1
|
Abdallah M, Greige S, Webster CF, Harb M, Beyenal H, Wazne M. Enhancement of the start-up and performance of an upflow anaerobic sludge blanket (UASB) reactor using electrochemically-enriched biofilm. Enzyme Microb Technol 2025; 188:110651. [PMID: 40209633 PMCID: PMC12103992 DOI: 10.1016/j.enzmictec.2025.110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
A novel approach was developed to accelerate the start-up of a 20-L UASB reactor under mesophilic conditions. Two runs were conducted, where the first run (Run I) was inoculated with anaerobic sludge, and the second run (Run II) was inoculated with the same sludge supplemented with enriched electro-active biofilms collected from the working and counter electrodes of anodic and cathodic bio-electrochemical systems (BESs). Reactors' performance and microbial dynamics were monitored over 41 days. Methane production in Run II exceeded 200 mL-CH4/g-COD within 10 days, compared to 29 days in Run I. Run II achieved 80 % removal of soluble COD after 13 days as compared to 23 days in Run I. Sludge washout in Run II stabilized after 3 days, achieving 70 % VSS removal, whereas Run I required 17 days. Greater extracellular polymeric substance (EPS) values and higher protein-to-polysaccharide ratios in Run II may indicate accelerated granules formation mediated by EPS. 16S rRNA gene sequencing analysis results revealed shared genera between both runs but different relative abundances. Methanothrix dominated in Run I, while other archaeal genera, mainly Methanosarcina and Methanobacterium increased in abundance in the Run II. The Enterobacteriaceae family was prevalent in both reactors, with three genera, Citrobacter, Klebsiella, and Enterobacter distinctly dominating at different time points, suggesting potential links with the initial seed sludge or enriched biofilm consortia. The addition of electrochemically grown biofilm in Run II likely enhanced the microbial diversity, contributed to the rapid development of granular syntrophic communities, and improved reactor performance.
Collapse
Affiliation(s)
- Mohamad Abdallah
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Stephanie Greige
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
| | - Christina F Webster
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Moustapha Harb
- Department of Civil and Environmental Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Mahmoud Wazne
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon.
| |
Collapse
|
2
|
Baldasso V, Tomasino MP, Sayen S, Guillon E, Frunzo L, Gomes CAR, Alves MJ, Castro R, Mucha AP, Almeida CMR. Effects of digestate soil amendment on the fate of trace metals and on the soil microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125961. [PMID: 40032224 DOI: 10.1016/j.envpol.2025.125961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
This study evaluated, over a 28-day soil column experiment, (i) the fate of trace metals (Zn, Cu, Pb) in a loamy sand soil after amendment with a non-source-separated municipal solid waste (OFMSW) digestate; (ii) the impact of the OFMSW digestate on soil microbial community; and (iii) the effects of two pharmaceuticals (metformin and lamotrigine) on trace metal fate and microbial community dynamics. Three conditions were tested: natural digestate, digestate spiked with metformin, and digestate spiked with lamotrigine. Soil samples were collected over time to measure trace metal concentrations and fractionation and characterize the soil prokaryotic community using Illumina next generation sequencing technology. Results showed Pb mobility factor (MF) increased over time by 182% in amended soil and 126% in the other soil layers, while Zn MF increased by 85% and decreased by 36%, respectively. Total metal concentrations were, nevertheless, low, pointing out that the impact of these metals on the soil in this study should be low. Cu MF remained constant (ca. 1.75%). Digestate amendment increased soil microbial diversity, with Shannon Index rising from 4.9 to 5.6, and shifted its composition over time, promoting a more diverse community. Initially dominated by Firmicutes, it stabilized by day 14 with Proteobacteria and Bacteroidota becoming dominant. Pharmaceuticals at environmentally relevant concentrations did not significantly affect metal behaviour or prokaryotic community structure. These findings suggest digestate may immobilize contaminants, making it a promising resource for soil improvement practices. However, preliminary treatment and monitoring are crucial for its safe application within circular bioeconomy strategies.
Collapse
Affiliation(s)
- Veronica Baldasso
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Maria Paola Tomasino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Stéphanie Sayen
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, BP 1039, Cedex 2, 51687, Reims, France
| | - Emmanuel Guillon
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, BP 1039, Cedex 2, 51687, Reims, France
| | - Luigi Frunzo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Via Cintia, Monte St. Angelo, 80126, Napoli, Italy
| | - Carlos A R Gomes
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria João Alves
- Tratolixo - Tratamento de Resíduos Sólidos, E.I.M., S.A., Trajouce, Estr. 5 de Junho, São Domingos de Rana, 2785-155, Portugal
| | - Ricardo Castro
- Tratolixo - Tratamento de Resíduos Sólidos, E.I.M., S.A., Trajouce, Estr. 5 de Junho, São Domingos de Rana, 2785-155, Portugal
| | - Ana Paula Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
3
|
Lee KY, Lai MC, Lin S, Lai SJ, Zhang WL, Chen WC, You YT, Wu SY, Hung CC, Ding JY, Zhou YZ, Shih CJ, Wu YC, Zhao J, Li Y, Xiao W, Wu CH, Zhang H, Dong G, Qiu W, Wang S, Chen SC. Methanobacterium aridiramus sp. nov., a methanogen isolated from potential methane hydrate bearing area offshore southwestern Taiwan. Int J Syst Evol Microbiol 2025; 75. [PMID: 39932766 DOI: 10.1099/ijsem.0.006658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
A novel mesophilic, hydrogenotrophic methanogen, strain CWC-01T, was isolated from the sediment sample of the piston core collected at station 3 at Good Weather Ridge area offshore southwestern Taiwan from ORI-902A cruise in 2009. Cells of strain CWC-01T are rod-shaped, measuring 0.4-0.5 µm in width and 1.0-2.0 µm in length. Strain CWC-01T utilizes formate and H2/CO2 to produce methane, but not secondary alcohol, methanol, ethanol, methylamines or acetate as catabolic substrates. The optimal growth conditions are 37 °C, 0.043 M NaCl and pH 6.3. Growth effectors tests indicate tryptone, but not acetate and yeast extract, could stimulate the growth of strain CWC-01. Phylogenetic analysis of 16S rRNA gene reveals that strain CWC-01T is most closely related to Methanobacterium petrolearium Mic5c12T, with 96.63% identity. Genome size of strain CWC-01T is 1.98 Mb and it is the smallest genome size of genus. The genomic DNA G+C content obtained from the genome sequence of strain CWC-01T is 44.15 mol%. Based on these phenotypic, phylogenetic and genomic analyses, we propose that strain CWC-01T represents a novel species in genus Methanobacterium, for which the name Methanobacterium aridiramus sp. nov. is proposed. The type strain is CWC-01T (=BCRC AR10053T=NBRC 113991T).
