1
|
Sarim KM, Shukla R, Bhoyar MS, Kaur B, Singh DP. Arsenic Stress Mitigation Using a Novel Plant Growth-Promoting Bacterial Strain Bacillus mycoides NR5 in Spinach Plant (Spinacia oleracea L.). J Basic Microbiol 2024:e2400401. [PMID: 39439261 DOI: 10.1002/jobm.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Present study aimed to identify arsenic (As)-resistant bacterial strains that can be used to mitigate arsenic stress. A bacterium Bacillus mycoides NR5 having As tolerance limit of 1100 mg L-1 was isolated from Nag River, Maharashtra, India. It was also equipped with plant growth-promoting (PGP) attributes like phosphate solubilization, siderophores, ammonia, and nitrate reduction, with added antibiotic tolerance. Furthermore, scanning electron microscopy (SEM) and transmission electron micrograph (TEM) suggested biosorption as possible mechanisms of arsenic tolerance. A strong peak in FTIR spectra at 3379.0 corresponding to amine in As-treated NR5 also indicated metal interaction with cell surface protein. Amplification of arsenic reductase gene in NR5 further suggested intracellular transformation of As speciation. Moreover, As tolerance capability of NR5 was shown in spinach plants in which the bacterium effectively mitigated 25 ppm As by producing defense-related proline molecules. Evidence from SEM, TEM, and FTIR, concluded biosorption possibly the primary mechanism of As tolerance in NR5 along with the transformation of arsenic. B. mycoides NR5 with PGP attributes, high As tolerance, and antibiotic resistance mediated enhanced As tolerance in spinach plants advocated that the strain can be a better choice for As bioremediation in contaminated agricultural soil and water.
Collapse
Affiliation(s)
- Khan M Sarim
- Molecular Biology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
| | - Renu Shukla
- Molecular Biology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
- Crop Science Division, Indian Council of Agricultural Research (ICAR), Krishi Bhawan, New Delhi, India
| | - Manish S Bhoyar
- Technology Transfer and Business Development Division, CSIR-National Botanical Research Institute (NBRI), Lucknow, Uttar Pradesh, India
| | - Baljeet Kaur
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Dhananjay P Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Falkenberg F, Kohn S, Bott M, Bongaerts J, Siegert P. Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822 T. FEBS Open Bio 2023; 13:2035-2046. [PMID: 37649135 PMCID: PMC10626276 DOI: 10.1002/2211-5463.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023] Open
Abstract
Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822T (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5% (w/v) SDS and 5% H2 O2 (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H2 O2 , suggest it has potential for biotechnological applications.
Collapse
Affiliation(s)
- Fabian Falkenberg
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Sophie Kohn
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Michael Bott
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum JülichGermany
| | - Johannes Bongaerts
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Petra Siegert
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| |
Collapse
|
3
|
Mao Q, Xie X, Pinzon-Nuñez DA, Xie Z, Liu T, Irshad S. Native microalgae and Bacillus XZM remediate arsenic-contaminated soil by forming biological soil crusts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118858. [PMID: 37647731 DOI: 10.1016/j.jenvman.2023.118858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Biological soil crusts (BSCs) are a useful tool for immobilization of metal(loid)s in mining areas. Yet, the typical functional microorganisms involved in promoting the fast development of BSCs and their impacts on arsenic(As) contaminated soil remain unverified. In this study, As-contaminated soil was inoculated with indigenous Chlorella thermophila SM01 (C. thermophila SM01), Leptolyngbya sp. XZMQ, isolated from BSCs in high As-contaminated areas and plant growth-promoting (PGP) bacteria (Bacillus XZM) to construct BSCs in different manners. After 45 days of ex-situ culture experiment, Leptolyngbya sp. XZMQ and bacteria could form obvious BSCs. Compared to single-inoculated microalgae, the co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased soil pH and water content by 10% and 26%, respectively, while decreasing soil EC and density by 19% and 14%, respectively. The soil catalase, alkaline phosphatase, sucrase, and urease activities were also increased by 30.53%, 96.24%, 154.19%, and 272.17%, respectively. The co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM drove the formation of BSCs by producing large amounts of extracellular polymeric substances (EPS). The three-dimensional fluorescence spectroscopy (3D-EEM) analysis showed that induced BSCs increased As immobilization by enhancing the contents of tryptophan and tyrosine substances, fulvic acid, and humic acid in EPS. The presence of the -NH2 and -COOH functional groups in tryptophan residues were determined using Fourier Transform Infrared Spectroscopy (FTIR). X-Ray Diffraction (XRD) analysis showed that there were iron (hydrogen) oxides in BSCs, which could form ternary complexes with humic acid and As, thereby increasing the adsorption of As. Therefore, BSCs formed by co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased the immobilization of As, thereby reducing the content of soluble As in the environment. In summary, our findings innovatively provided a new method for the remediation of As-contaminated soil in mining areas.
Collapse
Affiliation(s)
- Qing Mao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xi Xie
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | | | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Taikun Liu
- Linyi Vocational University of Science and Technology, Linyi, 276000, China
| | - Sana Irshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 51806, China
| |
Collapse
|
4
|
Pradhan S, Choudhury A, Dey S, Hossain MF, Saha A, Saha D. Siderophore-producing Bacillus amyloliquefaciens BM3 mitigate arsenic contamination and suppress Fusarium wilt in brinjal plants. J Appl Microbiol 2023; 134:lxad217. [PMID: 37740438 DOI: 10.1093/jambio/lxad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
AIM Arsenic contamination in agricultural soils poses a serious health risk for humans. Bacteria that produce siderophores, primarily for iron acquisition, can be relevant in combating arsenic toxicity in agricultural soils and simultaneously act as biocontrol agents against plant diseases. We evaluated the arsenic bioremediation and biocontrol potential of the rhizosphere isolate Bacillus amyloliquefaciens BM3 and studied the interaction between the purified siderophore bacillibactin and arsenic. METHODS AND RESULTS BM3 showed high arsenic resistance [MIC value 475 and 24 mM against As(V) and As(III), respectively] and broad spectrum in-vitro antagonism against several phytopathogenic fungi. BM3 was identified by biochemical characterization and 16S rRNA gene sequencing. Scanning electron microscopy (SEM) analysis revealed increased cell size of BM3 when grown in presence of sub-lethal arsenic concentrations. Bioremediation assays showed a 74% and 88.1% reduction in As(V) and As(III) concentrations, respectively. Genetic determinants for arsenic resistance (arsC and aoxB) and antifungal traits (bacAB and chiA) were detected by PCR. Arsenic chelating ability of bacillibactin, the siderophore purified from culture filtrate of BM3 and identified through spectroscopic data analysis, was observed in CAS assay and fluorescence spectrometry. In-vivo application of talc-based formulation of BM3 in brinjal seedlings showed significant reduction in Fusarium wilt disease. CONCLUSION Strain B. amyloliquefaciens BM3 may be useful in arsenic bioremediation and may be considered for large field trials as an alternative to chemical fungicides by inhibiting soil borne pathogens.
