyarchaeota were further split into 17 subgroups, and some subgroups showed habitat specificity to peat horizons with distinct lithological and physicochemical properties, for example, Bathy-6 and Bathy-15 had preference for the acrotelm, Bathy-5b, Bathy-16, and Bathy-19 were enriched in the catotelm, Bathy-5a, Bathy-8, and Bathy-11 were specific for the clay horizon. This spatial distribution pattern of archaeal communities along peat profile was mainly influenced by water content as indicated by RDA ordination and permutational MANOVA, whereas organic matter content exclusively affected Bathyarchaeota distribution along the peat profile significantly. The abundance of archaeal 16S rRNA genes ranged from 105 to 107 copies per gram dry sediment, and the highest archaeal biomass was observed in the periodically oxic mesotelm horizon with more dynamic archaeal interaction relationship as indicated by the network analysis. Bathyarchaeota dominated the archaeal interaction network with 82% nodes, 96% edges, and 71% keystone species. Our results provide an overview of the archaeal population, community structure, and relationship with environmental factors that affect the vertical distribution of archaeal communities and emphasize the ecology of bathyarchaeotal lineages in terrestrial peatland ecosystems.
Collapse
Affiliation(s)
- Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China.
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
| | - Ying Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Linfeng Gong
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, SOA, Xiamen, 361005, China
| | - Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Huan Yang
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
6
|
Jin W, Dai Z, Wang L, Cai F, Song C, Liu G, Chen C. Recycling different textile wastes for methane production: Morphological and microstructural changes and microbial community dynamics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:154-162. [PMID: 35952413 DOI: 10.1016/j.wasman.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The dramatic increase of textile wastes has become a major global concern, which calls for alternative practices to alleviate severe environmental pollution and waste of resources due to their improper disposal and management. Anaerobic digestion (AD) is a cost-effective and eco-friendly technology that allows the bioconversion of organic wastes into clean energy (methane), which might be potentially useful for recycling textile wastes. In this study, AD was applied to 11 commonly available textile wastes in daily life to explore their feasibility, along with the methane production efficiency, biodegradability (BD), degradation mechanism, and microbial community dynamics during AD. The results showed that all textile wastes presented an obvious decomposition from an integrated shape to fragmented pieces within 18 days except blue denim. The highest experimental methane production (EMP) of 356.0 mL/g volatile solids (VS) and BD of 78.0 % were obtained with flax. The degradation mechanism could be concluded that predominant bacteria, especially Clostridium sensu stricto, first attached to the surface of textile waste and converted its main compositions cellulose and hemicellulose into acetate as the core intermediate. Then, acetate was utilized by the major methanogen, Methanothrix, through the acetoclastic methanogenesis pathway to produce methane. This study not only enriches the understanding of textile wastes degradation mechanisms during AD and provides very useful data on methane production from commonly available textile wastes but also proposes a promising method for efficiently recycling and utilizing the diverse range of textile wastes to reduce waste pollution and generate clean energy simultaneously.