Collapse
Affiliation(s)
- Kuan-Yi Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Saulwood Lin
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan, ROC
| | - Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, ROC
| | - Wei-Ling Zhang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Wen-Chieh Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yi-Ting You
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Sue-Yao Wu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chuan-Chuan Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Jiun-Yan Ding
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yang-Zhi Zhou
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Yen-Chi Wu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Jingjing Zhao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, PR China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, PR China
| | - Yin Li
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian, PR China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, PR China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Wangchuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
| | - Chih-Hung Wu
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, PR China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, PR China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Hangying Zhang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian, PR China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, PR China
| | - Guowen Dong
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, PR China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, PR China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Wanling Qiu
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Song Wang
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, PR China
| | - Sheng-Chung Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, PR China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| |
Collapse
|
4
|
Ahmadi F, Lackner M. Recent findings in methanotrophs: genetics, molecular ecology, and biopotential. Appl Microbiol Biotechnol 2024; 108:60. [PMID: 38183483 DOI: 10.1007/s00253-023-12978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/08/2023] [Accepted: 10/01/2023] [Indexed: 01/08/2024]
Abstract
The potential consequences for mankind could be disastrous due to global warming, which arises from an increase in the average temperature on Earth. The elevation in temperature primarily stems from the escalation in the concentration of greenhouse gases (GHG) such as CO2, CH4, and N2O within the atmosphere. Among these gases, methane (CH4) is particularly significant in driving alterations to the worldwide climate. Methanotrophic bacteria possess the distinctive ability to employ methane as both as source of carbon and energy. These bacteria show great potential as exceptional biocatalysts in advancing C1 bioconversion technology. The present review describes recent findings in methanotrophs including aerobic and anaerobic methanotroph bacteria, phenotypic characteristics, biotechnological potential, their physiology, ecology, and native multi-carbon utilizing pathways, and their molecular biology. The existing understanding of methanogenesis and methanotrophy in soil, as well as anaerobic methane oxidation and methanotrophy in temperate and extreme environments, is also covered in this discussion. New types of methanogens and communities of methanotrophic bacteria have been identified from various ecosystems and thoroughly examined for a range of biotechnological uses. Grasping the processes of methanogenesis and methanotrophy holds significant importance in the development of innovative agricultural techniques and industrial procedures that contribute to a more favorable equilibrium of GHG. This current review centers on the diversity of emerging methanogen and methanotroph species and their effects on the environment. By amalgamating advanced genetic analysis with ecological insights, this study pioneers a holistic approach to unraveling the biopotential of methanotrophs, offering unprecedented avenues for biotechnological applications. KEY POINTS: • The physiology of methanotrophic bacteria is fundamentally determined. • Native multi-carbon utilizing pathways in methanotrophic bacteria are summarized. • The genes responsible for encoding methane monooxygenase are discussed.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- School of Agriculture and Environment, University of Western Australia, Crawley, 6009, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | | |
Collapse
|
5
|
Ellenbogen JB, Borton MA, McGivern BB, Cronin DR, Hoyt DW, Freire-Zapata V, McCalley CK, Varner RK, Crill PM, Wehr RA, Chanton JP, Woodcroft BJ, Tfaily MM, Tyson GW, Rich VI, Wrighton KC. Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost. mSystems 2024; 9:e0069823. [PMID: 38063415 PMCID: PMC10805028 DOI: 10.1128/msystems.00698-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/24/2023] [Indexed: 01/24/2024] Open
Abstract
While wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolism is incomplete, which compromises the prediction of CH4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire in Arctic Sweden. In quadrupling the genomic representation of the site's methanogens and examining their encoded metabolism, we revealed that nearly 20% of the metagenome-assembled genomes (MAGs) encoded the potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; for Methanosarcinales and Methanobacteriales MAGs, these data indicated the use of methylated oxygen compounds (e.g., methanol), while for Methanomassiliicoccales, they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1,700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activities. Methanogenesis across increasing permafrost thaw is thus revised from the sole dominance of hydrogenotrophic production and the appearance of acetoclastic at full thaw to consider the co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats.IMPORTANCEWetlands are the biggest natural source of atmospheric methane (CH4) emissions, yet we have an incomplete understanding of the suite of microbial metabolism that results in CH4 formation. Specifically, methanogenesis from methylated compounds is excluded from all ecosystem models used to predict wetland contributions to the global CH4 budget. Though recent studies have shown methylotrophic methanogenesis to be active across wetlands, the broad climatic importance of the metabolism remains critically understudied. Further, some methylotrophic bacteria are known to produce methanogenic by-products like acetate, increasing the complexity of the microbial methylotrophic metabolic network. Prior studies of Stordalen Mire have suggested that methylotrophic methanogenesis is irrelevant in situ and have not emphasized the bacterial capacity for metabolism, both of which we countered in this study. The importance of our findings lies in the significant advancement toward unraveling the broader impact of methylotrophs in wetland methanogenesis and, consequently, their contribution to the terrestrial global carbon cycle.
Collapse
Affiliation(s)
- Jared B. Ellenbogen
- Department of Soil and Crop Science, Colorado State University, Fort Collins, Colorado, USA
| | - Mikayla A. Borton
- Department of Soil and Crop Science, Colorado State University, Fort Collins, Colorado, USA
| | - Bridget B. McGivern
- Department of Soil and Crop Science, Colorado State University, Fort Collins, Colorado, USA
| | - Dylan R. Cronin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - David W. Hoyt
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Carmody K. McCalley
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Ruth K. Varner
- Department of Earth Sciences and Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire, USA
| | - Patrick M. Crill
- Department of Geological Sciences, Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden
| | - Richard A. Wehr
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Jeffrey P. Chanton
- Earth Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida, USA
| | - Ben J. Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Malak M. Tfaily
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Gene W. Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Virginia I. Rich
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Soil and Crop Science, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Barrera-Rojas J, Gurubel-Tun KJ, Ríos-Castro E, López-Méndez MC, Sulbarán-Rangel B. An Initial Proteomic Analysis of Biogas-Related Metabolism of Euryarchaeota Consortia in Sediments from the Santiago River, México. Microorganisms 2023; 11:1640. [PMID: 37512813 PMCID: PMC10384328 DOI: 10.3390/microorganisms11071640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
In this paper, sediments from the Santiago River were characterized to look for an alternative source of inoculum for biogas production. A proteomic analysis of methane-processing archaea present in these sediments was carried out. The Euryarchaeota superkingdom of archaea is responsible for methane production and methane assimilation in the environment. The Santiago River is a major river in México with great pollution and exceeded recovery capacity. Its sediments could contain nutrients and the anaerobic conditions for optimal growth of Euryarchaeota consortia. Batch bioreactor experiments were performed, and a proteomic analysis was conducted with current database information. The maximum biogas production was 266 NmL·L-1·g VS-1, with 33.34% of methane, and for proteomics, 3206 proteins were detected from 303 species of 69 genera. Most of them are metabolically versatile members of the genera Methanosarcina and Methanosarcinales, both with 934 and 260 proteins, respectively. These results showed a diverse euryarcheotic species with high potential to methane production. Although related proteins were found and could be feeding this metabolism through the methanol and acetyl-CoA pathways, the quality obtained from the biogas suggests that this metabolism is not the main one in carbon use, possibly the sum of several conditions including growth conditions and the pollution present in these sediments.
Collapse
Affiliation(s)
- Jesús Barrera-Rojas
- Department of Water and Energy, Campus Tonalá, University of Guadalajara, Tonalá 45425, Mexico
| | - Kelly Joel Gurubel-Tun
- Department of Water and Energy, Campus Tonalá, University of Guadalajara, Tonalá 45425, Mexico
| | - Emmanuel Ríos-Castro
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y Estudios Avanzados del IPN, Ciudad de México 07000, Mexico
| | - María Cristina López-Méndez
- Wetlands and Environmental Sustainability Laboratory, Division of Graduate Studies and Research, Tecnológico Nacional de México/ITS de Misantla, Veracruz 93850, Mexico
| | - Belkis Sulbarán-Rangel
- Department of Water and Energy, Campus Tonalá, University of Guadalajara, Tonalá 45425, Mexico
| |
Collapse
|
7
|
Xiang X, Wang H, Man B, Xu Y, Gong L, Tian W, Yang H. Diverse Bathyarchaeotal Lineages Dominate Archaeal Communities in the Acidic Dajiuhu Peatland, Central China. MICROBIAL ECOLOGY 2023; 85:557-571. [PMID: 35332366 DOI: 10.1007/s00248-022-01990-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Bathyarchaeota are believed to have roles in the carbon cycle in marine systems. However, the ecological knowledge of Bathyarchaeota is limited in peatland ecosystems. Here, we investigated the vertical distribution of Bathyarchaeota community structure using quantitative PCR and high-throughput sequencing technology of ribosomal 16S rRNA gene integrated with detailed chemical profiling in the Dajiuhu Peatland, central China. Eight archaeal phyla were observed in peat samples, which mainly composed of Bathyarchaeota with a mean relative abundance about 88%, followed by Thaumarchaeota (9%). Bathyarchaeota were further split into 17 subgroups, and some subgroups showed habitat specificity to peat horizons with distinct lithological and physicochemical properties, for example, Bathy-6 and Bathy-15 had preference for the acrotelm, Bathy-5b, Bathy-16, and Bathy-19 were enriched in the catotelm, Bathy-5a, Bathy-8, and Bathy-11 were specific for the clay horizon. This spatial distribution pattern of archaeal communities along peat profile was mainly influenced by water content as indicated by RDA ordination and permutational MANOVA, whereas organic matter content exclusively affected Bathyarchaeota distribution along the peat profile significantly. The abundance of archaeal 16S rRNA genes ranged from 105 to 107 copies per gram dry sediment, and the highest archaeal biomass was observed in the periodically oxic mesotelm horizon with more dynamic archaeal interaction relationship as indicated by the network analysis. Bathyarchaeota dominated the archaeal interaction network with 82% nodes, 96% edges, and 71% keystone species. Our results provide an overview of the archaeal population, community structure, and relationship with environmental factors that affect the vertical distribution of archaeal communities and emphasize the ecology of bathyarchaeotal lineages in terrestrial peatland ecosystems.