Collapse
Affiliation(s)
- Smriti Pradhan
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal 734013, India
| | - Abhinandan Choudhury
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal 734013, India
| | - Sovan Dey
- Department of Chemistry, University of North Bengal, Siliguri, West Bengal 734013, India
| | - Md Firoj Hossain
- Department of Chemistry, University of North Bengal, Siliguri, West Bengal 734013, India
| | - Aniruddha Saha
- Department of Botany, University of North Bengal, Siliguri, West Bengal 734013, India
| | - Dipanwita Saha
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal 734013, India
| |
Collapse
|
5
|
Mohsin H, Shafique M, Zaid M, Rehman Y. Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01068-6. [PMID: 37326815 DOI: 10.1007/s12223-023-01068-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Arsenic is a ubiquitous toxic metalloid, the concentration of which is beyond WHO safe drinking water standards in many areas of the world, owing to many natural and anthropogenic activities. Long-term exposure to arsenic proves lethal for plants, humans, animals, and even microbial communities in the environment. Various sustainable strategies have been developed to mitigate the harmful effects of arsenic which include several chemical and physical methods, however, bioremediation has proved to be an eco-friendly and inexpensive technique with promising results. Many microbes and plant species are known for arsenic biotransformation and detoxification. Arsenic bioremediation involves different pathways such as uptake, accumulation, reduction, oxidation, methylation, and demethylation. Each of these pathways has a certain set of genes and proteins to carry out the mechanism of arsenic biotransformation. Based on these mechanisms, various studies have been conducted for arsenic detoxification and removal. Genes specific for these pathways have also been cloned in several microorganisms to enhance arsenic bioremediation. This review discusses different biochemical pathways and the associated genes which play important roles in arsenic redox reactions, resistance, methylation/demethylation, and accumulation. Based on these mechanisms, new methods can be developed for effective arsenic bioremediation.
Collapse
Affiliation(s)
- Hareem Mohsin
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Maria Shafique
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Muhammad Zaid
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Yasir Rehman
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
6
|
Afordoanyi DM, Diabankana RGC, Komissarov EN, Kuchaev ES, Validov SZ. Characterization of a Novel Bacillus glycinifermentans Strain MGMM1 Based on Full Genome Analysis and Phenotypic Properties for Biotechnological Applications. Microorganisms 2023; 11:1410. [PMID: 37374912 DOI: 10.3390/microorganisms11061410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Bacillus species have gained much attention based on their phenotypic characteristics and their genetic architecture as biological control agents and plant growth-promotor with bioremediation potential. In this study, we analyzed the whole genome of a novel strain, Bacillus glycinifermentans MGMM1, isolated from the rhizosphere of a weed plant (Senna occidentalis) and assayed its phenotypic characteristics, as well as antifungal and biocontrol ability. The whole genome analysis of MGMM1 identified 4259 putative coding sequences, with an encoding density of 95.75% attributed to biological functions, including genes involved in stimulating plant growth, such as acetolactate synthase, alsS, and genes involved in the resistance to heavy metal antimony (arsB and arsC). AntiSMASH revealed the presence of biosynthetic gene clusters plipastatin, fengycin, laterocidine, geobacillin II, lichenysin, butirosin A and schizokinen. Tests in vitro confirmed that MGMM1 exhibited antifungal activity against Fusarium oxysporum f.sp. radicis-lycopersici (Forl) ZUM2407, Alternaria alternata, F. graminearum and F. spp. and produce protease, lipase amylase and cellulase. Bacillus glycinifermentans MGMM1 demonstrated proteolytic (4.82 ± 1.04 U/mL), amylolytic (0.84 ± 0.05 U/mL) and cellulosic (0.35 ± 0.02 U/mL) enzymatic activities, as well as indole-3-acetic acid production (48.96 ± 1.43 μg/mL). Moreover, the probiotic strain MGMM1 demonstrated a high biocontrol potential of inhibiting (up to 51.45 ± 8.08%) the development of tomato disease caused by Forl ZUM2407. These results suggest that B. glycinifermentans MGMM1 has significant potential as a biocontrol, plant growth-promoting agent in agriculture.