Collapse
Affiliation(s)
- Wenxiong Jin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuangqiang Dai
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ligong Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fanfan Cai
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Wang Y, Mairinger W, Raj SJ, Yakubu H, Siesel C, Green J, Durry S, Joseph G, Rahman M, Amin N, Hassan MZ, Wicken J, Dourng D, Larbi E, Adomako LAB, Senayah AK, Doe B, Buamah R, Tetteh-Nortey JNN, Kang G, Karthikeyan A, Roy S, Brown J, Muneme B, Sene SO, Tuffuor B, Mugambe RK, Bateganya NL, Surridge T, Ndashe GM, Ndashe K, Ban R, Schrecongost A, Moe CL. Quantitative assessment of exposure to fecal contamination in urban environment across nine cities in low-income and lower-middle-income countries and a city in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 763:143007. [PMID: 34718001 DOI: 10.1016/j.scitotenv.2020.143007] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND During 2014 to 2019, the SaniPath Exposure Assessment Tool, a standardized set of methods to evaluate risk of exposure to fecal contamination in the urban environment through multiple exposure pathways, was deployed in 45 neighborhoods in ten cities, including Accra and Kumasi, Ghana; Vellore, India; Maputo, Mozambique; Siem Reap, Cambodia; Atlanta, United States; Dhaka, Bangladesh; Lusaka, Zambia; Kampala, Uganda; Dakar, Senegal. OBJECTIVE Assess and compare risk of exposure to fecal contamination via multiple pathways in ten cities. METHODS In total, 4053 environmental samples, 4586 household surveys, 128 community surveys, and 124 school surveys were collected. E. coli concentrations were measured in environmental samples as an indicator of fecal contamination magnitude. Bayesian methods were used to estimate the distributions of fecal contamination concentration and contact frequency. Exposure to fecal contamination was estimated by the Monte Carlo method. The contamination levels of ten environmental compartments, frequency of contact with those compartments for adults and children, and estimated exposure to fecal contamination through any of the surveyed environmental pathways were compared across cities and neighborhoods. RESULTS Distribution of fecal contamination in the environment and human contact behavior varied by city. Universally, food pathways were the most common dominant route of exposure to fecal contamination across cities in low-income and lower-middle-income countries. Risks of fecal exposure via water pathways, such as open drains, flood water, and municipal drinking water, were site-specific and often limited to smaller geographic areas (i.e., neighborhoods) instead of larger areas (i.e., cities). CONCLUSIONS Knowledge of the relative contribution to fecal exposure from multiple pathways, and the environmental contamination level and frequency of contact for those "dominant pathways" could provide guidance for Water, Sanitation, and Hygiene (WASH) programming and investments and enable local governments and municipalities to improve intervention strategies to reduce the risk of exposure to fecal contamination.
Collapse
Affiliation(s)
- Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Wolfgang Mairinger
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Suraja J Raj
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Habib Yakubu
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Casey Siesel
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jamie Green
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sarah Durry
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - George Joseph
- Water Global Practice, The World Bank, Washington, DC, USA
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nuhu Amin
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | - Eugene Larbi
- Training Research and Networking for Development (TREND), Accra, Ghana
| | | | | | - Benjamin Doe
- Training Research and Networking for Development (TREND), Accra, Ghana
| | - Richard Buamah
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Gagandeep Kang
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Arun Karthikeyan
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Sheela Roy
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bacelar Muneme
- Water Supply and Mapping, WE Consult, Maputo, Mozambique
| | - Seydina O Sene
- Initiative Prospective Agricole et Rurale (IPAR), Dakar, Senegal
| | - Benedict Tuffuor
- Training Research and Networking for Development (TREND), Accra, Ghana
| | - Richard K Mugambe
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Najib Lukooya Bateganya
- Department of Environment and Public Health, Kampala Capital City Authority, Kampala, Uganda
| | - Trevor Surridge
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Lusaka, Zambia
| | | | - Kunda Ndashe
- Department of Environmental Health, Faculty of Health Science, Lusaka Apex Medical University, Lusaka, Zambia
| | - Radu Ban
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Christine L Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Wan YY, Luo N, Liu XL, Lai QL, Goodfellow M. Cupidesulfovibrio liaohensis gen. nov., sp. nov., a novel sulphate-reducing bacterium isolated from an oil reservoir and reclassification of Desulfovibrio oxamicus and Desulfovibrio termitidis as Cupidesulfovibrio oxamicus comb. nov. and Cupidesulfovibrio termitidis comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 33406030 DOI: 10.1099/ijsem.0.004618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel sulphate-reducing, Gram-stain-negative, anaerobic strain, isolate XJ01T, recovered from production fluid at the LiaoHe oilfield, PR China, was the subject of a polyphasic study. The isolate together with Desulfovibrio oxamicus NCIMB 9442T and Desulfovibrio termitidis DSM 5308T formed a distinct, well-supported clade in the Desulfovibrionaceae 16S rRNA gene tree. The taxonomic status of the clade was underscored by complementary phenotypic data. The three isolates comprising the clade formed distinct phyletic branches and were distinguished using a combination of physiological features and by low average nucleotide identity and digital DNA-DNA hybridization values. Consequently, it is proposed that isolate XJ01T represents a novel genus and species for which the name Cupidesulfovibrio liaohensis gen. nov., sp. nov. is proposed with the type strain XJ01T (=CGMCC 1.5227T=DSM 107637T). It is also proposed that D. oxamicus and D. termitidis be reclassified as Cupidesulfovibrio oxamicus comb. nov. and Cupidesulfovibrio termitidis comb. nov., respectively.