Collapse
Affiliation(s)
- Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China.
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
| | - Ying Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Linfeng Gong
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, SOA, Xiamen, 361005, China
| | - Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Huan Yang
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
8
|
Lv Z, Ding J, Wang H, Wan J, Chen Y, Liang L, Yu T, Wang Y, Wang F. Isolation of a Novel Thermophilic Methanogen and the Evolutionary History of the Class Methanobacteria. BIOLOGY 2022; 11:1514. [PMID: 36290418 PMCID: PMC9598358 DOI: 10.3390/biology11101514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
Abstract
Methanogens can produce methane in anaerobic environments via the methanogenesis pathway, and are regarded as one of the most ancient life forms on Earth. They are ubiquitously distributed across distinct ecosystems and are considered to have a thermophilic origin. In this study, we isolated, pure cultured, and completely sequenced a single methanogen strain DL9LZB001, from a hot spring at Tengchong in Southwest China. DL9LZB001 is a thermophilic and hydrogenotrophic methanogen with an optimum growth temperature of 65 °C. It is a putative novel species, which has been named Methanothermobacter tengchongensis-a Class I methanogen belonging to the class Methanobacteria. Comparative genomic and ancestral analyses indicate that the class Methanobacteria originated in a hyperthermal environment and then evolved to adapt to ambient temperatures. This study extends the understanding of methanogens living in geothermal niches, as well as the origin and evolutionary history of these organisms in ecosystems with different temperatures.
Collapse
Affiliation(s)
- Zhenbo Lv
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxin Ding
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Heng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxin Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifan Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
9
|
Circular Metagenome-Assembled Genome of
Methanobacterium
sp. Strain ERen5, a Putative Methanogenic, H
2
-Utilizing Terrestrial Subsurface Archaeon. Microbiol Resour Announc 2022; 11:e0067622. [PMID: 36066261 PMCID: PMC9584291 DOI: 10.1128/mra.00676-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A circular, single-contig Methanobacterium sp. metagenome-assembled genome (MAG) was recovered from high-CO2 enrichments inoculated with drill core material from the tectonic Eger Rift terrestrial subsurface. Annotation of the recovered MAG highlighted putative methanogenesis genes, providing valuable information on archaeal activity in the deep biosphere.
Collapse
|
10
|
Meier AB, Oppermann S, Drake HL, Schmidt O. The root zone of graminoids: A niche for H2-consuming acetogens in a minerotrophic peatland. Front Microbiol 2022; 13:978296. [PMID: 35992704 PMCID: PMC9391049 DOI: 10.3389/fmicb.2022.978296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of acetogens for H2 turnover and overall anaerobic degradation in peatlands remains elusive. In the well-studied minerotrophic peatland fen Schlöppnerbrunnen, H2-consuming acetogens are conceptualized to be largely outcompeted by iron reducers, sulfate reducers, and hydrogenotrophic methanogens in bulk peat soil. However, in root zones of graminoids, fermenters thriving on rhizodeposits and root litter might temporarily provide sufficient H2 for acetogens. In the present study, root-free peat soils from around the roots of Molinia caerulea and Carex rostrata (i.e., two graminoids common in fen Schlöpnnerbrunnen) were anoxically incubated with or without supplemental H2 to simulate conditions of high and low H2 availability in the fen. In unsupplemented soil treatments, H2 concentrations were largely below the detection limit (∼10 ppmV) and possibly too low for acetogens and methanogens, an assumption supported by the finding that neither acetate nor methane substantially accumulated. In the presence of supplemental H2, acetate accumulation exceeded CH4 accumulation in Molinia soil whereas acetate and methane accumulated equally in Carex soil. However, reductant recoveries indicated that initially, additional unknown processes were involved either in H2 consumption or the consumption of acetate produced by H2-consuming acetogens. 16S rRNA and 16S rRNA gene analyses revealed that potential acetogens (Clostridium, Holophagaceae), methanogens (Methanocellales, Methanobacterium), iron reducers (Geobacter), and physiologically uncharacterized phylotypes (Acidobacteria, Actinobacteria, Bacteroidetes) were stimulated by supplemental H2 in soil treatments. Phylotypes closely related to clostridial acetogens were also active in soil-free Molinia and Carex root treatments with or without supplemental H2. Due to pronounced fermentation activities, H2 consumption was less obvious in root treatments, and acetogens likely thrived on root organic carbon and fermentation products (e.g., ethanol) in addition to H2. Collectively, the data highlighted that in fen Schlöppnerbrunnen, acetogens are associated to graminoid roots and inhabit the peat soil around the roots, where they have to compete for H2 with methanogens and iron reducers. Furthermore, the study underscored that the metabolically flexible acetogens do not rely on H2, potentially a key advantage over other H2 consumers under the highly dynamic conditions characteristic for the root-zones of graminoids in peatlands.
Collapse
Affiliation(s)
- Anja B. Meier
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Sindy Oppermann
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Harold L. Drake
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Oliver Schmidt
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Oliver Schmidt,
| |
Collapse
|
11
|
Prasitwuttisak W, Hoshiko Y, Maeda T, Haraguchi A, Yanagawa K. Microbial Community Structures and Methanogenic Functions in Wetland Peat Soils. Microbes Environ 2022; 37. [PMID: 35851269 PMCID: PMC9530717 DOI: 10.1264/jsme2.me22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methane metabolism in wetlands involves diverse groups of bacteria and archaea, which are responsible for the biological decomposition of organic matter under certain anoxic conditions. Recent advances in environmental omics revealed the phylogenetic diversity of novel microbial lineages, which have not been previously placed in the traditional tree of life. The present study aimed to verify the key players in methane production, either well-known archaeal members or recently identified lineages, in peat soils collected from wetland areas in Japan. Based on an analysis of microbial communities using 16S rRNA gene sequencing and the molecular cloning of the functional gene, mcrA, a marker gene for methanogenesis, methanogenic archaea belonging to Methanomicrobiales, Methanosarcinales, Methanobacteriales, and Methanomassiliicoccales were detected in anoxic peat soils, suggesting the potential of CH4 production in this natural wetland. “Candidatus Bathyarchaeia”, archaea with vast metabolic capabilities that is widespread in anoxic environments, was abundant in subsurface peat soils (up to 96% of the archaeal community) based on microbial gene quantification by qPCR. These results emphasize the importance of discovering archaea members outside of traditional methanogenic lineages that may have significant functions in the wetland biogeochemical cycle.
Collapse
Affiliation(s)
| | - Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology
| | - Akira Haraguchi
- Faculty of Environmental Engineering, The University of Kitakyushu
| | | |
Collapse
|
12
|
Sánchez-Sánchez C, Aranda-Medina M, Rodríguez A, Hernández A, Córdoba MG, Cuadros-Blázquez F, Ruiz-Moyano S. Development of real-time PCR methods for the quantification of Methanoculleus, Methanosarcina and Methanobacterium in anaerobic digestion. J Microbiol Methods 2022; 199:106529. [PMID: 35772572 DOI: 10.1016/j.mimet.2022.106529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/27/2022]
Abstract
Anaerobic digestion is a growing technology to manage organic waste and produce bioenergy. To promote this technology, it is essential to know, at the molecular level, the dynamics of microbial communities, specifically the methanogenic community. In the present study, three primer pairs were selected from seven primer pairs which were designed and tested with different concentrations and conditions to detect Methanosarcina, Methanoculleus and Methanobacterium by real-time PCR based on the SYBR Green System. The functionality of the developed methods was demonstrated by the high linear relationship of the standard curves, and the specificity of each primer was empirically verified by testing DNA isolated from methane-producing and non-producing strains. These assays also exhibited good repeatability and reproducibility, which indicates the robustness of the methods. The described primers were successfully used to investigate the methanogenic communities of 10 samples from an anaerobic co-digestion. The genus Methanosarcina was the dominant methanogenic group.