Collapse
Affiliation(s)
- Daniel Mawuena Afordoanyi
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Tatar Scientific Research Institute of Agricultural Chemistry and Soil Science, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia
| | - Roderic Gilles Claret Diabankana
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Ernest Nailevich Komissarov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Evgenii Sergeyevich Kuchaev
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Shamil Zavdatovich Validov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
7
|
De Angelis F, Romboni M, Veltre V, Catalano P, Martínez-Labarga C, Gazzaniga V, Rickards O. First Glimpse into the Genomic Characterization of People from the Imperial Roman Community of Casal Bertone (Rome, First–Third Centuries AD). Genes (Basel) 2022; 13:genes13010136. [PMID: 35052476 PMCID: PMC8774527 DOI: 10.3390/genes13010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
This paper aims to provide a first glimpse into the genomic characterization of individuals buried in Casal Bertone (Rome, first–third centuries AD) to gain preliminary insight into the genetic makeup of people who lived near a tannery workshop, fullonica. Therefore, we explored the genetic characteristics of individuals who were putatively recruited as fuller workers outside the Roman population. Moreover, we identified the microbial communities associated with humans to detect microbes associated with the unhealthy environment supposed for such a workshop. We examined five individuals from Casal Bertone for ancient DNA analysis through whole-genome sequencing via a shotgun approach. We conducted multiple investigations to unveil the genetic components featured in the samples studied and their associated microbial communities. We generated reliable whole-genome data for three samples surviving the quality controls. The individuals were descendants of people from North African and the Near East, two of the main foci for tannery and dyeing activity in the past. Our evaluation of the microbes associated with the skeletal samples showed microbes growing in soils with waste products used in the tannery process, indicating that people lived, died, and were buried around places where they worked. In that perspective, the results represent the first genomic characterization of fullers from the past. This analysis broadens our knowledge about the presence of multiple ancestries in Imperial Rome, marking a starting point for future data integration as part of interdisciplinary research on human mobility and the bio-cultural characteristics of people employed in dedicated workshops.
Collapse
Affiliation(s)
- Flavio De Angelis
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (V.V.); (C.M.-L.); (O.R.)
- Correspondence: ; Tel.: +39-0672594350
| | - Marco Romboni
- Department of Biology, University of Pisa, 56121 Pisa, Italy;
| | - Virginia Veltre
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (V.V.); (C.M.-L.); (O.R.)
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Paola Catalano
- Former Servizio di Antropologia, Soprintendenza Speciale Archeologia, Belle Arti e Paesaggio di Roma, 00185 Roma, Italy;
| | - Cristina Martínez-Labarga
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (V.V.); (C.M.-L.); (O.R.)
| | - Valentina Gazzaniga
- Unità di Storia della Medicina e Bioetica, Sapienza University of Rome, 00185 Roma, Italy;
| | - Olga Rickards
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (V.V.); (C.M.-L.); (O.R.)
| |
Collapse
|
8
|
Alotaibi BS, Khan M, Shamim S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021; 9:1628. [PMID: 34442707 PMCID: PMC8402239 DOI: 10.3390/microorganisms9081628] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The rise of anthropogenic activities has resulted in the increasing release of various contaminants into the environment, jeopardizing fragile ecosystems in the process. Heavy metals are one of the major pollutants that contribute to the escalating problem of environmental pollution, being primarily introduced in sensitive ecological habitats through industrial effluents, wastewater, as well as sewage of various industries. Where heavy metals like zinc, copper, manganese, and nickel serve key roles in regulating different biological processes in living systems, many heavy metals can be toxic even at low concentrations, such as mercury, arsenic, cadmium, chromium, and lead, and can accumulate in intricate food chains resulting in health concerns. Over the years, many physical and chemical methods of heavy metal removal have essentially been investigated, but their disadvantages like the generation of chemical waste, complex downstream processing, and the uneconomical cost of both methods, have rendered them inefficient,. Since then, microbial bioremediation, particularly the use of bacteria, has gained attention due to the feasibility and efficiency of using them in removing heavy metals from contaminated environments. Bacteria have several methods of processing heavy metals through general resistance mechanisms, biosorption, adsorption, and efflux mechanisms. Bacillus spp. are model Gram-positive bacteria that have been studied extensively for their biosorption abilities and molecular mechanisms that enable their survival as well as their ability to remove and detoxify heavy metals. This review aims to highlight the molecular methods of Bacillus spp. in removing various heavy metals ions from contaminated environments.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| |
Collapse
|
9
|
Anning C, Asare MO, Junxiang W, Yao G, Xianjun L. Effects of physicochemical properties of Au cyanidation tailings on cyanide microbial degradation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:413-433. [PMID: 33593243 DOI: 10.1080/10934529.2021.1885259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 05/21/2023]
Abstract
The initial cyanide (CN-) concentration and amount of co-contaminants in GCTs can inhibit bacterial growth and reduce the CN--degrading ability of bacteria. Several microorganisms can biotransform a wide range of organic and inorganic industrial contaminants into nontoxic compounds. However, active enzymatic CN- metabolism processes are mostly constrained by the physical and chemical characteristics of GCTs. High concentrations of toxic metal co-contaminants, such as, Pb, and Cr, and factors, such as pH, temperature, and oxygen concentration create oxidative stress and limit the CN--degrading potential of cyanotrophic strains. The effects of such external and internal factors on the CN--degrading ability of bacteria hinder the selection of suitable microorganisms for CN- biodegradation. Therefore, understanding the effects of the physicochemical properties of GCTs on cyanobacteria strains can help identify suitable microbes and favorable environmental conditions to promote microbial growth and can also help design efficient CN- biodegradation processes. In this review, we present a detailed analysis of the physicochemical properties of GCTs and their effects on microbial CN- degradation.