Collapse
Affiliation(s)
- Yun Yang Wan
- State Key Laboratory of Petroleum Resources and Prospectng, Beijing Key Laoratory of Petroleum Pollution and Control, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum, Beijing, PR China
| | - Na Luo
- State Key Laboratory of Petroleum Resources and Prospectng, Beijing Key Laoratory of Petroleum Pollution and Control, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum, Beijing, PR China
| | - Xiao-Li Liu
- State Key Laboratory of Petroleum Resources and Prospectng, Beijing Key Laoratory of Petroleum Pollution and Control, Research Centre for Geomicrobial Resources and Application, Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum, Beijing, PR China
| | - Qi-Liang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China
| | - Michael Goodfellow
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Jiang C, McIlroy SJ, Qi R, Petriglieri F, Yashiro E, Kondrotaite Z, Nielsen PH. Identification of microorganisms responsible for foam formation in mesophilic anaerobic digesters treating surplus activated sludge. WATER RESEARCH 2021; 191:116779. [PMID: 33401166 DOI: 10.1016/j.watres.2020.116779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Foaming is a common operational problem in anaerobic digestion (AD) systems, where hydrophobic filamentous microorganisms are usually considered to be the major cause. However, little is known about the identity of foam-stabilising microorganisms in AD systems, and control measures are lacking. This study identified putative foam forming microorganisms in 13 full-scale mesophilic digesters located at 11 wastewater treatment plants in Denmark, using 16S rRNA gene amplicon sequencing with species-level resolution and fluorescence in situ hybridization (FISH) for visualization. A foaming potential aeration test was applied to classify the digester sludges according to their foaming propensity. A high foaming potential for sludges was linked to the abundance of species from the genus Candidatus Microthrix, immigrating with the feed stream (surplus activated sludge), but also to several novel phylotypes potentially growing in the digester. These species were classified to the genera Ca. Brevefilum (Ca. B. fermentans) and Tetrasphaera (midas_s_5), the families ST-12K33 (midas_s_22), and Rikenellaceae (midas_s_141), and the archaeal genus Methanospirillum (midas_s_2576). Application of FISH showed that these potential foam-forming organisms all had a filamentous morphology. Additionally, it was shown that concentrations of ammonium and total nitrogen correlated strongly to the presence of foam-formers. This study provided new insight into the identity of putative foam-forming microorganisms in mesophilic AD systems, allowing for the subsequent surveillance of their abundances and studies of their ecology. Such information will importantly inform the development of control measures for these problematic microorganisms.
Collapse
Affiliation(s)
- Chenjing Jiang
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, SOA, Hangzhou, 310012, China
| | - Simon Jon McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Rong Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| | - Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Erika Yashiro
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
10
|
Yan W, Vadivelu V, Maspolim Y, Zhou Y. In-situ alkaline enhanced two-stage anaerobic digestion system for waste cooking oil and sewage sludge co-digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:221-229. [PMID: 33310598 DOI: 10.1016/j.wasman.2020.11.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is a promising way for resource recovery from waste cooking oil (WCO) due to its high bio-methanation potential. In-situ mild alkaline (pH 8) enhanced two-stage continuous stirred tank reactors (ALK-2-CSTRs) were implemented to explore its efficiency in co-digesting WCO and sewage sludge with stepwise increase of WCO in the co-substrates. Results demonstrate that the ALK-2-CSTRs effectively promoted methane yield from the co-substrates via promoting hydrolysis, long chain fatty acids (LCFAs) degradation and protecting methanogens from exposure to high concentration of LCFAs directly. The maximum methane yield of the ALK-2-CSTRs is 39.2% higher than that of a single stage CSTR system at the optimal feed mixture of 45:55 (WCO:SS [VS]). The thermophilic operation applied to the stage-1 of the ALK-2-CSTRs failed to improve the methane yield when the methanogenic performance was stable; while upon WCO overloaded, the elevated temperature mitigated the deterioration of methanogenesis by stimulating the bioconversion of the toxic LCFAs, especially the unsaturated oleic acid. Microbial community analysis reveals the ALK-2-CSTRs stimulated the growth of lipolytic bacteria and hydrogenotrophic methanogens, which suggests the hydrogenotrophic methanogenic pathway was promoted. Cost evaluation demonstrates the economical superiority of the ALK-2-CSTR over the prevailing strategies developed for enhancing methane yield from the co-substrates.