Collapse
Affiliation(s)
- Consolación Sánchez-Sánchez
- Departamento de Física Aplicada, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda, de Adolfo Suárez S/n, 06007 Badajoz, Spain
| | - Mercedes Aranda-Medina
- Expresión Gráfica, Escuela de Ingenierías Industriales, Campus Universitario, Avda de Elvas sn, 06006 Badajoz, Spain
| | - Alicia Rodríguez
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suarez, s/n, 06071 Badajoz, Spain.
| | - Alejandro Hernández
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suarez, s/n, 06071 Badajoz, Spain
| | - María G Córdoba
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suarez, s/n, 06071 Badajoz, Spain
| | - Francisco Cuadros-Blázquez
- Departamento de Física Aplicada, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda, de Adolfo Suárez S/n, 06007 Badajoz, Spain
| | - Santiago Ruiz-Moyano
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suarez, s/n, 06071 Badajoz, Spain
| |
Collapse
|
13
|
Sánchez-Salazar EA, Hernández-Jaimes L, Breton-Deval L, Sánchez-Reyes A. Draft Genome Sequence of Methanobacterium paludis IBT-C12, Recovered from Sediments of the Apatlaco River, Mexico. Microbiol Resour Announc 2022; 11:e0090621. [PMID: 35112899 PMCID: PMC8812310 DOI: 10.1128/mra.00906-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Methanobacterium paludis is a hydrogenotrophic archaea first described in 2014 and isolated from a peatland area. So far, there is only one sequenced genome of this taxon. Here, we report the draft genome sequence of M. paludis IBT-C12, a metagenome-assembled genome (MAG) from sediments in the Apatlaco River, Mexico.
Collapse
Affiliation(s)
| | - Lizbeth Hernández-Jaimes
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Luz Breton-Deval
- Cátedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
14
|
Wang Y, Mairinger W, Raj SJ, Yakubu H, Siesel C, Green J, Durry S, Joseph G, Rahman M, Amin N, Hassan MZ, Wicken J, Dourng D, Larbi E, Adomako LAB, Senayah AK, Doe B, Buamah R, Tetteh-Nortey JNN, Kang G, Karthikeyan A, Roy S, Brown J, Muneme B, Sene SO, Tuffuor B, Mugambe RK, Bateganya NL, Surridge T, Ndashe GM, Ndashe K, Ban R, Schrecongost A, Moe CL. Quantitative assessment of exposure to fecal contamination in urban environment across nine cities in low-income and lower-middle-income countries and a city in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 763:143007. [PMID: 34718001 DOI: 10.1016/j.scitotenv.2020.143007] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND During 2014 to 2019, the SaniPath Exposure Assessment Tool, a standardized set of methods to evaluate risk of exposure to fecal contamination in the urban environment through multiple exposure pathways, was deployed in 45 neighborhoods in ten cities, including Accra and Kumasi, Ghana; Vellore, India; Maputo, Mozambique; Siem Reap, Cambodia; Atlanta, United States; Dhaka, Bangladesh; Lusaka, Zambia; Kampala, Uganda; Dakar, Senegal. OBJECTIVE Assess and compare risk of exposure to fecal contamination via multiple pathways in ten cities. METHODS In total, 4053 environmental samples, 4586 household surveys, 128 community surveys, and 124 school surveys were collected. E. coli concentrations were measured in environmental samples as an indicator of fecal contamination magnitude. Bayesian methods were used to estimate the distributions of fecal contamination concentration and contact frequency. Exposure to fecal contamination was estimated by the Monte Carlo method. The contamination levels of ten environmental compartments, frequency of contact with those compartments for adults and children, and estimated exposure to fecal contamination through any of the surveyed environmental pathways were compared across cities and neighborhoods. RESULTS Distribution of fecal contamination in the environment and human contact behavior varied by city. Universally, food pathways were the most common dominant route of exposure to fecal contamination across cities in low-income and lower-middle-income countries. Risks of fecal exposure via water pathways, such as open drains, flood water, and municipal drinking water, were site-specific and often limited to smaller geographic areas (i.e., neighborhoods) instead of larger areas (i.e., cities). CONCLUSIONS Knowledge of the relative contribution to fecal exposure from multiple pathways, and the environmental contamination level and frequency of contact for those "dominant pathways" could provide guidance for Water, Sanitation, and Hygiene (WASH) programming and investments and enable local governments and municipalities to improve intervention strategies to reduce the risk of exposure to fecal contamination.
Collapse
Affiliation(s)
- Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Wolfgang Mairinger
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Suraja J Raj
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Habib Yakubu
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Casey Siesel
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jamie Green
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sarah Durry
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - George Joseph
- Water Global Practice, The World Bank, Washington, DC, USA
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nuhu Amin
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | - Eugene Larbi
- Training Research and Networking for Development (TREND), Accra, Ghana
| | | | | | - Benjamin Doe
- Training Research and Networking for Development (TREND), Accra, Ghana
| | - Richard Buamah
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Gagandeep Kang
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Arun Karthikeyan
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Sheela Roy
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bacelar Muneme
- Water Supply and Mapping, WE Consult, Maputo, Mozambique
| | - Seydina O Sene
- Initiative Prospective Agricole et Rurale (IPAR), Dakar, Senegal
| | - Benedict Tuffuor
- Training Research and Networking for Development (TREND), Accra, Ghana
| | - Richard K Mugambe
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Najib Lukooya Bateganya
- Department of Environment and Public Health, Kampala Capital City Authority, Kampala, Uganda
| | - Trevor Surridge
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Lusaka, Zambia
| | | | - Kunda Ndashe
- Department of Environmental Health, Faculty of Health Science, Lusaka Apex Medical University, Lusaka, Zambia
| | - Radu Ban
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Christine L Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Lavergne C, Aguilar-Muñoz P, Calle N, Thalasso F, Astorga-España MS, Sepulveda-Jauregui A, Martinez-Cruz K, Gandois L, Mansilla A, Chamy R, Barret M, Cabrol L. Temperature differently affected methanogenic pathways and microbial communities in sub-Antarctic freshwater ecosystems. ENVIRONMENT INTERNATIONAL 2021; 154:106575. [PMID: 33901975 DOI: 10.1016/j.envint.2021.106575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Freshwater ecosystems are responsible for an important part of the methane (CH4) emissions which are likely to change with global warming. This study aims to evaluate temperature-induced (from 5 to 20 °C) changes on microbial community structure and methanogenic pathways in five sub-Antarctic lake sediments from Magallanes strait to Cape Horn, Chile. We combined in situ CH4 flux measurements, CH4 production rates (MPRs), gene abundance quantification and microbial community structure analysis (metabarcoding of the 16S rRNA gene). Under unamended conditions, a temperature increase of 5 °C doubled MPR while microbial community structure was not affected. Stimulation of methanogenesis by methanogenic precursors as acetate and H2/CO2, resulted in an increase of MPRs up to 127-fold and 19-fold, respectively, as well as an enrichment of mcrA-carriers strikingly stronger under acetate amendment. At low temperatures, H2/CO2-derived MPRs were considerably lower (down to 160-fold lower) than the acetate-derived MPRs, but the contribution of hydrogenotrophic methanogenesis increased with temperature. Temperature dependence of MPRs was significantly higher in incubations spiked with H2/CO2 (c. 1.9 eV) compared to incubations spiked with acetate or unamended (c. 0.8 eV). Temperature was not found to shape the total microbial community structure, that rather exhibited a site-specific variability among the studied lakes. However, the methanogenic archaeal community structure was driven by amended methanogenic precursors with a dominance of Methanobacterium in H2/CO2-based incubations and Methanosarcina in acetate-based incubations. We also suggested the importance of acetogenic H2-production outcompeting hydrogenotrohic methanogenesis especially at low temperatures, further supported by homoacetogen proportion in the microcosm communities. The combination of in situ-, and laboratory-based measurements and molecular approaches indicates that the hydrogenotrophic pathway may become more important with increasing temperatures than the acetoclastic pathway. In a continuously warming environment driven by climate change, such issues are crucial and may receive more attention.