Collapse
Affiliation(s)
- Cosmos Anning
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Michael O Asare
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Wang Junxiang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Geng Yao
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, China
| | - Lyu Xianjun
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Ghosh S, Mohapatra B, Satyanarayana T, Sar P. Molecular and taxonomic characterization of arsenic (As) transforming Bacillus sp. strain IIIJ3-1 isolated from As-contaminated groundwater of Brahmaputra river basin, India. BMC Microbiol 2020; 20:256. [PMID: 32807097 PMCID: PMC7430025 DOI: 10.1186/s12866-020-01893-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Microbe-mediated redox transformation of arsenic (As) leading to its mobilization has become a serious environmental concern in various subsurface ecosystems especially within the alluvial aquifers. However, detailed taxonomic and eco-physiological attributes of indigenous bacteria from As impacted aquifer of Brahmaputra river basin has remained under-studied. Results A newly isolated As-resistant and -transforming facultative anaerobic bacterium IIIJ3–1 from As-contaminated groundwater of Jorhat, Assam was characterized. Near complete 16S rRNA gene sequence affiliated the strain IIIJ3–1 to the genus Bacillus and phylogenetically placed within members of B. cereus sensu lato group with B. cereus ATCC 14579(T) as its closest relative with a low DNA-DNA relatedness (49.9%). Presence of iC17:0, iC15:0 fatty acids and menaquinone 7 corroborated its affiliation with B. cereus group, but differential hydroxy-fatty acids, C18:2 and menaquinones 5 & 6 marked its distinctiveness. High As resistance [Maximum Tolerable Concentration = 10 mM As3+, 350 mM As5+], aerobic As3+ (5 mM) oxidation, and near complete dissimilatory reduction of As 5+ (1 mM) within 15 h of growth designated its physiological novelty. Besides O2, cells were found to reduce As5+, Fe3+, SO42−, NO3−, and Se6+ as alternate terminal electron acceptors (TEAs), sustaining its anaerobic growth. Lactate was the preferred carbon source for anaerobic growth of the bacterium with As5+ as TEA. Genes encoding As5+ respiratory reductase (arr A), As3+ oxidase (aioB), and As3+ efflux systems (ars B, acr3) were detected. All these As homeostasis genes showed their close phylogenetic lineages to Bacillus spp. Reduction in cell size following As exposure exhibited the strain’s morphological response to toxic As, while the formation of As-rich electron opaque dots as evident from SEM-EDX possibly indicated a sequestration based As resistance strategy of strain IIIJ3–1. Conclusion This is the first report on molecular, taxonomic, and ecophysiological characterization of a highly As resistant, As3+ oxidizing, and dissimilatory As5+ reducing Bacillus sp. IIIJ3–1 from As contaminated sites of Brahmaputra river basin. The strain’s ability to resist and transform As along with its capability to sequester As within the cells demonstrate its potential in designing bioremediation strategies for As contaminated groundwater and other ecosystems.
Collapse
Affiliation(s)
- Soma Ghosh
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,Present address: CSIR- National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, 700107, India
| | - Balaram Mohapatra
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,Present address: Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus (UDSC), New Delhi, 110021, India.,Presently affiliated to Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Sector 3 Dwarka, New Delhi, 110078, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
11
|
Bagade A, Nandre V, Paul D, Patil Y, Sharma N, Giri A, Kodam K. Characterisation of hyper tolerant Bacillus firmus L-148 for arsenic oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114124. [PMID: 32078878 DOI: 10.1016/j.envpol.2020.114124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Groundwater arsenic pollution causes millions of deaths worldwide. Long term natural and anthropogenic activities have increased arsenic levels in groundwater causing higher threats of arsenic exposure. Arsenic hyper-tolerant Firmicute Bacillus firmus L-148 was isolated from arsenic limiting Lonar lake soil, which tolerated more than 3 M arsenic and could oxidize 75 mM arsenite [As(III)] in 14 days. It oxidized As(III) in presence of heavy metals and had unusual pH optima at 9.2. B. firmus L-148 was studied at the biochemical, protein, genomic and transcript level for understanding its arsenic oxidizing machinery. The proteomic and transcript analysis exhibited the presence of ars and aio operon and supported the inducible nature of ars operon. Robust, hyper-tolerant, fast As(III) oxidizing, least nutrient requiring and multi-metal resistance qualities of the strain were used in microcosm studies for bioremediation. Artificial groundwater mimicking microcosm with 75 mM As(III) was developed. Modulation of carbon source, iron and multi metals affected growth and As(III) oxidation rate. The As(III) oxidation was recorded to be 77% in 15 days in presence of sodium acetate and Fe ions. This microcosm study can be explored for bioremediation of arsenic contaminated water and followed by precipitation using other methods.
Collapse
Affiliation(s)
- Aditi Bagade
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Vinod Nandre
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India
| | - Yugendra Patil
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Nisha Sharma
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Ashok Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kisan Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
12
|
Banerjee A, Hazra A, Das S, Sengupta C. Groundwater inhabited Bacillus and Paenibacillus strains alleviate arsenic-induced phytotoxicity of rice plant. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1048-1058. [PMID: 32062985 DOI: 10.1080/15226514.2020.1725871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arsenic contamination in agricultural soil now imposing a major threat to crop productivity and causing several hazardous health effects through percolation in food chain. Bioremediation, an efficient way of soil health restoration toward sustainability offered by some soil-borne microorganisms, has been reported. The present work deals with application of two potent arsenic-tolerant bacterial strains (Bacillus thuringiensis A01 and Paenibacillus glucanolyticus B05), obtained from natural sources in modulating overall growth and antioxidant defense against arsenic-treated rice plants. Between the two, former could reduce arsenic uptake up to 56% (roots) and 85% (shoots), and the preceding one up to 31% (roots) and 65% (shoots) in a hydroponic environment. Germination percentage was noted to be enhanced significantly (p ≤ 0.05). Expression of oxidative stress defensive enzymes such as superoxide dismutase, peroxidase and catalase have been augmented at seedling stages (21 days) toward detoxification of arsenic imposed excess ROS generation. Increment of leaf Thiobarbituric acid reactive substances due to arsenic exposure have been ameliorated by both the bacterial application. Phenolic and flavonoid mediated free radical scavenging ability of the test plants elevated significantly (p ≤ 0.05). The present work revealed that, selected bacterial strains can perform efficient bioremediation against arsenic pollutant rice cultivation.