Collapse
Affiliation(s)
- Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Cleantech One #06-08, 637141, Singapore
| | - Vel Vadivelu
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Yogananda Maspolim
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Cleantech One #06-08, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Cleantech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
11
|
Hydrogenotrophic methanogen strain of Methanospirillum from anaerobic digester fed with agro-industrial waste. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00559-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Danshita T, Miyaoka Y, Sumino H, Iguchi A, Yamaguchi T, Syutsubo K. Evaluation of process performance and retained sludge properties of a psychrophilic UASB reactor for treatment of iso-plophyl alcohol (2-propanol)-containing wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:1177-1184. [PMID: 30596343 DOI: 10.1080/10934529.2018.1530334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/14/2018] [Indexed: 06/09/2023]
Abstract
In this study, a continuous feeding experiment was conducted with synthetic iso-plophyl alcohol (2-propanol)-containing wastewater using a lab-scale psychrophilic UASB reactor to evaluate process performance and retained sludge properties. For smooth acclimation, methanogenic granular sludge was seeded and a proportion of 2-propanol in the synthetic wastewater containing sucrose and volatile fatty acids was increased stepwise from 0% to 30%, 60% and then 90% of COD (chemical oxygen demand). As a result, after a 4-week period for acclimation to 2-propanol degradation, a COD removal rate of 95% was achieved at an organic loading rate (OLR) of 8.4 kg COD/m3/day. Additionally, the physical properties of the retained granular sludge were maintained even when the reactor was supplied with 2-propanol-rich wastewater for more than 200 days. From the batch assays using serum bottles, methanogenic degradation of 2-propanol was observed with acetone accumulation. By comparison, 2-propanol degradation was clearly inhibited in the presence of chloroform as a specific inhibitor of methanogen. A domain archaeal community structure analysis targeting 16S rRNA genes showed the relative abundance of the genus Methanospillium was increased in the 2-propanol acclimated sludge. These results suggested Methanospillium related species in the granular sludge appreciably contributed to the direct degradation of 2-proapanol into acetone under an anaerobic condition.
Collapse
Affiliation(s)
- Tsuyoshi Danshita
- a Department of Energy and Environmental Science , Nagaoka University of Technology , Nagaoka , Niigata , Japan
- b Center for Regional Environmental Research, National Institute for Environmental Studies , Tsukuba , Ibaraki , Japan
| | - Yuma Miyaoka
- a Department of Energy and Environmental Science , Nagaoka University of Technology , Nagaoka , Niigata , Japan
- b Center for Regional Environmental Research, National Institute for Environmental Studies , Tsukuba , Ibaraki , Japan
| | - Haruhiko Sumino
- c Department of Civil Engineering , National Institute of Technology, Gifu College , Motosu , Gifu , Japan
| | - Akinori Iguchi
- d Faculty of Applied Life Sciences , Niigata University of Pharmacy and Applied Life Sciences , Akiba-ku , Niigata , Japan
| | - Takashi Yamaguchi
- e Department of Science of Technology Innovation , Nagaoka University of Technology , Nagaoka , Niigata , Japan
| | - Kazuaki Syutsubo
- b Center for Regional Environmental Research, National Institute for Environmental Studies , Tsukuba , Ibaraki , Japan
| |
Collapse
|
13
|
Dalcin Martins P, Hoyt DW, Bansal S, Mills CT, Tfaily M, Tangen BA, Finocchiaro RG, Johnston MD, McAdams BC, Solensky MJ, Smith GJ, Chin YP, Wilkins MJ. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. GLOBAL CHANGE BIOLOGY 2017; 23:3107-3120. [PMID: 28117550 DOI: 10.1111/gcb.13633] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/02/2016] [Indexed: 05/04/2023]
Abstract
Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.
