1
|
Köhler JM, Ehrhardt L, Günther PM, Cao J. Bacterial Communities from the Copper Mine of Wettelrode (Germany). Life (Basel) 2025; 15:204. [PMID: 40003612 PMCID: PMC11856635 DOI: 10.3390/life15020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Bacterial communities from three different sampling sites of a copper mine tunnel were characterized by 16S rRNA sequencing (NGS). A high presence of halophilic bacteria was confirmed by comparison with literature data and with reference samples from other highly salt-exposed soils. Among others, high read numbers of Gracilimonas, Kangiella, Limibacillus, Marinobacter, Woseia, and uncultivated strains of Actinomarinales, Gammaproteobacterium AT-s16, Actinobacteria 0319-7L14, and Thiotrichaceae were found. The community in a sample from the surface of the copper seam was significantly different from the community composition of a sample from the mine tunnel floor. The specificity in the appearance and in the abundance of special bacterial types (for example, Thiogranum, Thiohalophilus, Sulfuriflexus, Sedimenticolaceae, Desulfomonile, Desulfosporosinus, and Cand. Thiobios) can be partially explained by the different local conditions for sulfur-related metabolisms at the sampling sites.
Collapse
Affiliation(s)
- J. Michael Köhler
- Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Technische University Ilmenau, D-98684 Ilmenau, Germany; (L.E.); (P.M.G.); (J.C.)
| | | | | | | |
Collapse
|
2
|
Ghezzi D, Mangiaterra G, Scardino A, Fehervari M, Magnani M, Citterio B, Frangipani E. Characterization of bacterial communities associated with seabed sediments in offshore and nearshore sites to improve Microbiologically Influenced Corrosion mitigation on marine infrastructures. PLoS One 2024; 19:e0309971. [PMID: 39231176 PMCID: PMC11373832 DOI: 10.1371/journal.pone.0309971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
Microbiologically Influenced Corrosion (MIC) is one of the main threats for marine infrastructures, leading to severe safety and environmental risks associated with structural failures and/or leakages of dangerous fluids, together with potential huge economic losses and reputational damage for the involved parts. For a safe design and a proper installation of infrastructure systems in contact with the seabed, a deep knowledge of the site-specific microbial community of the sediments should be beneficial. Therefore, in addition to the simple detection or the sole quantification of Sulphate-Reducing Bacteria (SRB), the whole characterization of the microbial members involved in MIC phenomena is desirable. In this study, 16S rRNA-based comparison between bacterial communities thriving in offshore and nearshore marine sediments was performed, with a focus on the main bacterial groups putatively responsible for MIC. The nearshore sediments were significantly enriched in bacterial members associated with human and organic compounds contamination belonging to the Bacteroidota, Desulfobacterota, and Firmicutes phyla, while the offshore sediments hosted Alphaproteobacteria, Nitrospinota, and Nitrospirota members, representative of a low anthropogenic impact. Quantitative PCR targeting the dsrA gene and detailed community analyses revealed that the nearshore sediments were significantly enriched in SRB mainly affiliated to the Desulfobulbus and Desulfosarcina genera potentially involved in biocorrosion, compared to the offshore ones. These results suggest that the bacterial community associated with the high concentration of organic compounds derived by an elevated anthropogenic impact is likely to favour MIC. Such observations highlight the importance of microbiological investigations as prevention strategy against MIC processes, aiming both at characterizing sites for the establishment of new infrastructures and at monitoring those already installed.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Gianmarco Mangiaterra
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Arianna Scardino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Mauro Fehervari
- R&D Engineering, Asset Based Services-Saipem SpA, Fano (PU), Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| |
Collapse
|
3
|
Li Y, Wang J, Li E, Yang X, Yang J. Shifts in Microbial Community Structure and Co-occurrence Network along a Wide Soil Salinity Gradient. Microorganisms 2024; 12:1268. [PMID: 39065037 PMCID: PMC11278679 DOI: 10.3390/microorganisms12071268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The response of microbiomes to salinity has been clarified in different geographic scales or ecosystems. However, how soil microbial community structure and interaction respond to salinity across wide salinity range and climatic region is still unclearly resolved. To address this issue, we examined the microbial community's composition in saline soils from two climatic regions (coastal wetland and arid desert). Our research confirms that soil salinity had a negative effect on soil nutrient content. Salinity decreased the relative abundance of bacteria, but increased archaea abundance, leading to the shifts from bacteria dominant community to archaea dominant community. Low-water medium-salinity soil (LWMS) had the most complex archaeal community network, whereas for bacteria, the most complex bacterial community network was observed in low-water high-salinity soils (LWHS). Key microbial taxa differed in three salinity gradients. Salinity, soil water content, pH, total nitrogen (TN), and soil organic carbon (SOC) were the main driving factors for the composition of archaeal and bacterial community. Salinity directly affected archaeal community, but indirectly influenced bacteria community through SOC; pH affected archaeal community indirectly through TN, but directly affected bacterial community. Our study suggests that soil salinity dramatically influences diversity, composition, and interactions within the microbial community.