Collapse
Affiliation(s)
| | - Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, India
| | - Sauren Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
13
|
Kumari N, Rana A, Jagadevan S. Arsenite biotransformation by Rhodococcus sp.: Characterization, optimization using response surface methodology and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:577-589. [PMID: 31216511 DOI: 10.1016/j.scitotenv.2019.06.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/11/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
A large population of the world is under increased health risk due to consumption of arsenic contaminated groundwater. The present study investigates the arsenic resistance and arsenic biotransforming ability in three bacterial species, namely Bacillus arsenicus, Rhodococcus sp. and Alcaligenes faecalis for employing them in potential groundwater bioremediation programmes. The tolerance to pH levels for the 3 organisms are 6-9 for A. faecalis, 5-10 for Rhodococcus and 5-9 for B. arsenicus. The arsenic bio-oxidation capacity was qualitatively confirmed by using the silver nitrate method and all three bacteria were able to convert arsenite to arsenate. The arsenite tolerance capacity (MIC values) were found to be 3 mM, 7 mM and 12 mM for B. arsenicus, A. faecalis and Rhodococcus sp. respectively. The changes in cellular morphology of these strains under various arsenic stress conditions were studied using advanced cell imaging techniques such as scanning electron microscopy and Atomic Force Microscopy. Rhodococcus sp. emerged as a potential candidate for bioremediation application. A response surface methodology was employed to optimize key parameters affecting arsenic removal (pH, Iron (II) soluble, concentration of humic acid and initial arsenic concentration) and at optimized conditions, experimental runs demonstrated 48.34% removal of As (III) (initial concentration = 500 μg/L) in a duration of 6 h, with complete removal after 48 h. Evidences from this work indicate that arsenic removal occurs through bioaccumulation, biotransformation and biosorption. The present study makes the first attempt to investigate the arsenic removal capability of Rhodococcus sp. in synthetic groundwater by employing bacterial whole cell assays. This study also sheds light on the arsenic tolerance and detoxification mechanisms employed by these bacteria, knowledge of which could be crucial in the successful implementation of in-situ bioremediation programmes.
Collapse
Affiliation(s)
- Nisha Kumari
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Anu Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
14
|
Maizel D, Balverdi P, Rosen B, Sales AM, Ferrero MA. Arsenic-hypertolerant and arsenic-reducing bacteria isolated from wells in Tucumán, Argentina. Can J Microbiol 2018; 64:876-886. [DOI: 10.1139/cjm-2017-0535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arsenic-hypertolerant bacteria were isolated from arsenic-contaminated well water from the village of Los Pereyra in Tucumán province, Argentina. Microorganisms that biotransform arsenic are a major factor in arsenic mobilization in contaminated aquifers. Groundwater analyses showed a level of arsenic contamination (mean concentration of 978 μg·L−1) that exceeds the safe drinking water limit of 10 μg·L−1recommended by the World Health Organization and the Argentine Food Code. There was considerable spatial variability in the concentration of arsenic in each of the wells analyzed and in the distribution of the major anions HCO3–, SO42–, and Cl–. Eighteen bacterial strains were characterized. Six strains belonging to the Actinobacteria phylum were able to grow in media with 20 mmol·L–1As(III) or 200 mmol·L–1As(V) and were also highly resistant to Cr, Cd, and Cu. Their ability to biotransform arsenic was examined by speciation of the products by high-performance liquid chromatography inductively coupled plasma mass spectrometry. In addition, two strains, Brevibacterium sp. strain AE038-4 and Microbacterium sp. strain AE038-20, were capable of aerobic arsenate reduction, which suggests that these strains could increase the mobility of arsenic by formation of more mobile As(III).
Collapse
Affiliation(s)
- Daniela Maizel
- PROIMI–CONICET, Universidad Nacional de Tucumán, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Pilar Balverdi
- Instituto de Química Analítica, Facultad de Bioquímica, Química y Farmacia-Universidad Nacional de Tucumán, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Barry Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Adriana M. Sales
- Instituto de Química Analítica, Facultad de Bioquímica, Química y Farmacia-Universidad Nacional de Tucumán, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Marcela A. Ferrero
- PROIMI–CONICET, Universidad Nacional de Tucumán, 4000 San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
15
|
Biswas R, Sarkar A. Characterization of arsenite-oxidizing bacteria to decipher their role in arsenic bioremediation. Prep Biochem Biotechnol 2018; 49:30-37. [DOI: 10.1080/10826068.2018.1476883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Rimi Biswas
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha
| |
Collapse
|
16
|
Fictibacillus iocasae sp. nov., isolated from the deep-sea sediment in Pacmanus, Manus Basin. Arch Microbiol 2018; 200:1123-1128. [DOI: 10.1007/s00203-018-1527-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/18/2017] [Accepted: 05/18/2018] [Indexed: 11/25/2022]
|
17
|
Liu Y, Zhang Z, Li Y, Wen Y, Fei Y. Response of soil microbial communities to roxarsone pollution along a concentration gradient. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:819-827. [PMID: 28276888 DOI: 10.1080/10934529.2017.1281687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone degradation.
Collapse
Affiliation(s)
- Yaci Liu
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
- b Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey , Shijiazhuang, Hebei , China
| | - Zhaoji Zhang
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
| | - Yasong Li
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
- c CSIRO Land and Water , Urrbrae , South Australia , Australia
| | - Yi Wen
- d Department of Water Environmental Planning , Chinese Academy for Environmental Planning , Beijing , China
| | - Yuhong Fei
- a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences , Shijiazhuang , China
| |
Collapse
|
18
|
Karn SK, Pan X, Jenkinson IR. Bio-transformation and stabilization of arsenic (As) in contaminated soil using arsenic oxidizing bacteria and FeCl 3 amendment. 3 Biotech 2017; 7:50. [PMID: 28444594 DOI: 10.1007/s13205-017-0681-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/27/2017] [Indexed: 10/19/2022] Open
Abstract
A combination of biological and chemical methods was applied in the present study to evaluate the removal of arsenic (As) from contaminated soil. The treatment involved As-oxidizing microbes aimed of transforming the more toxic As (III) to less toxic As (V) in the soil. FeCl3 was added at three different concentrations (1, 2, and 3%) to stabilize the As (V). Leaching of the treated soil was investigated by making a soil column and passing tap water through it to determine solubility. Experimental results indicated that the bacterial activity had a pronounced positive effect on the transformation of As, and decreased the soluble exchangeable fraction from 50 to 0.7 mg/kg as compared to control and from 50 to 44 mg/kg after 7 days of treatment. FeCl3 also played an indispensable role in the adsorption/stabilization of As in the soil; 1 and 2% FeCl3 strongly influenced the adsorption of As (V). The soil leachate contained negligible amount of As and trace metals, which indicates that combining an efficient microbe with a chemical treatment is very effective route for the removal and stabilization of As from contaminated soil in the environment.