Collapse
Affiliation(s)
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Richland, WA, 99350, USA
| | - Sheel Bansal
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Christopher T Mills
- United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Building 20, Denver Federal Center, Denver, CO, 80225, USA
| | - Malak Tfaily
- Environmental Molecular Sciences Laboratory, Richland, WA, 99350, USA
| | - Brian A Tangen
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Raymond G Finocchiaro
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Michael D Johnston
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Brandon C McAdams
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew J Solensky
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Garrett J Smith
- Microbiology Department, The Ohio State University, Columbus, OH, 43210, USA
| | - Yu-Ping Chin
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael J Wilkins
- Microbiology Department, The Ohio State University, Columbus, OH, 43210, USA
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
14
|
Holmes D, Smith J. Biologically Produced Methane as a Renewable Energy Source. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:1-61. [PMID: 27926429 DOI: 10.1016/bs.aambs.2016.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methanogens are a unique group of strictly anaerobic archaea that are more metabolically diverse than previously thought. Traditionally, it was thought that methanogens could only generate methane by coupling the oxidation of products formed by fermentative bacteria with the reduction of CO2. However, it has recently been observed that many methanogens can also use electrons extruded from metal-respiring bacteria, biocathodes, or insoluble electron shuttles as energy sources. Methanogens are found in both human-made and natural environments and are responsible for the production of ∼71% of the global atmospheric methane. Their habitats range from the human digestive tract to hydrothermal vents. Although biologically produced methane can negatively impact the environment if released into the atmosphere, when captured, it can serve as a potent fuel source. The anaerobic digestion of wastes such as animal manure, human sewage, or food waste produces biogas which is composed of ∼60% methane. Methane from biogas can be cleaned to yield purified methane (biomethane) that can be readily incorporated into natural gas pipelines making it a promising renewable energy source. Conventional anaerobic digestion is limited by long retention times, low organics removal efficiencies, and low biogas production rates. Therefore, many studies are being conducted to improve the anaerobic digestion process. Researchers have found that addition of conductive materials and/or electrically active cathodes to anaerobic digesters can stimulate the digestion process and increase methane content of biogas. It is hoped that optimization of anaerobic digesters will make biogas more readily accessible to the average person.
Collapse
|
15
|
Taubner RS, Schleper C, Firneis MG, Rittmann SKMR. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies. Life (Basel) 2015; 5:1652-86. [PMID: 26703739 PMCID: PMC4695842 DOI: 10.3390/life5041652] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/15/2015] [Accepted: 11/10/2015] [Indexed: 12/31/2022] Open
Abstract
Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Research Platform: ExoLife, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
- Institute of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
| | - Christa Schleper
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | - Maria G Firneis
- Research Platform: ExoLife, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
- Institute of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
| | - Simon K-M R Rittmann
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
16
|
Hu W, Zhang Q, Tian T, Cheng G, An L, Feng H. The microbial diversity, distribution, and ecology of permafrost in China: a review. Extremophiles 2015; 19:693-705. [PMID: 25925876 DOI: 10.1007/s00792-015-0749-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/04/2015] [Indexed: 11/29/2022]
Abstract
Permafrost in China mainly located in high-altitude areas. It represents a unique and suitable ecological niche that can be colonized by abundant microbes. Permafrost microbial community varies across geographically separated locations in China, and some lineages are novel and possible endemic. Besides, Chinese permafrost is a reservoir of functional microbial groups involved in key biogeochemical cycling processes. In future, more work is necessary to determine if these phylogenetic groups detected by DNA-based methods are part of the viable microbial community, and their functional roles and how they potentially respond to climate change. This review summaries recent studies describing microbial biodiversity found in permafrost and associated environments in China, and provides a framework for better understanding the microbial ecology of permafrost.
Collapse
Affiliation(s)
- Weigang Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | | | | | | | | | | |
Collapse
|