Collapse
Affiliation(s)
- Yan Li
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830017, China
| | - Juan Wang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
- Chengdu Institute of Biology, Chinese Academy Sciences, Chengdu 610042, China
| | - Eryang Li
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
| | - Xiaodong Yang
- Department of Geography & Spatial Information Technology, Ningbo University, Ningbo 315211, China
| | - Jianjun Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
4
|
Banchi E, Corre E, Del Negro P, Celussi M, Malfatti F. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:126-142. [PMID: 38433960 PMCID: PMC10902248 DOI: 10.1007/s42995-023-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from 'omics' approaches. Here, we characterized metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiversity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which (35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic patterns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resistance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and stability toward environmental pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00192-z.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Erwan Corre
- FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), Sorbonne Université CNRS, 29680 Roscoff, France
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Francesca Malfatti
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
5
|
Adam-Beyer N, Laufer-Meiser K, Fuchs S, Schippers A, Indenbirken D, Garbe-Schönberg D, Petersen S, Perner M. Microbial ecosystem assessment and hydrogen oxidation potential of newly discovered vent systems from the Central and South-East Indian Ridge. Front Microbiol 2023; 14:1173613. [PMID: 37886064 PMCID: PMC10598711 DOI: 10.3389/fmicb.2023.1173613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
In order to expand the knowledge of microbial ecosystems from deep-sea hydrothermal vent systems located on the Central and South-East Indian Ridge, we sampled hydrothermal fluids, massive sulfides, ambient water and sediments of six distinct vent fields. Most of these vent sites were only recently discovered in the course of the German exploration program for massive sulfide deposits and no previous studies of the respective microbial communities exist. Apart from typically vent-associated chemosynthetic members of the orders Campylobacterales, Mariprofundales, and Thiomicrospirales, high numbers of uncultured and unspecified Bacteria were identified via 16S rRNA gene analyses in hydrothermal fluid and massive sulfide samples. The sampled sediments however, were characterized by an overall lack of chemosynthetic Bacteria and the presence of high proportions of low abundant bacterial groups. The archaeal communities were generally less diverse and mostly dominated by members of Nitrosopumilales and Woesearchaeales, partly exhibiting high proportions of unassigned Archaea. Correlations with environmental parameters were primarily observed for sediment communities and for microbial species (associated with the nitrogen cycle) in samples from a recently identified vent field, which was geochemically distinct from all other sampled sites. Enrichment cultures of diffuse fluids demonstrated a great potential for hydrogen oxidation coupled to the reduction of various electron-acceptors with high abundances of Hydrogenovibrio and Sulfurimonas species. Overall, given the large number of currently uncultured and unspecified microorganisms identified in the vent communities, their respective metabolic traits, ecosystem functions and mediated biogeochemical processes have still to be resolved for estimating consequences of potential environmental disturbances by future mining activities.
Collapse
Affiliation(s)
- Nicole Adam-Beyer
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Katja Laufer-Meiser
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sebastian Fuchs
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | | | | | - Sven Petersen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Mirjam Perner
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
6
|
Yue XL, Xu L, Cui L, Fu GY, Xu XW. Metagenome-based analysis of carbon-fixing microorganisms and their carbon-fixing pathways in deep-sea sediments of the southwestern Indian Ocean. Mar Genomics 2023; 70:101045. [PMID: 37245381 DOI: 10.1016/j.margen.2023.101045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Carbon fixation by chemoautotrophic microorganisms in the dark ocean makes a large contribution to oceanic primary production and the global carbon cycle. In contrast to the Calvin cycle-dominated carbon-fixing pathway in the marine euphotic zone, carbon-fixing pathways and their hosts in deep-sea areas are diverse. In this study, four deep-sea sediment samples close to hydrothermal vents in the southwestern Indian Ocean were collected and processed using metagenomic analysis to investigate carbon fixation potential. Functional annotations revealed that all six carbon-fixing pathways had genes to varied degrees present in the samples. The reductive tricarboxylic acid cycle and Calvin cycle genes occurred in all samples, in contrast to the Wood-Ljungdahl pathway, which previous studies found mainly in the hydrothermal area. The annotations also elucidated the chemoautotrophic microbial members associated with the six carbon-fixing pathways, and the majority of them containing key carbon fixation genes belonged to the phyla Pseudomonadota and Desulfobacterota. The binned metagenome-assembled genomes revealed that key genes for the Calvin cycle and the 3-hydroxypropionate/4-hydroxybutyrate cycle were also found in the order Rhodothermales and the family Hyphomicrobiaceae. By identifying the carbon metabolic pathways and microbial populations in the hydrothermal fields of the southwest Indian Ocean, our study sheds light on complex biogeochemical processes in deep-sea environments and lays the foundation for further in-depth investigations of carbon fixation processes in deep-sea ecosystems.
Collapse
Affiliation(s)
- Xiao-Lan Yue
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China; Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Ge-Yi Fu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| | - Xue-Wei Xu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| |
Collapse
|
7
|
Kim C, Staver LW, Chen X, Bulseco A, Cornwell JC, Malkin SY. Microbial Community Succession Along a Chronosequence in Constructed Salt Marsh Soils. MICROBIAL ECOLOGY 2023; 85:931-950. [PMID: 36764950 DOI: 10.1007/s00248-023-02189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/02/2023] [Indexed: 05/04/2023]
Abstract
In this study, we examined the succession of soil microbial communities across a chronosequence of newly constructed salt marshes constructed primarily of fine-grained dredge material, using 16S rRNA amplicon sequences. Alpha diversity in the subsurface horizons was initially low and increased to reference levels within 3 years of marsh construction, while alpha diversity in the newly accumulating organic matter-rich surface soils was initially high and remained unchanged. Microbial community succession was fastest in the surface horizon (~ 24 years to reference equivalency) and became progressively slower with depth in the subsurface horizons (~ 30-67 years). Random forest linear regression analysis was used to identify important taxa driving the trajectories toward reference conditions. In the parent material, putative sulfate-reducers (Desulfobacterota), methanogens (Crenarchaeota, especially Methanosaeta), and fermenters (Chloroflexi and Clostridia) increased over time, suggesting an enrichment of these metabolisms over time, similar to natural marshes. Concurrently in the surface soils, the relative abundances of putative methane-, methyl-, and sulfide oxidizers, especially among Gammaproteobacteria, increased over time, suggesting the co-development of sulfide and methane removal metabolisms in marsh soils. Finally, we observed that the surface soil communities at one of the marshes did not follow the trajectory of the others, exhibiting a greater relative abundance of anaerobic taxa. Uniquely in this dataset, this marsh was developing signs of excessive inundation stress in terms of vegetation coverage and soil geochemistry. Therefore, we suggest that soil microbial community structure may be effective bioindicators of salt marsh inundation and are worthy of further targeted investigation.