Collapse
|
19
|
Complete genome sequence of Fictibacillus arsenicus G25-54, a strain with toxicity to nematodes. J Biotechnol 2017; 241:98-100. [PMID: 27902921 DOI: 10.1016/j.jbiotec.2016.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 02/01/2023]
Abstract
Root-knot nematodes (RKNs) can infect almost all crops and cause huge economic losses in agriculture worldwide. An in-depth understanding of bacteria with nematicidal activity is essential for an effective and environmentally friendly control of RKNs. Fictibacillus arsenicus G25-54, a gram-positive and spore-forming bacterium isolated from a submerged sand bank, shows nematicidal activity against free-living Caenorhabditis elegans and RKNs. Here, we report the complete genome of F. arsenicus G25-54, which contains a circular chromosome and encodes ten potential nematicidal factors with twelve secondary metabolite gene clusters. Additionally, it encodes five arsenic resistance and transformation related proteins, which may provide the potential arsenic-resistance activity.
Collapse
|
20
|
Podder MS, Majumder CB. Bioaccumulation of As(III)/As(V) ions by living cells of Corynebacterium glutamicum MTCC 2745. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1238485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. S. Podder
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Roorkee, India
| | - C. B. Majumder
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Roorkee, India
| |
Collapse
|
21
|
Zhang Z, Yin N, Cai X, Wang Z, Cui Y. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China. J Environ Sci (China) 2016; 47:165-173. [PMID: 27593283 DOI: 10.1016/j.jes.2015.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 06/06/2023]
Abstract
A mesophilic, Gram-negative, arsenite[As(III)]-oxidizing and arsenate[As(V)]-reducing bacterial strain, Pseudomonas sp. HN-2, was isolated from an As-contaminated soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Pseudomonas stutzeri. Under aerobic conditions, this strain oxidized 92.0% (61.4μmol/L) of arsenite to arsenate within 3hr of incubation. Reduction of As(V) to As(III) occurred in anoxic conditions. Pseudomonas sp. HN-2 is among the first soil bacteria shown to be capable of both aerobic As(III) oxidation and anoxic As(V) reduction. The strain, as an efficient As(III) oxidizer and As(V) reducer in Pseudomonas, has the potential to impact arsenic mobility in both anoxic and aerobic environments, and has potential application in As remediation processes.
Collapse
Affiliation(s)
- Zhennan Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenzhou Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
22
|
Dong DT, Yamamura S, Amachi S. Impact of Arsenite on the Bacterial Community Structure and Diversity in Soil. Microbes Environ 2016; 31:41-8. [PMID: 26903368 PMCID: PMC4791115 DOI: 10.1264/jsme2.me15093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The impact of arsenite (As[III]) on the bacterial community structure and diversity in soil was determined by incubating soil slurries with 50, 500, and 5,000 μM As(III). As(III) was oxidized to arsenate (As[V]), and the microbial contribution to As(III) oxidation was 70–100%. PCR-denaturing gradient gel electrophoresis revealed that soil bacterial diversity decreased in the presence of As(III). Bacteria closely related to the family Bacillaceae were predominant in slurry spiked with 5,000 μM As(III). The population size of culturable As(III)-resistant bacteria was 37-fold higher in this slurry than in unspiked slurry (p < 0.01), indicating that high levels of As(III) stimulate the emergence of As(III)-resistant bacteria. As(III)-resistant bacteria isolated from slurry spiked with 5,000 μM As(III) were mainly affiliated with the genus Bacillus; however, no strains showed As(III)-oxidizing capacity. An As(III)-oxidizing bacterial community analysis based on As(III) oxidase gene (aioA) sequences demonstrated that diversity was the lowest in slurry spiked with 5,000 μM As(III). The deduced AioA sequences affiliated with Alphaproteobacteria accounted for 91–93% of all sequences in this slurry, among which those closely related to Bosea spp. were predominant (48–86%). These results suggest that exposure to high levels of As(III) has a significant impact on the composition and diversity of the soil bacterial community, including the As(III)-oxidizing bacterial community. Certain As(III)-oxidizing bacteria with strong As(III) resistance may be enriched under high As(III) levels, while more sensitive As(III) oxidizers are eliminated under these conditions.
Collapse
|
23
|
Dey U, Chatterjee S, Mondal NK. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. ACTA ACUST UNITED AC 2016; 10:1-7. [PMID: 28352518 PMCID: PMC5040859 DOI: 10.1016/j.btre.2016.02.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/25/2022]
Abstract
Isolation of two rod-shaped Gram-positive bacteria. Isolates tolerate up to 4500 ppm and 550 ppm concentration of arsenate and arsenite. Bacteria mediated arsenic bioremediation.
Ground water arsenic contamination is a widespread problem in many developing countries including Bangladesh and India. In recent years development of modern innovative technologies for the removal of arsenic from aqueous system has become an interesting topic for research. In this present study, two rod shaped Gram-positive bacteria are being reported, isolated from arsenic affected ground water of Purbasthali block of Burdwan, West Bengal, India, which can tolerate arsenate concentration up to 4500 ppm and 550 ppm of arsenite concentration. From biochemical analysis and 16S rRNA sequencing, they were identified as Bacillus sp. and Aneurinibacillus aneurinilyticus respectively. The isolates SW2 and SW4 can remove 51.45% and 51.99% of arsenite and 53.29% and 50.37% of arsenate, respectively from arsenic containing culture media. Both of the isolate can oxidize arsenite to less toxic arsenate. These two arsenic resistant bacteria can be used as a novel pathway for the bioremediation of arsenic.