Collapse
Affiliation(s)
- Céline Lavergne
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Valparaíso, Chile; Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, 2340950 Valparaíso, Chile.
| | - Polette Aguilar-Muñoz
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, 2340950 Valparaíso, Chile
| | - Natalia Calle
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Frédéric Thalasso
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, DF, Mexico
| | - Maria Soledad Astorga-España
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile; ENBEELAB, University of Magallanes, Punta Arenas, Chile
| | - Armando Sepulveda-Jauregui
- ENBEELAB, University of Magallanes, Punta Arenas, Chile; Center for Climate and Resilience Research (CR)(2), Santiago, Chile
| | - Karla Martinez-Cruz
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile; ENBEELAB, University of Magallanes, Punta Arenas, Chile
| | - Laure Gandois
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Andrés Mansilla
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
| | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, 2340950 Valparaíso, Chile
| | - Maialen Barret
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Léa Cabrol
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, 2340950 Valparaíso, Chile; Aix-Marseille University, Univ Toulon, CNRS, IRD, M.I.O. UM 110, Mediterranean Institute of Oceanography, Marseille, France; Institute of Ecology and Biodiversity IEB, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Kumar M, Yadav AN, Saxena R, Rai PK, Paul D, Tomar RS. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Zheng S, Liu F, Wang B, Zhang Y, Lovley DR. Methanobacterium Capable of Direct Interspecies Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15347-15354. [PMID: 33205658 DOI: 10.1021/acs.est.0c05525] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Direct interspecies electron transfer (DIET) from bacteria to methanogens is a revolutionary concept for syntrophic metabolism in methanogenic soils/sediments and anaerobic digestion. Previous studies have indicated that the potential for DIET is limited to methanogens in the Methanosarcinales, leading to the assumption that an abundance of other types of methanogens, such as Methanobacterium species, indicates a lack of DIET. We report here on a strain of Methanobacterium, designated strain YSL, that grows via DIET in defined cocultures with Geobacter metallireducens. The cocultures formed aggregates, in which cells of strain YSL and G. metallireducens were uniformly dispersed throughout. This close association of the two species is the likely explanation for the ability of a strain of G. metallireducens that could not express electrically conductive pili to grow in coculture with strain YSL. Granular activated carbon promoted the initial formation of the DIET-based cocultures. The discovery of DIET in Methanobacterium, the genus of methanogens that has been the exemplar for interspecies electron transfer via H2, suggests that the capacity for DIET is much more broadly distributed among methanogens than previously considered. More innovative approaches to microbial isolation and characterization are needed in order to better understand how methanogenic communities function.
Collapse
Affiliation(s)
- Shiling Zheng
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Bingchen Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yuechao Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
L. Bräuer S, Basiliko N, M. P. Siljanen H, H. Zinder S. Methanogenic archaea in peatlands. FEMS Microbiol Lett 2020; 367:5928548. [DOI: 10.1093/femsle/fnaa172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Methane emission feedbacks in wetlands are predicted to influence global climate under climate change and other anthropogenic stressors. Herein, we review the taxonomy and physiological ecology of the microorganisms responsible for methane production in peatlands. Common in peat soils are five of the eight described orders of methanogens spanning three phyla (Euryarchaeota, Halobacterota and Thermoplasmatota). The phylogenetic affiliation of sequences found in peat suggest that members of the thus-far-uncultivated group Candidatus Bathyarchaeota (representing a fourth phylum) may be involved in methane cycling, either anaerobic oxidation of methane and/or methanogenesis, as at least a few organisms within this group contain the essential gene, mcrA, according to metagenomic data. Methanogens in peatlands are notoriously challenging to enrich and isolate; thus, much remains unknown about their physiology and how methanogen communities will respond to environmental changes. Consistent patterns of changes in methanogen communities have been reported across studies in permafrost peatland thaw where the resulting degraded feature is thermokarst. However much remains to be understood regarding methanogen community feedbacks to altered hydrology and warming in other contexts, enhanced atmospheric pollution (N, S and metals) loading and direct anthropogenic disturbances to peatlands like drainage, horticultural peat extraction, forestry and agriculture, as well as post-disturbance reclamation.
Collapse
Affiliation(s)
- Suzanna L. Bräuer
- Appalachian State University, Department of Biology, ASU Box 32027, 572 Rivers Street, Boone, NC 28608-2027 USA
| | - Nathan Basiliko
- Laurentian University, Department of Biology and the Vale Living with Lakes Centre, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Henri M. P. Siljanen
- Eastern Finland University, Department of Environmental and Biological Sciences, Biogeochemistry Research Group, Snellmania Room 4042, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Stephen H. Zinder
- Cornell University, Department of Microbiology, 272 Wing Hall, Ithaca, NY 14850, USA
| |
Collapse
|
19
|
Wang H, Li J, Zhao Y, Xu C, Zhang K, Li J, Yan L, Gu JD, Wei D, Wang W. Establishing practical strategies to run high loading corn stover anaerobic digestion: Methane production performance and microbial responses. BIORESOURCE TECHNOLOGY 2020; 310:123364. [PMID: 32334357 DOI: 10.1016/j.biortech.2020.123364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
It is significant to understand corn stover (CS) in anaerobic digestion (AD) under high organic loadings. A semi-continuous mesophilic (37 ± 1 °C) CS AD was conducted in this study with increasing loadings. The initial total solids (TS) gradually increased with 1% gradient at every 10 days from 8% to 15% until the system was acidified. Adding different ratios of cattle manure (CM) (20%, 30% and 40% (v/v)) to rescue this system back to a stable operation was adopted. The diversity of bacteria and archaea was analyzed by 16S rRNA gene sequencing technology. The results showed that when loading TS content was increased to 15%, AD system was acidized with pH value of 5.13. 30% of CM was the optimal ratio to recover biogas production. High abundance (31.07%) of Bathyarchaeota was first found in AD system. Acidification of high loading CS AD can be highly correlating with bacterial community, specially Clostridium and Caproiciproducens.
Collapse
Affiliation(s)
- Haipeng Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiawei Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yiquan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Congfeng Xu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute of Ministry of Agriculture, Tianjin 300191, China
| | - Jiajia Li
- Agro-Environmental Protection Institute of Ministry of Agriculture, Tianjin 300191, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100081, China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Agro-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
20
|
Tanikawa D, Seo S, Motokawa D. Development of a molasses wastewater treatment system equipped with a biological desulfurization process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24738-24748. [PMID: 31820243 DOI: 10.1007/s11356-019-07077-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, a laboratory scale experiment for the treatment of synthetic molasses wastewater using a combination of an anaerobic baffled reactor (ABR) and a two-stage down-flow hanging sponge (TSDHS) reactor (ABR-TSDHS system) was conducted. The TSDHS comprised a closed-type first-stage down-flow hanging sponge (first DHS) for desulfurization and an open-type second-stage DHS (second DHS) for post-treatment of effluent from the ABR and first DHS. Effluent from the second DHS was sprinkled on top of the first DHS, whereas biogas produced from the ABR was supplied to its bottom. A chemical oxygen demand (COD) removal efficiency of 88.3% was found for the ABR-TSDHS system during the final treatment phase. The ABR achieved a maximum organic loading rate (OLR) of 3.70 kg COD/(m3 day). Most of the organic matter was degraded in the first compartment of the ABR, with methane-producing archaea as its main consumer. The biogas generated by the ABR contained high concentrations of hydrogen sulfide (up to 4,500 ppm). In the TSDHS, the first DHS achieved 87.3% hydrogen sulfide removal via dissolution into sprinkled effluent water. Dissolved sulfide in the first DHS effluent was oxidized to sulfate in the second DHS in the absence of aeration. In addition, 85.0% of the ammonia and 57.7% of the total nitrogen were removed in the second DHS via biological reactions, including sulfur-based autotrophic denitrification. Therefore, the ABR-TSDHS system can be applied to not only molasses wastewater treatment but also the desulfurization of the produced biogas.
Collapse
Affiliation(s)
- Daisuke Tanikawa
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, 2-2-11, Aga-minami, Kure, Hiroshima, 737-8506, Japan.
| | - Shogo Seo
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, 2-2-11, Aga-minami, Kure, Hiroshima, 737-8506, Japan
| | - Daisuke Motokawa
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, 2-2-11, Aga-minami, Kure, Hiroshima, 737-8506, Japan
| |
Collapse
|
21
|
Blank PN, Barnett AA, Ronnebaum TA, Alderfer KE, Gillott BN, Christianson DW, Himmelberger JA. Structural studies of geranylgeranylglyceryl phosphate synthase, a prenyltransferase found in thermophilic Euryarchaeota. Acta Crystallogr D Struct Biol 2020; 76:542-557. [PMID: 32496216 PMCID: PMC7271946 DOI: 10.1107/s2059798320004878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/05/2020] [Indexed: 12/26/2022] Open
Abstract
Archaea are uniquely adapted to thrive in harsh environments, and one of these adaptations involves the archaeal membrane lipids, which are characterized by their isoprenoid alkyl chains connected via ether linkages to glycerol 1-phosphate. The membrane lipids of the thermophilic and acidophilic euryarchaeota Thermoplasma volcanium are exclusively glycerol dibiphytanyl glycerol tetraethers. The first committed step in the biosynthetic pathway of these archaeal lipids is the formation of the ether linkage between glycerol 1-phosphate and geranylgeranyl diphosphate, and is catalyzed by the enzyme geranylgeranylglyceryl phosphate synthase (GGGPS). The 1.72 Å resolution crystal structure of GGGPS from T. volcanium (TvGGGPS) in complex with glycerol and sulfate is reported here. The crystal structure reveals TvGGGPS to be a dimer, which is consistent with the absence of the aromatic anchor residue in helix α5a that is required for hexamerization in other GGGPS homologs; the hexameric quaternary structure in GGGPS is thought to provide thermostability. A phylogenetic analysis of the Euryarchaeota and a parallel ancestral state reconstruction investigated the relationship between optimal growth temperature and the ancestral sequences. The presence of an aromatic anchor residue is not explained by temperature as an ecological parameter. An examination of the active site of the TvGGGPS dimer revealed that it may be able to accommodate longer isoprenoid substrates, supporting an alternative pathway of isoprenoid membrane-lipid synthesis.