Collapse
Affiliation(s)
- Carol Kim
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, MD, USA
| | - Lorie W Staver
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, MD, USA
| | - Xuan Chen
- Department of Biology, Salisbury University, Salisbury, MD, USA
| | | | - Jeffrey C Cornwell
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, MD, USA
| | - Sairah Y Malkin
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, MD, USA.
| |
Collapse
|
8
|
Liau P, Kim C, Saxton MA, Malkin SY. Microbial succession in a marine sediment: Inferring interspecific microbial interactions with marine cable bacteria. Environ Microbiol 2022; 24:6348-6364. [PMID: 36178156 PMCID: PMC10092204 DOI: 10.1111/1462-2920.16230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 01/12/2023]
Abstract
Cable bacteria are long, filamentous, multicellular bacteria that grow in marine sediments and couple sulfide oxidation to oxygen reduction over centimetre-scale distances via long-distance electron transport. Cable bacteria can strongly modify biogeochemical cycling and may affect microbial community networks. Here we examine interspecific interactions with marine cable bacteria (Ca. Electrothrix) by monitoring the succession of 16S rRNA amplicons (DNA and RNA) and cell abundance across depth and time, contrasting sediments with and without cable bacteria growth. In the oxic zone, cable bacteria activity was positively associated with abundant predatory bacteria (Bdellovibrionota, Myxococcota, Bradymonadales), indicating putative predation on cathodic cells. At suboxic depths, cable bacteria activity was positively associated with sulfate-reducing and magnetotactic bacteria, consistent with cable bacteria functioning as ecosystem engineers that modify their local biogeochemical environment, benefitting certain microbes. Cable bacteria activity was negatively associated with chemoautotrophic sulfur-oxidizing Gammaproteobacteria (Thiogranum, Sedimenticola) at oxic depths, suggesting competition, and positively correlated with these taxa at suboxic depths, suggesting syntrophy and/or facilitation. These observations are consistent with chemoautotrophic sulfur oxidizers benefitting from an oxidizing potential imparted by cable bacteria at suboxic depths, possibly by using cable bacteria as acceptors for electrons or electron equivalents, but by an as yet enigmatic mechanism.
Collapse
Affiliation(s)
- Pinky Liau
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| | - Carol Kim
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| | - Matthew A Saxton
- Department of Biological Sciences, Miami University, Middletown, Ohio, USA
| | - Sairah Y Malkin
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| |
Collapse
|
9
|
Chen Y, Zhao YG, Wang X, Ji J. Impact of sulfamethoxazole and organic supplementation on mixotrophic denitrification process: Nitrate removal efficiency and the response of functional microbiota. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115818. [PMID: 35944321 DOI: 10.1016/j.jenvman.2022.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Recirculating aquaculture systems (RAS) effluent is characterized by low COD to total inorganic nitrogen ratio (C/N), excessive nitrate, and the presence of traces of antibiotics. Hence, it urgently needs to be treated before recycling or discharging. In this study, four denitrification bioreactors at increasing C/N ratios (0, 0.7, 2, and 5) were started up to treat mariculture wastewater under the sulfamethoxazole (SMX) stress, during which the bioreactors performance and the shift of mixotrophic microbial communities were explored. The result showed that during the SMX exposure, organic supplementation enhanced nitrate and thiosulfate removal, and eliminated nitrite accumulation. The denitrification rate was accelerated by increasing C/N from 0 to 2, while it declined at C/N of 5. The decline was ascribed to which SMX reduced the relative abundance of denitrifiers, but improved the capability of dissimilatory nitrogen reduction to ammonia (DNRA) and sulfide production. The direct evidence was the relative abundance of sulfidogenic populations, such as Desulfuromusa, Desulfurocapsa, and Desulfobacter increased under the SMX stress. Moreover, high SMX (1.5 mg L-1) caused the obvious accumulation of ammonia at C/N of 5 due to the high concentration of sulfide (3.54 ± 1.08 mM) and the enhanced DNRA process. This study concluded that the mixotrophic denitrification process with the C/N of 0.7 presented the best performance in nitrate and sulfur removal and indicated the maximum resistance to SMX.
Collapse
Affiliation(s)
- Yue Chen
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| |
Collapse
|
10
|
Pettersen R, Ormaasen I, Angell IL, Keeley NB, Lindseth A, Snipen L, Rudi K. Bimodal distribution of seafloor microbiota diversity and function are associated with marine aquaculture. Mar Genomics 2022; 66:100991. [PMID: 36116403 DOI: 10.1016/j.margen.2022.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
The aim of the current work was to investigate the impact of marine aquaculture on seafloor biogeochemistry and diversity from pristine environments in the northern part of Norway. Our analytical approach included analyses of 182 samples from 16 aquaculture sites using 16S and 18S rRNA, shotgun analyses, visual examination of macro-organisms, in addition to chemical measurements. We observed a clear bimodal distribution of the prokaryote composition and richness, determined by analyses of 16S rRNA gene operational taxonomic units (OTUs). The high OTU richness cluster was associated with non-perturbed environments and farness from the aquaculture sites, while the low OTU richness cluster was associated with perturbed environments and proximity to the aquaculture sites. Similar patterns were also observed for eukaryotes using 18S rRNA gene analyses and visual examination, but without a bimodal distribution of OTU richness. Shotgun sequencing showed the archaeum Nitrosopumilus as dominant for the high OTU richness cluster, and the epsilon protobacterium Sulfurovum as dominant for the low OTU richness cluster. Metabolic reconstruction of Nitrosopumilus indicates nitrification as the main metabolic pathway. Sulfurovum, on the other hand, was associated with sulfur oxidation and denitrification. Changes in nitrogen and sulfur metabolism is proposed as a potential explanation for the difference between the high and low OTU richness clusters. In conclusion, these findings suggest that pollution from elevated loads of organic waste drives the microbiota towards a complete alteration of respiratory routes and species composition, in addition to a collapse in prokaryote OTU richness.