Collapse
Affiliation(s)
- Uttiya Dey
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| | - Soumendranath Chatterjee
- Parasitology and Microbiology Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, India
| | - Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan 713104, India
| |
Collapse
|
24
|
Das S, Jean JS, Chou ML, Rathod J, Liu CC. Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: Implications for mitigation of arsenic contamination in paddies. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:10-18. [PMID: 26448489 DOI: 10.1016/j.jhazmat.2015.09.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/09/2015] [Accepted: 09/21/2015] [Indexed: 05/14/2023]
Abstract
Arsenite-oxidizing bacteria exhibiting plant growth promoting (PGP) traits can have the advantages of reducing As-uptake by rice and promoting plant growth in As-stressed soil. A gram-positive bacterium Bacillus flexus ASO-6 resistant to high levels of As (32 and 280 mM for arsenite and arsenate, respectively) and exhibiting elevated rates of As(III) oxidation (Vmax=1.34 μM min(-1) 10(-7) cell) was isolated from rhizosphere of rice. The presence of aoxB gene and exhibition of As(III)-oxidase enzyme activity of this strain was observed. The ability of the strain to produce siderophore, IAA, ACC-deaminase and to solubilize phosphate was verified. The rice seed treated with the strain exhibited significantly improved seed germination and seedling vigor compared with the un-inoculated seeds. The bacterial inoculation significantly increased root biomass, straw yield, grain yield, chlorophyll and carotenoid in the rice plant. Moreover, As uptake from root to shoot and As accumulation in straw and grain decreased significantly as a result of the bacterial inoculation. Noteworthy, the inoculation effect is more prominent in non-flooded soil than it is in flooded soil. Owing to its wide action spectrum, this As(III)-oxidizing PGPB could serve as a potential bio-inoculant for mitigation of As in paddies and sustainable rice production in As-contaminated areas.
Collapse
Affiliation(s)
- Suvendu Das
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jiin-Shuh Jean
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Mon-Lin Chou
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jagat Rathod
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002 Gujarat, India
| | - Chia-Chuan Liu
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Podder M, Majumder C. Fixed-bed column study for As(III) and As(V) removal and recovery by bacterial cells immobilized on Sawdust/MnFe2O4 composite. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
26
|
Abstract
ABSTRACT
The family
Bacillaceae
constitutes a phenotypically diverse and globally ubiquitous assemblage of bacteria. Investigation into how evolution has shaped, and continues to shape, this family has relied on several widely ranging approaches from classical taxonomy, ecological field studies, and evolution in soil microcosms to genomic-scale phylogenetics, laboratory, and directed evolution experiments. One unifying characteristic of the
Bacillaceae
, the endospore, poses unique challenges to answering questions regarding both the calculation of evolutionary rates and claims of extreme longevity in ancient environmental samples.
Collapse
|
27
|
Sarkar A, Kazy SK, Sar P. Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8645-8662. [PMID: 24764001 DOI: 10.1007/s11356-014-2759-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Ten different Gram-negative arsenic (As)-resistant and As-transforming bacteria isolated from As-rich groundwater of West Bengal were characterized to assess their role in As mobilization. 16S rRNA gene analysis confirmed the affiliation of these bacteria to genera Achromobacter, Brevundimonas, Rhizobium, Ochrobactrum, and Pseudoxanthomonas. Along with superior As-resistance and As-transformation abilities, the isolates showed broad metabolic capacity in terms of utilizing a variety of electron donors and acceptors (including As) under aerobic and anaerobic conditions, respectively. Arsenic transformation studies performed under various conditions indicated highly efficient As(3+) oxidation or As(5+) reduction kinetics. Genes encoding As(3+) oxidase (aioA), cytosolic As(5+) reductase (arsC), and As(3+) efflux pump (arsB and acr3) were detected within the test isolates. Sequence analyses suggested that As homeostasis genes (particularly arsC, arsB, and acr3) were acquired by most of the bacteria through horizontal gene transfer. A strong correlation between As resistance phenotype and the presence of As(3+) transporter genes was observed. Microcosm study showed that bacterial strain having cytosolic As(5+) reductase property could play important role in mobilizing As (as As(3+)) from subsurface sediment.
Collapse
Affiliation(s)
- Angana Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | | | |
Collapse
|
28
|
Davolos D, Pietrangeli B. A molecular study on bacterial resistance to arsenic-toxicity in surface and underground waters of Latium (Italy). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 96:1-9. [PMID: 23870163 DOI: 10.1016/j.ecoenv.2013.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 05/08/2023]
Abstract
Latium, a region in central Italy, is known for its extensive volcanic areas that make a significant contribution to the arsenic (As) contamination of freshwater environments, even though some degree of As water pollution may be caused by human activities. The information available on indigenous As-resistant prokaryotes in aquatic environments of Latium is, however, still limited. In this study, we describe new bacteria that are resistant to arsenic toxicity and were isolated from the surface waters of Lake Vico and the Sacco River, two groundwater systems in Latium, as well as from bottled natural mineral water from the same region. The 16S rRNA gene sequence analysis for the As-resistant strains in lake and river waters points to a prevalence of β- and γ-Proteobacteria, while α-Proteobacteria, Firmicutes and Bacteroidetes are represented to a lesser extent. By contrast, solely γ-Proteobacteria were isolated from groundwater samples. The presence of Actinobacteria was documented exclusively in bottled mineral water. In addition, we conducted a DNA sequence-based study on the gene codifying arsB, an As(III) efflux membrane protein pump related to arsenic resistance, for all the As-resistant bacterial isolates. A phylogenetic analysis was carried out on the newly sequenced 16S rRNA genes and arsB in the present study as well as on an additional 16S rRNA/arsB dataset we obtained previously from Lake Albano, from the Tiber and from a well in Bassano Romano located in Latium (Davolos and Pietrangeli, 2011). Overall, the phylogenetic diversity of As-resistant bacteria in underground water was very limited if compared with lentic and lotic waters. Lastly, our molecular data support the hypothesis that the horizontal gene transfer of ars in As-containing freshwater environments is not limited to closely-related genomes, but also occurs between bacteria that are distant from an evolutionary viewpoint, thereby indicating that such genetic events may be considered a source of microbial resistance to arsenic-toxicity.