Collapse
Affiliation(s)
- P. N. Blank
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - A. A. Barnett
- Department of Biology, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - T. A. Ronnebaum
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - K. E. Alderfer
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - B. N. Gillott
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - D. W. Christianson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - J. A. Himmelberger
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| |
Collapse
|
22
|
Gagen EJ, Zaugg J, Tyson GW, Southam G. Goethite Reduction by a Neutrophilic Member of the Alphaproteobacterial Genus Telmatospirillum. Front Microbiol 2019; 10:2938. [PMID: 31921089 PMCID: PMC6933298 DOI: 10.3389/fmicb.2019.02938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
In tropical iron ore regions, biologically mediated reduction of crystalline iron oxides drives ongoing iron cycling that contributes to the stability of surface duricrusts. This represents a biotechnological opportunity with respect to post-mining rehabilitation attempts, requiring re-formation of these duricrusts. However, cultivated dissimilatory iron reducing bacteria typically reduce crystalline iron oxides quite poorly. A glucose-fermenting microbial consortium capable of reducing at least 27 mmol/L goethite was enriched from an iron duricrust region. Metagenome analysis led to the recovery of a metagenome assembled genome (MAG) of an iron reducer belonging to the alphaproteobacterial genus Telmatospirillum. This is the first report of iron reduction within the Telmatospirillum and the first reported genome of an iron-reducing, neutrophilic member of the Alphaproteobacteria. The Telmatospirillum MAG encodes putative metal transfer reductases (MtrA, MtrB) and a novel, multi-heme outer membrane cytochrome for extracellular electron transfer. In the presence of goethite, short chain fatty acid production shifted significantly in favor of acetate rather than propionate, indicating goethite is a hydrogen sink in the culture. Therefore, the presence of fermentative bacteria likely promotes iron reduction via hydrogen production. Stimulating microbial fermentation has potential to drive reduction of crystalline iron oxides, the rate limiting step for iron duricrust re-formation.
Collapse
Affiliation(s)
- Emma J Gagen
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
23
|
Vigneron A, Cruaud P, Bhiry N, Lovejoy C, Vincent WF. Microbial Community Structure and Methane Cycling Potential along a Thermokarst Pond-Peatland Continuum. Microorganisms 2019; 7:microorganisms7110486. [PMID: 31652931 PMCID: PMC6920961 DOI: 10.3390/microorganisms7110486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
The thawing of ice-rich permafrost soils in northern peatlands leads to the formation of thermokarst ponds, surrounded by organic-rich soils. These aquatic ecosystems are sites of intense microbial activity, and CO2 and CH4 emissions. Many of the pond systems in northern landscapes and their surrounding peatlands are hydrologically contiguous, but little is known about the microbial connectivity of concentric habitats around the thermokarst ponds, or the effects of peat accumulation and infilling on the microbial communities. Here we investigated microbial community structure and abundance in a thermokarst pond-peatland system in subarctic Canada. Several lineages were ubiquitous, supporting a prokaryotic continuum from the thermokarst pond to surrounding peatlands. However, the microbial community structure shifted from typical aerobic freshwater microorganisms (Betaproteobacteria and Alphaproteobacteria) in the pond towards acidophilic and anaerobic lineages (Acidobacteria and Choroflexi) in the connected peatland waters, likely selected by the acidification of the water by Sphagnum mosses. Marked changes in abundance and community composition of methane cycling microorganisms were detected along the thermokarst pond-peatland transects, suggesting fine tuning of C-1 carbon cycling within a highly connected system, and warranting the need for higher spatial resolution across the thermokarst landscape to accurately predict net greenhouse gas emissions from northern peatlands.
Collapse
Affiliation(s)
- Adrien Vigneron
- Centre d'études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada.
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada.
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada.
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Najat Bhiry
- Centre d'études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada.
- Département de Géographie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Connie Lovejoy
- Centre d'études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada.
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada.
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Warwick F Vincent
- Centre d'études Nordiques (CEN), Université Laval, Québec, QC G1V 0A6, Canada.
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada.
- Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
24
|
Serrano P, Alawi M, de Vera JP, Wagner D. Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate. ASTROBIOLOGY 2019; 19:197-208. [PMID: 30742498 DOI: 10.1089/ast.2018.1877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Numerous preflight investigations were necessary prior to the exposure experiment BIOMEX on the International Space Station to test the basic potential of selected microorganisms to resist or even to be active under Mars-like conditions. In this study, methanogenic archaea, which are anaerobic chemolithotrophic microorganisms whose lifestyle would allow metabolism under the conditions on early and recent Mars, were analyzed. Some strains from Siberian permafrost environments have shown a particular resistance. In this investigation, we analyzed the response of three permafrost strains (Methanosarcina soligelidi SMA-21, Candidatus Methanosarcina SMA-17, Candidatus Methanobacterium SMA-27) and two related strains from non-permafrost environments (Methanosarcina mazei, Methanosarcina barkeri) to desiccation conditions (-80°C for 315 days, martian regolith analog simulants S-MRS and P-MRS, a 128-day period of simulated Mars-like atmosphere). Exposure of the different methanogenic strains to increasing concentrations of magnesium perchlorate allowed for the study of their metabolic shutdown in a Mars-relevant perchlorate environment. Survival and metabolic recovery were analyzed by quantitative PCR, gas chromatography, and a new DNA-extraction method from viable cells embedded in S-MRS and P-MRS. All strains survived the two Mars-like desiccating scenarios and recovered to different extents. The permafrost strain SMA-27 showed an increased methanogenic activity by at least 10-fold after deep-freezing conditions. The methanogenic rates of all strains did not decrease significantly after 128 days S-MRS exposure, except for SMA-27, which decreased 10-fold. The activity of strains SMA-17 and SMA-27 decreased after 16 and 60 days P-MRS exposure. Non-permafrost strains showed constant survival and methane production when exposed to both desiccating scenarios. All strains showed unaltered methane production when exposed to the perchlorate concentration reported at the Phoenix landing site (2.4 mM) or even higher concentrations. We conclude that methanogens from (non-)permafrost environments are suitable candidates for potential life in the martian subsurface and therefore are worthy of study after space exposure experiments that approach Mars-like surface conditions.