Collapse
Affiliation(s)
| | - I Ormaasen
- Norwegian University of Life Sciences, Ås, Norway
| | - I L Angell
- Norwegian University of Life Sciences, Ås, Norway
| | - N B Keeley
- Institute of Marine Research, Tromsø, Norway
| | | | - L Snipen
- Norwegian University of Life Sciences, Ås, Norway
| | - K Rudi
- Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
11
|
Aldeguer-Riquelme B, Rubio-Portillo E, Álvarez-Rogel J, Giménez-Casalduero F, Otero XL, Belando MD, Bernardeau-Esteller J, García-Muñoz R, Forcada A, Ruiz JM, Santos F, Antón J. Factors structuring microbial communities in highly impacted coastal marine sediments (Mar Menor lagoon, SE Spain). Front Microbiol 2022; 13:937683. [PMID: 36160249 PMCID: PMC9491240 DOI: 10.3389/fmicb.2022.937683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Coastal marine lagoons are environments highly vulnerable to anthropogenic pressures such as agriculture nutrient loading or runoff from metalliferous mining. Sediment microorganisms, which are key components in the biogeochemical cycles, can help attenuate these impacts by accumulating nutrients and pollutants. The Mar Menor, located in the southeast of Spain, is an example of a coastal lagoon strongly altered by anthropic pressures, but the microbial community inhabiting its sediments remains unknown. Here, we describe the sediment prokaryotic communities along a wide range of environmental conditions in the lagoon, revealing that microbial communities were highly heterogeneous among stations, although a core microbiome was detected. The microbiota was dominated by Delta- and Gammaproteobacteria and members of the Bacteroidia class. Additionally, several uncultured groups such as Asgardarchaeota were detected in relatively high proportions. Sediment texture, the presence of Caulerpa or Cymodocea, depth, and geographic location were among the most important factors structuring microbial assemblages. Furthermore, microbial communities in the stations with the highest concentrations of potentially toxic elements (Fe, Pb, As, Zn, and Cd) were less stable than those in the non-contaminated stations. This finding suggests that bacteria colonizing heavily contaminated stations are specialists sensitive to change.
Collapse
Affiliation(s)
- Borja Aldeguer-Riquelme
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Esther Rubio-Portillo
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - José Álvarez-Rogel
- Department of Agricultural Engineering of the Escuela Técnica Superior Ingeniería Agronómica (ETSIA) & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, Cartagena, Spain
| | | | - Xose Luis Otero
- Cross-Research in Environmental Technologies (CRETUS), Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María-Dolores Belando
- Seagrass Ecology Group, Spanish Oceanography Institute of the Spanish National Research Council, Oceanography Center of Murcia, Murcia, Spain
| | - Jaime Bernardeau-Esteller
- Seagrass Ecology Group, Spanish Oceanography Institute of the Spanish National Research Council, Oceanography Center of Murcia, Murcia, Spain
| | - Rocío García-Muñoz
- Seagrass Ecology Group, Spanish Oceanography Institute of the Spanish National Research Council, Oceanography Center of Murcia, Murcia, Spain
| | - Aitor Forcada
- Department of Marine Science and Applied Biology, University of Alicante, Alicante, Spain
| | - Juan M. Ruiz
- Seagrass Ecology Group, Spanish Oceanography Institute of the Spanish National Research Council, Oceanography Center of Murcia, Murcia, Spain
| | - Fernando Santos
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
- Multidisciplinary Institute of Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| |
Collapse
|
12
|
Bardin M, Rousselot-Pailley P, Tron T, Robert V. Investigation of dirigent like domains from bacterial genomes. BMC Bioinformatics 2022; 23:313. [PMID: 35918655 PMCID: PMC9344732 DOI: 10.1186/s12859-022-04832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DIRs are mysterious protein that have the ability to scavenge free radicals, which, are highly reactive with molecules in their vicinity. What is even more fascinating is that they carry out from these highly unstable species, a selective reaction (i.e., stereoenantioselective) from a well-defined substrate to give a very precise product. Unfortunately, to date, only three products have been demonstrated following studies on DIRs from the plant world, which until now was the kingdom where these proteins had been demonstrated. Within this kingdom, each DIR protein has its own type of substrate. The products identified to date, have on the other hand, a strong economic impact: in agriculture for example, the biosynthesis of (+)-gossypol could be highlighted (a repellent antifood produced by the cotton plant) by the DIRs of cotton. In forsythia plant species, it is the biosynthesis of (-)-pinoresinol, an intermediate leading to the synthesis of podophyllotoxine (a powerful anicancerous agent) which has been revealed. Recently, a clear path of study, potentially with strong impact, appeared by the hypothesis of the potential existence of protein DIR within the genomes of prokaryotes. The possibility of working with this type of organism is an undeniable advantage: since many sequenced genomes are available and the molecular tools are already developed. Even easier to implement and working on microbes, of less complex composition, offers many opportunities for laboratory studies. On the other hand, the diversity of their environment (e.g., soil, aquatic environments, extreme environmental conditions (pH, temperature, pressure) make them very diverse and varied subjects of study. Identifying new DIR proteins from bacteria means identifying new substrate or product molecules from these organisms. It is the promise of going further in understanding the mechanism of action of these proteins and this will most likely have a strong impact in the fields of agricultural, pharmaceutical and/or food chemistry. RESULTS Our goal is to obtain as much information as possible about these proteins to unlock the secrets of their exceptional functioning. Analyzes of structural and functional genomic data led to the identification of the Pfam PF03018 domain as characteristic of DIR proteins. This domain has been further identified in the sequence of bacterial proteins therefore named as DIR-like (DIRL). We have chosen a multidisciplinary bioinformatic approach centered on bacterial genome identification, gene expression and regulation signals, protein structures, and their molecular information content. The objective of this study was to perform a thorough bioinformatic analysis on these DIRLs to highlight any information leading to the selection of candidate bacteria for further cloning, purification, and characterization of bacterial DIRs. CONCLUSIONS From studies of DIRL genes identification, primary structures, predictions of their secondary and tertiary structures, prediction of DIRL signals sequences, analysis of their gene organization and potential regulation, a list of primary bacterial candidates is proposed.
Collapse
Affiliation(s)
- Merlin Bardin
- CNRS, Centrale Marseille, iSm2, Aix Marseille Univ, Marseille, France
| | | | - Thierry Tron
- CNRS, Centrale Marseille, iSm2, Aix Marseille Univ, Marseille, France
| | - Viviane Robert
- CNRS, Centrale Marseille, iSm2, Aix Marseille Univ, Marseille, France.
| |
Collapse
|
13
|
Wang Y, Bi HY, Chen HG, Zheng PF, Zhou YL, Li JT. Metagenomics Reveals Dominant Unusual Sulfur Oxidizers Inhabiting Active Hydrothermal Chimneys From the Southwest Indian Ridge. Front Microbiol 2022; 13:861795. [PMID: 35694283 PMCID: PMC9174799 DOI: 10.3389/fmicb.2022.861795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
The deep-sea hydrothermal vents (DSHVs) in the Southwest Indian Ridge (SWIR) are formed by specific geological settings. However, the community structure and ecological function of the microbial inhabitants on the sulfide chimneys of active hydrothermal vents remain largely unknown. In this study, our analyses of 16S rRNA gene amplicons and 16S rRNA metagenomic reads showed the dominance of sulfur-oxidizing Ectothiorhodospiraceae, Thiomicrorhabdus, Sulfurimonas, and Sulfurovum on the wall of two active hydrothermal chimneys. Compared with the inactive hydrothermal sediments of SWIR, the active hydrothermal chimneys lacked sulfur-reducing bacteria. The metabolic potentials of the retrieved 82 metagenome-assembled genomes (MAGs) suggest that sulfur oxidation might be conducted by Thiohalomonadales (classified as Ectothiorhodospiraceae based on 16S rRNA gene amplicons), Sulfurovaceae, Hyphomicrobiaceae, Thiotrichaceae, Thiomicrospiraceae, and Rhodobacteraceae. For CO2 fixation, the Calvin-Benson-Bassham and reductive TCA pathways were employed by these bacteria. In Thiohalomonadales MAGs, we revealed putative phytochrome, carotenoid precursor, and squalene synthesis pathways, indicating a possible capacity of Thiohalomonadales in adaptation to dynamics redox conditions and the utilization of red light from the hot hydrothermal chimneys for photolithotrophic growth. This study, therefore, reveals unique microbiomes and their genomic features in the active hydrothermal chimneys of SWIR, which casts light on ecosystem establishment and development in hydrothermal fields and the deep biosphere.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Hong-Yu Bi
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hua-Guan Chen
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Zheng
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ying-Li Zhou
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiang-Tao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Li L, Peng C, Yang Z, He Y, Liang M, Cao H, Qiu Q, Song J, Su Y, Gong B. Microbial communities in swamps of four mangrove reserves driven by interactions between physicochemical properties and microbe in the North Beibu Gulf, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37582-37597. [PMID: 35066825 DOI: 10.1007/s11356-021-18134-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Mangroves are distributed in coastal and estuarine regions and are characterized as a sink for terrestrial pollution. It is believed that complex interactions between environmental factors and microbial communities exist in mangrove swamps. However, little is known about environment-microbe interactions. There is a need to clarify some important environmental factors shaping microbial communities and how environmental factors interact with microbial assemblages in mangrove swamps. In the present study, physicochemical and microbial characteristics in four mangrove reserves (named ZZW, Qin, Bei, and GQ) in the North Beibu Gulf were determined. The interactions between environmental factors and microbial assemblages were analyzed with statistical methods in addition to CCA and RDA. Higher concentrations of sulfate (SO42--S) and Fe but lower concentrations of total phosphorus (TP) and NO3--N were detected in ZZW and Qin. Nutrient elements (NO3--N, NH4+-N, organic matter (OM), SO42--S, Fe, and TP) were more important than heavy metals for determining the microbial assemblages, and NO3--N was the most important factor. NO3--N, SO42--S, TP, and Fe formed a significant co-occurrence network in conjunction with some bacterial taxa, most of which were Proteobacteria. Notably, comparatively elevated amounts of sulfate-reducing bacteria (Desulfatibacillum, Desulfomonile, and Desulfatiglans) and sulfur-oxidizing bacteria (Thioprofundum and Thiohalophilus) were found in ZZW and Qin. The co-occurrence network suggested that some bacteria involved in sulfate reduction and sulfur oxidation drive the transformation of P and N, resulting in the reduction of P and N in mangrove swamps. Through the additional utilization of multivariate regression tree (MRT) and co-occurrence network analysis, our research provides a new perspective for understanding the interactions between environmental factors and microbial communities in mangroves.
Collapse
Affiliation(s)
- Lu Li
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Chunyan Peng
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Zicong Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Yu He
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Meng Liang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Hongmin Cao
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Qinghua Qiu
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Jingjing Song
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| | - Youlu Su
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Bin Gong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
15
|
Molecular characterization of bacteria and archaea in a bioaugmented zero-water exchange shrimp pond. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractIn the zero-water exchange shrimp culture pond maintained with the application of indigenous bioaugmentor, low levels of total ammonia–nitrogen were reported, indicating the relevance of indigenous microbial communities. Sediments (0–5 cm layer) were sampled from the pond (85th day) and the bacterial and archaeal communities; specifically, the ammonia oxidizers (ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and anaerobic ammonia-oxidizing bacteria) in the sediment metagenome of the pond were analysed using the 16S rRNA and functional genes. Bacterial and archaeal 16S rRNA genes showed the relative abundance of Delta-Proteobacteria and Bacteroidetes groups performing sulphur respiration and organic matter degradation, archaeal groups of anaerobic sulphur respiring Crenarchaeotae, and chemolithoautotrophic ammonia oxidizers belonging to Thaumarchaeota. The presence of these diverse bacterial and archaeal communities denotes their significant roles in the cycling the carbon, nitrogen, and sulphur thereby bringing out efficient bioremediation in the bioaugmented zero-water exchange shrimp culture pond. Similarly, the functional gene-specific study showed the predominance of Nitrosomonas sp. (ammonia-oxidizing bacteria), Nitrosopumilus maritimus (ammonia-oxidizing archaea), and Candidatus Kuenenia (anaerobic ammonia-oxidizing bacteria) in the system, which points to their importance in the removal of accumulated ammonia. Thus, this study paves the way for understanding the microbial communities, specifically the ammonia oxidizers responsible for maintaining healthy and optimal environmental conditions in the bioaugmented zero-water exchange shrimp culture pond.