Collapse
Affiliation(s)
- Paloma Serrano
- 1 GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- 2 AWI, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Mashal Alawi
- 1 GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
| | - Jean-Pierre de Vera
- 3 German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Dirk Wagner
- 1 GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- 4 University of Potsdam, Institute of Geosciences, Potsdam, Germany
| |
Collapse
|
25
|
Carson MA, Bräuer S, Basiliko N. Enrichment of peat yields novel methanogens: approaches for obtaining uncultured organisms in the age of rapid sequencing. FEMS Microbiol Ecol 2019; 95:5289378. [DOI: 10.1093/femsec/fiz001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael A Carson
- Department of Biology, Laurentian University, Vale Living with Lakes Centre, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Suzanna Bräuer
- Department of Biology, Appalachian State University, 572 Rivers Street, Boone, NC 28608, USA
| | - Nathan Basiliko
- Department of Biology, Laurentian University, Vale Living with Lakes Centre, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
26
|
Beinart R, Rotterová J, Čepička I, Gast R, Edgcomb V. The genome of an endosymbiotic methanogen is very similar to those of its free‐living relatives. Environ Microbiol 2018; 20:2538-2551. [DOI: 10.1111/1462-2920.14279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- R.A. Beinart
- Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole MA USA
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA
| | - J. Rotterová
- Department of Zoology Charles University Prague Czech Republic
| | - I. Čepička
- Department of Zoology Charles University Prague Czech Republic
| | - R.J. Gast
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA
| | - V.P. Edgcomb
- Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole MA USA
| |
Collapse
|
27
|
Moitra K. Releasing the "GENI": integrating authentic microbial genomics research into the classroom through GENI-ACT. FEMS Microbiol Lett 2018; 364:4443195. [PMID: 29040493 DOI: 10.1093/femsle/fnx215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/04/2017] [Indexed: 11/15/2022] Open
Abstract
The integration of genomics research into the undergraduate biology curriculum provides students with the opportunity to become familiar with bioinformatics tools and answer original research questions. Our purpose with this research project was to upscale the research experience through integration with classroom experience giving students access to authentic research projects. Students annotated 60 predicted ABC genes of Methanothermobacter thermautotrophicus and Methanobacterium sp. SWAN-1, and they were required to present a research poster to demonstrate their understanding of the project. During this research project a number of tests, assessments and surveys were conducted to assess familiarity with technical and conceptual understanding of genome annotation, satisfaction with annotation instruction, gain in bioinformatics research skills, scientific communications skills and increased student interest in research. We found that students gained significant skills in bioinformatics, specifically genome annotation skills and also gained confidence in their abilities to carry out scientific research. As a result of this authentic undergraduate research experience under-represented students were motivated to pursue future careers in STEM fields.
Collapse
Affiliation(s)
- Karobi Moitra
- Department of Biology, Trinity Washington University, College Of Arts and Sciences, 125 Michigan Avenue NE, Washington DC 20017, USA
| |
Collapse
|
28
|
Xu R, Yang ZH, Zheng Y, Zhang HB, Liu JB, Xiong WP, Zhang YR, Ahmad K. Depth-resolved microbial community analyses in the anaerobic co-digester of dewatered sewage sludge with food waste. BIORESOURCE TECHNOLOGY 2017; 244:824-835. [PMID: 28841787 DOI: 10.1016/j.biortech.2017.07.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the impacts of FW addition on co-digestion in terms of microbial community. Anaerobic co-digestion (AcoD) reactors were conducted at gradually increased addition of food waste (FW) from 0 to 4kg-VSm-3d-1 for 220days. Although no markable acidification was found at an OLR of 4kg-VSm-3d-1, the unhealthy operation was observed in aspect of an inhibited methane yield (185mLg-1VSadded), which was restricted by 40% when compared with its peak value. Deterioration of digestion process was timely indicated by the dramatic decrease of archaeal population and microbial biodiversity. Furthermore, the cooperation network showed a considerable number of rare species (<1%) were strongly correlated with methane production, which were frequently overlooked due to the limits of detecting resolution or analysis methods before. Advances in the analysis of sensitive microbial community enable us to detect the early disturbances in AcoD reactors.
Collapse
Affiliation(s)
- Rui Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhao-Hui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yue Zheng
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Hai-Bo Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jian-Bo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei-Ping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yan-Ru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kito Ahmad
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
29
|
Gilmore SP, Henske JK, Sexton JA, Solomon KV, Seppälä S, Yoo JI, Huyett LM, Pressman A, Cogan JZ, Kivenson V, Peng X, Tan Y, Valentine DL, O'Malley MA. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation. BMC Genomics 2017; 18:639. [PMID: 28826405 PMCID: PMC5563889 DOI: 10.1186/s12864-017-4036-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. RESULTS Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis of the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. CONCLUSIONS Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO2 and formate are common electron carriers in microbial communities.
Collapse
Affiliation(s)
- Sean P Gilmore
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - John K Henske
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Jessica A Sexton
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Kevin V Solomon
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.,Present Address: Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Justin I Yoo
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Lauren M Huyett
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Abe Pressman
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - James Z Cogan
- Biology Program, College of Creative Studies, University of California, Santa Barbara, California, USA
| | - Veronika Kivenson
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Xuefeng Peng
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.,Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California, USA
| | - YerPeng Tan
- California NanoScience Institute, University of California, Santa Barbara, California, USA
| | - David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.
| |
Collapse
|
30
|
Dalcin Martins P, Hoyt DW, Bansal S, Mills CT, Tfaily M, Tangen BA, Finocchiaro RG, Johnston MD, McAdams BC, Solensky MJ, Smith GJ, Chin YP, Wilkins MJ. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. GLOBAL CHANGE BIOLOGY 2017; 23:3107-3120. [PMID: 28117550 DOI: 10.1111/gcb.13633] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/02/2016] [Indexed: 05/04/2023]
Abstract
Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.
Collapse
Affiliation(s)
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Richland, WA, 99350, USA
| | - Sheel Bansal
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Christopher T Mills
- United States Geological Survey, Crustal Geophysics and Geochemistry Science Center, Building 20, Denver Federal Center, Denver, CO, 80225, USA
| | - Malak Tfaily
- Environmental Molecular Sciences Laboratory, Richland, WA, 99350, USA
| | - Brian A Tangen
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Raymond G Finocchiaro
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Michael D Johnston
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Brandon C McAdams
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew J Solensky
- United States Geological Survey - Northern Prairie Wildlife Research Center, Jamestown, ND, 58401, USA
| | - Garrett J Smith
- Microbiology Department, The Ohio State University, Columbus, OH, 43210, USA
| | - Yu-Ping Chin
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael J Wilkins
- Microbiology Department, The Ohio State University, Columbus, OH, 43210, USA
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
31
|
An BA, Shen Y, Voordouw G. Control of Sulfide Production in High Salinity Bakken Shale Oil Reservoirs by Halophilic Bacteria Reducing Nitrate to Nitrite. Front Microbiol 2017; 8:1164. [PMID: 28680423 PMCID: PMC5478722 DOI: 10.3389/fmicb.2017.01164] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial communities in shale oil fields are still poorly known. We obtained samples of injection, produced and facility waters from a Bakken shale oil field in Saskatchewan, Canada with a resident temperature of 60°C. The injection water had a lower salinity (0.7 Meq of NaCl) than produced or facility waters (0.6-3.6 Meq of NaCl). Salinities of the latter decreased with time, likely due to injection of low salinity water, which had 15-30 mM sulfate. Batch cultures of field samples showed sulfate-reducing and nitrate-reducing bacteria activities at different salinities (0, 0.5, 0.75, 1.0, 1.5, and 2.5 M NaCl). Notably, at high salinity nitrite accumulated, which was not observed at low salinity, indicating potential for nitrate-mediated souring control at high salinity. Continuous culture chemostats were established in media with volatile fatty acids (a mixture of acetate, propionate and butyrate) or lactate as electron donor and nitrate or sulfate as electron acceptor at 0.5 to 2.5 M NaCl. Microbial community analyses of these cultures indicated high proportions of Halanaerobium, Desulfovermiculus, Halomonas, and Marinobacter in cultures at 2.5 M NaCl, whereas Desulfovibrio, Geoalkalibacter, and Dethiosulfatibacter were dominant at 0.5 M NaCl. Use of bioreactors to study the effect of nitrate injection on sulfate reduction showed that accumulation of nitrite inhibited SRB activity at 2.5 M but not at 0.5 M NaCl. High proportions of Halanaerobium and Desulfovermiculus were found at 2.5 M NaCl in the absence of nitrate, whereas high proportions of Halomonas and no SRB were found in the presence of nitrate. A diverse microbial community dominated by the SRB Desulfovibrio was observed at 0.5 M NaCl both in the presence and absence of nitrate. Our results suggest that nitrate injection can prevent souring provided that the salinity is maintained at a high level. Thus, reinjection of high salinity produced water amended with nitrate maybe be a cost effective method for souring control.