Collapse
|
16
|
Zhao D, Zhang S, Xue Q, Chen J, Zhou J, Cheng F, Li M, Zhu Y, Yu H, Hu S, Zheng Y, Liu S, Xiang H. Abundant Taxa and Favorable Pathways in the Microbiome of Soda-Saline Lakes in Inner Mongolia. Front Microbiol 2020; 11:1740. [PMID: 32793172 PMCID: PMC7393216 DOI: 10.3389/fmicb.2020.01740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Soda-saline lakes are a special type of alkaline lake in which the chloride concentration is greater than the carbonate/bicarbonate concentration. Due to the high pH and a usually higher osmotic pressure than that of a normal soda lake, the microbes may need more energy to thrive in such a double-extreme environment. In this study, we systematically investigated the microbiome of the brine and sediment samples of nine artificially separated ponds (salinities from 5.5% to saturation) within two soda-saline lakes in Inner Mongolia of China, assisted by deep metagenomic sequencing. The main inorganic ions shaped the microbial community in both the brines and sediments, and the chloride concentration exhibited the most significant effect. A total of 385 metagenome-assembled genomes (MAGs) were generated, in which 38 MAGs were revealed as the abundant species in at least one of the eighteen different samples. Interestingly, these abundant species also represented the most branches of the microbiome of the soda-saline lakes at the phylum level. These abundant taxa were close relatives of microorganisms from classic soda lakes and neutral saline environments, but forming a combination of both habitats. Notably, approximately half of the abundant MAGs had the potential to drive dissimilatory sulfur cycling. These MAGs included four autotrophic Ectothiorhodospiraceae MAGs, one Cyanobacteria MAG and nine heterotrophic MAGs with the potential to oxidize sulfur, as well as four abundant MAGs containing genes for elemental sulfur respiration. The possible reason is that reductive sulfur compounds could provide additional energy for the related species, and reductions of oxidative sulfur compounds are more prone to occur under alkaline conditions which support the sulfur cycling. In addition, a unique 1,4-alpha-glucan phosphorylation pathway, but not a normal hydrolysis one, was found in the abundant Candidatus Nanohaloarchaeota MAG NHA-1, which would produce more energy in polysaccharide degradation. In summary, this work has revealed the abundant taxa and favorable pathways in the soda-saline lakes, indicating that efficient energy regeneration pathway may increase the capacity for environmental adaptation in such saline-alkaline environments. These findings may help to elucidate the relationship between microbial metabolism and adaptation to extreme environments.
Collapse
Affiliation(s)
- Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junyu Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Meier DV, Pjevac P, Bach W, Markert S, Schweder T, Jamieson J, Petersen S, Amann R, Meyerdierks A. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Environ Microbiol 2019; 21:682-701. [PMID: 30585382 PMCID: PMC6850669 DOI: 10.1111/1462-2920.14514] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023]
Abstract
Metal-sulfides are wide-spread in marine benthic habitats. At deep-sea hydrothermal vents, they occur as massive sulfide chimneys formed by mineral precipitation upon mixing of reduced vent fluids with cold oxygenated sea water. Although microorganisms inhabiting actively venting chimneys and utilizing compounds supplied by the venting fluids are well studied, only little is known about microorganisms inhabiting inactive chimneys. In this study, we combined 16S rRNA gene-based community profiling of sulfide chimneys from the Manus Basin (SW Pacific) with radiometric dating, metagenome (n = 4) and metaproteome (n = 1) analyses. Our results shed light on potential lifestyles of yet poorly characterized bacterial clades colonizing inactive chimneys. These include sulfate-reducing Nitrospirae and sulfide-oxidizing Gammaproteobacteria dominating most of the inactive chimney communities. Our phylogenetic analysis attributed the gammaproteobacterial clades to the recently described Woeseiaceae family and the SSr-clade found in marine sediments around the world. Metaproteomic data identified these Gammaproteobacteria as autotrophic sulfide-oxidizers potentially facilitating metal-sulfide dissolution via extracellular electron transfer. Considering the wide distribution of these gammaproteobacterial clades in marine environments such as hydrothermal vents and sediments, microbially accelerated neutrophilic mineral oxidation might be a globally relevant process in benthic element cycling and a considerable energy source for carbon fixation in marine benthic habitats.
Collapse
Affiliation(s)
- Dimitri V. Meier
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| | - Petra Pjevac
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| | - Wolfgang Bach
- MARUM – Center for Marine Environmental Sciences, Petrology of the Ocean Crust groupUniversity of BremenLeobener Str., 28359, BremenGermany
| | - Stephanie Markert
- Institute of PharmacyErnst‐Moritz‐Arndt‐UniversityFriedrich‐Ludwig‐Jahn‐Straße 17, 17489, GreifswaldGermany
| | - Thomas Schweder
- Institute of PharmacyErnst‐Moritz‐Arndt‐UniversityFriedrich‐Ludwig‐Jahn‐Straße 17, 17489, GreifswaldGermany
| | - John Jamieson
- Department of Earth SciencesMemorial University of Newfoundland40 Arctic Ave, Saint John'sNL, A1B 3X7Canada
| | - Sven Petersen
- GEOMAR Helmholtz Centre for Ocean ResearchWischhofstraße 1‐3, 24148, KielGermany
| | - Rudolf Amann
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| | - Anke Meyerdierks
- Max Planck Institute for Marine MicrobiologyCelsiusstrasse 1, 28359, BremenGermany
| |
Collapse
|
18
|
King GM. Microbiomes of the Enteropneust, Saccoglossus bromophenolosus, and Associated Marine Intertidal Sediments of Cod Cove, Maine. Front Microbiol 2018; 9:3066. [PMID: 30631312 PMCID: PMC6315191 DOI: 10.3389/fmicb.2018.03066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
Enteropneusts are widely distributed marine invertebrates that accumulate high concentrations of halogenated aromatics. Some of these compounds affect benthic biogeochemistery (e.g., denitrification and ammonia oxidation), but little is known about interactions between enteropneusts and their associated microbial communities. Even less is known about enteropneust host-microbe relationships in the digestive tract. More generally, microbial community composition and diversity in intertidal sediments have received little attention. In this study, high throughput sequence analyses of 16S rRNA genes extracted from microbial communities associated with sediment-free whole individuals of Saccoglossus bromophenolosus and freshly excreted S. bromophenolosus gut sediments revealed a potential Spirochaete symbiont that was abundant, present in gut sediment, but absent in other sediments. Relative to surface sediments, gut communities also revealed evidence for selective losses of some groups and blooms of others, especially Colwellia, Photobacterium, Pseudoalteromonas, and Vibrio. After deposition, gut sediment communities rapidly resembled those of surface sediments. Although hierarchical cluster analysis and Linear Discriminant Analysis Effect Size (LEfSe) differentiated among burrow walls of S. bromophenolosus and a polychaete, Alitta virens, as well as between surface and sub-surface sediments, most operational taxonomic units (OTUs) were shared, with differences largely occurring in relative abundances. This suggests that sediment mixing through bioturbation might act to homogenize community composition, while species-specific impacts by infauna might alter local population abundances. Although Cod Cove is a relatively isolated intertidal system, microbial community members included groups with cosmopolitan distributions and roles in sulfur cycling, e.g., Gammaproteobacteria BD7 and Sva0071, as well as novel OTUs representing a large number of phyla.
Collapse
Affiliation(s)
- Gary M King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
19
|
Kang I, Lim Y, Cho JC. Complete genome sequence of Granulosicoccus antarcticus type strain IMCC3135 T, a marine gammaproteobacterium with a putative dimethylsulfoniopropionate demethylase gene. Mar Genomics 2017; 37:176-181. [PMID: 29175002 DOI: 10.1016/j.margen.2017.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/20/2022]
Abstract
Granulosicoccus, the only genus of the family Granulosicoccaceae, occupies a distinct phylogenetic position within the order Chromatiales of the Gammaproteobacteria. The genus has been found in various marine regions, especially associated with diverse marine macroalgae. No genomes have been reported for the genus Granulosicoccus thus far, hampering studies on physiology and lifestyles of this genus. Here we report the complete genome sequence of strain IMCC3135T, the type strain of Granulosicoccus antarcticus isolated from Antarctic coastal seawater. The genome was 7.78Mbp long and harbored many genes involved in sulfur metabolism. In particular, a gene for dimethylsulfoniopropionate (DMSP) demethylase was found in the genome, rendering strain IMCC3135T one of the few marine gammaproteobacteria equipped with the potential for DMSP demethylation.
Collapse
Affiliation(s)
- Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Yeonjung Lim
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
20
|
Rastelli E, Corinaldesi C, Dell'Anno A, Tangherlini M, Martorelli E, Ingrassia M, Chiocci FL, Lo Martire M, Danovaro R. High potential for temperate viruses to drive carbon cycling in chemoautotrophy-dominated shallow-water hydrothermal vents. Environ Microbiol 2017; 19:4432-4446. [DOI: 10.1111/1462-2920.13890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Eugenio Rastelli
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn; Villa Comunale; Naples 80121 Italy
| | - Cinzia Corinaldesi
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Michael Tangherlini
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Eleonora Martorelli
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
| | - Michela Ingrassia
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
- Department of Earth Science; University of Rome Sapienza; Rome Italy
| | - Francesco L. Chiocci
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
- Department of Earth Science; University of Rome Sapienza; Rome Italy
| | - Marco Lo Martire
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn; Villa Comunale; Naples 80121 Italy
| |
Collapse
|
21
|
Kojima H, Watanabe M, Fukui M. Sulfurivermis fontis gen. nov., sp. nov., a sulfur-oxidizing autotroph, and proposal of Thioprofundaceae fam. nov. Int J Syst Evol Microbiol 2017; 67:3458-3461. [PMID: 28875900 DOI: 10.1099/ijsem.0.002137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, chemolithoautotrophic sulfur oxidizer, strain JG42T, was isolated from a hot spring microbial mat. As an electron donor for autotrophic growth, strain JG42T utilized sulfide, thiosulfate, tetrathionate and elemental sulfur. Cells of strain JG42T were oxidase-positive and catalase-negative. The G+C content of the genomic DNA was 65 mol%. The predominant cellular fatty acid was C16 : 0. Phylogenetic analysis of the 16S rRNA gene indicated that strain JG42T belonged to the order Chromatiales, but sequence similarities to the known species were less than 94 %. On the basis of its properties, strain JG42T (=DSM 104776T=NBRC 112696T) is proposed as the type strain of a novel species of a new genus, Sulfurivermis fontis gen. nov., sp. nov., which belongs to the family Thioalkalispiraceae. A new family, Thioprofundaceae fam. nov., is also proposed to accommodate the genus Thioprofundum, transferred from the family Thioalkalispiraceae.