Collapse
Affiliation(s)
- Biwen A An
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAlberta, AB, Canada
| | - Yin Shen
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAlberta, AB, Canada
| | - Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAlberta, AB, Canada
| |
Collapse
|
32
|
Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste. J Biotechnol 2017; 247:1-5. [PMID: 28216101 DOI: 10.1016/j.jbiotec.2017.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 11/20/2022]
Abstract
Methanogenic Archaea are of importance at the end of the anaerobic digestion (AD) chain for biomass conversion. They finally produce methane, the end-product of AD. Among this group of microorganisms, members of the genus Methanobacterium are ubiquitously present in anaerobic habitats, such as bioreactors. The genome of a novel methanogenic archaeon, namely Methanobacterium congolense Buetzberg, originally isolated from a mesophilic biogas plant, was completely sequenced to analyze putative adaptive genome features conferring competitiveness of this isolate within the biogas reactor environment. Sequencing and assembly of the M. congolense Buetzberg genome yielded a chromosome with a size of 2,451,457bp and a mean GC-content of 38.51%. Additionally, a plasmid with a size of 18,118bp, featuring a GC content of 36.05% was identified. The M. congolense Buetzberg plasmid showed no sequence similarities with the plasmids described previously suggesting that it represents a new plasmid type. Analysis of the M. congolense Buetzberg chromosome architecture revealed a high collinearity with the Methanobacterium paludis chromosome. Furthermore, annotation of the genome and functional predictions disclosed several genes involved in cell wall and membrane biogenesis. Compilation of specific genes among Methanobacterium strains originating from AD environments revealed 474 genetic determinants that could be crucial for adaptation of these strains to specific conditions prevailing in AD habitats.
Collapse
|
33
|
Hunger S, Schmidt O, Gößner AS, Drake HL. Formate-derived H2, a driver of hydrogenotrophic processes in the root-zone of a methane-emitting fen. Environ Microbiol 2016; 18:3106-19. [DOI: 10.1111/1462-2920.13301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/12/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Sindy Hunger
- Department of Ecological Microbiology; University of Bayreuth; 95440 Bayreuth Germany
| | - Oliver Schmidt
- Department of Ecological Microbiology; University of Bayreuth; 95440 Bayreuth Germany
| | - Anita S. Gößner
- Department of Ecological Microbiology; University of Bayreuth; 95440 Bayreuth Germany
| | - Harold L. Drake
- Department of Ecological Microbiology; University of Bayreuth; 95440 Bayreuth Germany
| |
Collapse
|
34
|
Auguet O, Pijuan M, Borrego CM, Gutierrez O. Control of sulfide and methane production in anaerobic sewer systems by means of Downstream Nitrite Dosage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:1116-1125. [PMID: 26871557 DOI: 10.1016/j.scitotenv.2016.01.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
Bioproduction of hydrogen sulfide (H2S) and methane (CH4) under anaerobic conditions in sewer pipes causes detrimental effects on both sewer facilities and surrounding environment. Among the strategies used to mitigate the production of both compounds, the addition of nitrite (NO2(-)) has shown a greater long-term inhibitory effect compared with other oxidants such as nitrate or oxygen. The aim of this study was to determine the effectiveness of a new method, the Downstream Nitrite Dosage strategy (DNO2D), to control H2S and CH4 emissions in sewers. Treatment effectiveness was assessed on H2S and CH4 abatement on the effluent of a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer. The experiment was divided in three different periods: system setup (period 1), nitrite addition (period 2) and system recovery (period 3). Different process and molecular methods were combined to investigate the impact of NO2(-) addition on H2S and CH4 production. Results showed that H2S load was reduced completely during nitrite addition when compared to period 1 due to H2S oxidation but increased immediately after nitrite addition stopped. The H2S overproduction during recovery period was associated with the bacterial reduction of different sulfur species (elemental sulfur/thiosulfate/sulfite) accumulated within the sewer biofilm matrix. Oxidation of CH4 was also detected during period 2 but, contrary to sulfide production, re-establishment of methanogenesis was not immediate after stopping nitrite dosing. The analysis of bulk and active microbial communities along experimental treatment showed compositional changes that agreed with the observed dynamics of chemical processes. Results of this study show that DNO2D strategy could significantly reduce H2S and CH4 emissions from sewers during the addition period but also suggest that microbial agents involved in such processes show a high resilience towards chemical stressors, thus favoring the re-establishment of H2S and CH4 production after stopping nitrite addition.
Collapse
Affiliation(s)
- Olga Auguet
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park UdG, Girona, Spain.
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park UdG, Girona, Spain.
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park UdG, Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain.
| | - Oriol Gutierrez
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park UdG, Girona, Spain.
| |
Collapse
|
35
|
Holmes D, Smith J. Biologically Produced Methane as a Renewable Energy Source. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:1-61. [PMID: 27926429 DOI: 10.1016/bs.aambs.2016.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methanogens are a unique group of strictly anaerobic archaea that are more metabolically diverse than previously thought. Traditionally, it was thought that methanogens could only generate methane by coupling the oxidation of products formed by fermentative bacteria with the reduction of CO2. However, it has recently been observed that many methanogens can also use electrons extruded from metal-respiring bacteria, biocathodes, or insoluble electron shuttles as energy sources. Methanogens are found in both human-made and natural environments and are responsible for the production of ∼71% of the global atmospheric methane. Their habitats range from the human digestive tract to hydrothermal vents. Although biologically produced methane can negatively impact the environment if released into the atmosphere, when captured, it can serve as a potent fuel source. The anaerobic digestion of wastes such as animal manure, human sewage, or food waste produces biogas which is composed of ∼60% methane. Methane from biogas can be cleaned to yield purified methane (biomethane) that can be readily incorporated into natural gas pipelines making it a promising renewable energy source. Conventional anaerobic digestion is limited by long retention times, low organics removal efficiencies, and low biogas production rates. Therefore, many studies are being conducted to improve the anaerobic digestion process. Researchers have found that addition of conductive materials and/or electrically active cathodes to anaerobic digesters can stimulate the digestion process and increase methane content of biogas. It is hoped that optimization of anaerobic digesters will make biogas more readily accessible to the average person.
Collapse
|
36
|
Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region. FEMS Microbiol Ecol 2015; 92:fiv171. [DOI: 10.1093/femsec/fiv171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 11/12/2022] Open
|
37
|
Kern T, Linge M, Rother M. Methanobacterium aggregans sp. nov., a hydrogenotrophic methanogenic archaeon isolated from an anaerobic digester. Int J Syst Evol Microbiol 2015; 65:1975-1980. [PMID: 25807978 DOI: 10.1099/ijs.0.000210] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, strictly anaerobic, hydrogenotrophic methanogen, strain E09F.3T, was isolated from a commercial biogas plant in Germany. Cells of E09F.3T were Gram-stain-negative, non-motile, slightly curved rods, long chains of which formed large aggregates consisting of intertwined bundles of chains. Cells utilized H2+CO2 and, to a lesser extent, formate as substrates for growth and methanogenesis. The optimal growth temperature was around 40 °C; maximum growth rate was obtained at pH around 7.0 with approximately 6.8 mM NaCl. The DNA G+C content of strain E09F.3T was 39.1 mol%. Phylogenetic analyses based on 16S rRNA and mcrA gene sequences placed strain E09F.3T within the genus Methanobacterium. On the basis of 16S rRNA gene sequence similarity, strain E09F.3T was closely related to Methanobacterium congolense CT but morphological, physiological and genomic characteristics indicated that strain E09F.3T represents a novel species. The name Methanobacterium aggregans sp. nov. is proposed for this novel species, with strain E09F.3T ( = DSM 29428T = JCM 30569T) as the type strain.
Collapse
Affiliation(s)
- Tobias Kern
- Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mary Linge
- Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Rother
- Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
38
|
Kelly WJ, Leahy SC, Li D, Perry R, Lambie SC, Attwood GT, Altermann E. The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9. Stand Genomic Sci 2014; 9:15. [PMID: 25780506 PMCID: PMC4335013 DOI: 10.1186/1944-3277-9-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023] Open
Abstract
Methanobacterium formicicum BRM9 was isolated from the rumen of a New Zealand Friesan cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. The 2.45 Mb BRM9 chromosome has an average G + C content of 41%, and encodes 2,352 protein-coding genes. The genes involved in methanogenesis are comparable to those found in other members of the Methanobacteriaceae with the exception that there is no [Fe]-hydrogenase dehydrogenase (Hmd) which links the methenyl-H4MPT reduction directly with the oxidation of H2. Compared to the rumen Methanobrevibacter strains, BRM9 has a much larger complement of genes involved in determining oxidative stress response, signal transduction and nitrogen fixation. BRM9 also has genes for the biosynthesis of the compatible solute ectoine that has not been reported to be produced by methanogens. The BRM9 genome has a prophage and two CRISPR repeat regions. Comparison to the genomes of other Methanobacterium strains shows a core genome of ~1,350 coding sequences and 190 strain-specific genes in BRM9, most of which are hypothetical proteins or prophage related.
Collapse
Affiliation(s)
- William J Kelly
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Sinead C Leahy
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Dong Li
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Rechelle Perry
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Suzanne C Lambie
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Graeme T Attwood
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Eric Altermann
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|