Collapse
Affiliation(s)
- Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Miho Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan.,Postdoctoral Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
22
|
Yang L, Tang L, Liu L, Salam N, Li WJ, Zhang Y. Aquichromatium aeriopus gen. nov., sp. nov., A Non-phototrophic Aerobic Chemoheterotrophic Bacterium, and Proposal of Aquichromatiaceae fam. nov. in the Order Chromatiales. Curr Microbiol 2017; 74:972-978. [PMID: 28585047 DOI: 10.1007/s00284-017-1275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
A gram-staining negative, non-motile, aerobic chemoheterotrophic, ovoid or short rod-shaped bacterium, designated as J89T, was isolated from a seawater sample collected from the coast of Yellow Sea in Qingdao, China. The strain grew at salinities of 1.0-6.0% (w/v) NaCl (optimum, 3.0%). Growth occurred at pH 6.0-9.0 (optimum, pH 7.0) and at 10-35 °C (optimum, 25-30 °C). The genomic DNA G+C content was determined to be 59.3 mol%. Q-8 was detected as the respiratory quinone. The major fatty acids (>10%) were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), and C16:0. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified phospholipids, and an unidentified polar lipid. Comparison of the 16S rRNA gene sequence indicated that the strain was most closely related (<91%) to members of the order Chromatiales in the class Gammaproteobacteria. Phylogenetic analyses showed that this strain represented a distinct phylogenetic lineage in the order Chromatiales and could not be assigned to any of the defined families in the order. On the basis of low sequence similarities and differential characteristics of strain J89T from the genera of neighboring families, the strain is proposed to be a representative of a novel genus Aquichromatium gen. nov. A new family Aquichromatiaceae with the type genus Aquichromatium is proposed. Strain J89T (=MCCC 1K03281T=CMRC C2017206T) is the type strain of the type species Aquichromatium aeriopus sp. nov.
Collapse
Affiliation(s)
- Liqiang Yang
- Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Lili Tang
- Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lan Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Yongyu Zhang
- Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
23
|
Halopeptonella vilamensis gen. nov, sp. nov., a halophilic strictly aerobic bacterium of the family Ectothiorhodospiraceae. Extremophiles 2016; 20:19-25. [PMID: 26475627 DOI: 10.1007/s00792-015-0793-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022]
Abstract
A Gram-negative, halophilic, heterotrophic, rod-shaped, non-spore-forming bacterium (SV525T) was isolated from the sediment of a hypersaline lake located at 4600 m above sea level (Laguna Vilama, Argentina). Strain SV525T was strictly aerobic and formed pink-to-magenta colonies. Growth occurred at 10–35 °C (optimum 25–30 °C), at pH levels 6.0–8.5 (optimum 7.0) and at NaCl concentrations of 7.5–25 % (w/v) with an optimum at 10–15 % (w/v). The strain required sodium and magnesium but not potassium ions for growth. Grows with tryptone, or Bacto Peptone as sole carbon and energy source and requires yeast extract for growth. It produced catalase and oxidase. The predominant ubiquinone was Q-8 and the major fatty acids comprised C18:1 ω7c, C16:0 and C18:0. The DNA G+C content was 60.4 mol% and its polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and a phosphoglycolipid. Phylogenetic analysis based on 16S rRNA gene indicated that strain SV525T belongs to the family Ectothiorhodospiraceae within the class Gammaproteobacteria. On the basis of phylogenetic and phenotypic data, SV525T represents a novel genus and species, for which the name Halopeptonella vilamensis gen. nov., sp. nov. is proposed. The type strain is SV525T (=DSM 21056T =JCM 16388T =NCIMB 14596T).
Collapse
|
24
|
Kojima H, Fukui M. Sulfuriflexus
mobilis gen. nov., sp. nov., a sulfur-oxidizing bacterium isolated from a brackish lake sediment. Int J Syst Evol Microbiol 2016; 66:3515-3518. [DOI: 10.1099/ijsem.0.001227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, 060-0819 Sapporo, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, 060-0819 Sapporo, Japan
| |
Collapse
|
25
|
Slobodkina GB, Baslerov RV, Novikov AA, Viryasov MB, Bonch-Osmolovskaya EA, Slobodkin AI. Inmirania thermothiophila gen. nov., sp. nov., a thermophilic, facultatively autotrophic, sulfur-oxidizing gammaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol 2015; 66:701-706. [PMID: 26582356 DOI: 10.1099/ijsem.0.000773] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic, facultatively autotrophic bacterium, strain S2479T, was isolated from a thermal spring located in a tidal zone of a geothermally heated beach (Kuril Islands, Russia). Cells of strain S2479T were rod-shaped and motile with a Gram-negative cell-wall type. The temperature range for growth was 35-68 °C (optimum 65 °C), and the pH range for growth was pH 5.5-8.8 (optimum pH 6.5). Growth of strain S2479T was observed in the presence of NaCl concentrations ranging from 0.5 to 3.5 % (w/v) (optimum 1.5-2.0 %). The strain oxidized sulfur and thiosulfate as sole energy sources for autotrophic growth under anaerobic conditions with nitrate as electron acceptor. Strain S2479T was also capable of heterotrophic growth by reduction of nitrate with oxidation of low-chain fatty acids and a limited number of other carboxylic acids or with complex proteinaceous compounds. Nitrate was reduced to N2. Sulfur compounds were oxidized to sulfate. Strain S2479T did not grow aerobically during incubation at atmospheric concentration of oxygen but was able to grow microaerobically (1 % of oxygen in gas phase). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was a member of the family Ectothiorhodospiraceae, order Chromatiales, class Gammaproteobacteria. On the basis of phylogenetic and phenotypic properties, strain S2479T represents a novel species of a new genus, for which the name Inmirania thermothiophila gen. nov., sp. nov. is proposed. The type strain of the type species is S2479T ( = DSM 100275T = VKM B-2962T).
Collapse
Affiliation(s)
- Galina B Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| | - Roman V Baslerov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect 33, bld. 2, 119071 Moscow, Russia
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65, 117485 Moscow, Russia
| | - Mikhail B Viryasov
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1, 119899 Moscow, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| | - Alexander I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| |
Collapse
|