Collapse
Affiliation(s)
- Domenico Davolos
- INAIL-Research, Certification, Verification Area, Department of Productive Plants and Human Settlements (DIPIA), Via Urbana, 167, 00184 Rome, Italy.
| | | |
Collapse
|
29
|
Majumder A, Bhattacharyya K, Bhattacharyya S, Kole SC. Arsenic-tolerant, arsenite-oxidising bacterial strains in the contaminated soils of West Bengal, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:1006-1014. [PMID: 23876545 DOI: 10.1016/j.scitotenv.2013.06.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 06/02/2023]
Abstract
As biological agents represent an affordable alternative to costly metal decontamination technologies, we isolated arsenic (As) oxidising bacteria from the As-contaminated soils of West Bengal, India. These strains were closely related to various species of Bacillus and Geobacillus based on their 16S rRNA gene sequences. They were found to be hyper-resistant to both As(V) (167-400 mM) and As(III) (16-47 mM). Elevated rates of As(III) oxidation (278-1250 μM h(-1)) and arsenite oxidase activity (2.1-12.5 nM min(-1) mg(-1) protein) were observed in these isolates. Screening identified four strains as superior As-oxidisers. Among them, AMO-10 completely (100%) oxidised 30 mM of As(III) within 24 h. The presence of the aoxB gene was confirmed in the screened isolates. Phylogenetic tree construction based on the aoxB sequence revealed that two strains, AGO-S5 and AGH-02, clustered with Achromobacter and Variovorax, whereas the other two (AMO-10 and ADP-25) remained unclustered. The increased rate of As(III) oxidation by these native strains might be exploited for the remediation of As in contaminated environments. Notably, this study presents the first correlation regarding the presence of the aoxB gene and As(III) oxidation ability in Geobacillus stearothermophilus.
Collapse
Affiliation(s)
- Aparajita Majumder
- Arsenic Research Laboratory, Bidhan Chandra Krishi Viswavidyalaya, Kalyani 741235, West Bengal, India.
| | | | | | | |
Collapse
|
30
|
Ettoumi B, Guesmi A, Brusetti L, Borin S, Najjari A, Boudabous A, Cherif A. Microdiversity of deep-sea Bacillales isolated from Tyrrhenian sea sediments as revealed by ARISA, 16S rRNA gene sequencing and BOX-PCR fingerprinting. Microbes Environ 2013; 28:361-9. [PMID: 24005887 PMCID: PMC4070960 DOI: 10.1264/jsme2.me13013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With respect to their terrestrial relatives, marine Bacillales have not been sufficiently investigated. In this report, the diversity of deep-sea Bacillales, isolated from seamount and non-seamount stations at 3,425 to 3,580 m depth in the Tyrrhenian Sea, was investigated using PCR fingerprinting and 16S rRNA sequence analysis. The isolate collection (n=120) was de-replicated by automated ribosomal intergenic spacer analysis (ARISA), and phylogenetic diversity was analyzed by 16S rRNA gene sequencing of representatives of each ARISA haplotype (n=37). Phylogenetic analysis of isolates showed their affiliation to six different genera of low G+C% content Gram-positive Bacillales: Bacillus, Staphylococcus, Exiguobacterium, Paenibacillus, Lysinibacillus and Terribacillus. Bacillus was the dominant genus represented by the species B. licheniformis, B. pumilus, B. subtilis, B. amyloliquefaciens and B. firmus, typically isolated from marine sediments. The most abundant species in the collection was B. licheniformis (n=85), which showed seven distinct ARISA haplotypes with haplotype H8 being the most dominant since it was identified by 63 isolates. The application of BOX-PCR fingerprinting to the B. licheniformis sub-collection allowed their separation into five distinct BOX genotypes, suggesting a high level of intraspecies diversity among marine B. licheniformis strains. This species also exhibited distinct strain distribution between seamount and non-seamount stations and was shown to be highly prevalent in non-seamount stations. This study revealed the great microdiversity of marine Bacillales and contributes to understanding the biogeographic distribution of marine bacteria in deep-sea sediments.
Collapse
Affiliation(s)
- Besma Ettoumi
- LR Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar
| | | | | | | | | | | | | |
Collapse
|
31
|
Glaeser SP, Dott W, Busse HJ, Kämpfer P. Fictibacillus phosphorivorans gen. nov., sp. nov. and proposal to reclassify Bacillus arsenicus, Bacillus barbaricus, Bacillus macauensis, Bacillus nanhaiensis, Bacillus rigui, Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus. Int J Syst Evol Microbiol 2013; 63:2934-2944. [PMID: 23355698 DOI: 10.1099/ijs.0.049171-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-positive-staining, aerobic, endospore-forming bacterium (Ca7(T)) was isolated from a bioreactor showing extensive phosphorus removal. Based on 16S rRNA gene sequence similarity comparisons, strain Ca7(T) was grouped in the genus Bacillus, most closely related to Bacillus nanhaiensis JSM 082006(T) (100 %), Bacillus barbaricus V2-BIII-A2(T) (99.2 %) and Bacillus arsenicus Con a/3(T) (97.7 %). Moderate 16S rRNA gene sequence similarities were found to the type strains of the species Bacillus gelatini and Bacillus rigui (96.4 %), Bacillus macauensis (95.1 %) and Bacillus solisalsi (96.1 %). All these species were grouped into a monophyletic cluster and showed very low sequence similarities (<94 %) to the type species of the genus Bacillus, Bacillus subtilis. The quinone system of strain Ca7(T) consists predominantly of menaquinone MK-7. The polar lipid profile exhibited the major compounds diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. In addition, minor compounds of an unidentified phospholipid and an aminophospholipid were detected. No glycolipids were found in strain Ca7(T), which was consistent with the lipid profiles of B. nanhaiensis, B. barbaricus, B. arsenicus, B. rigui, B. solisalsi, B. macauensis and B. gelatini, but in contrast to B. subtilis. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid and the polyamine pattern contained predominantly spermidine and spermine. The major fatty acids, which were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0, supported the grouping of strain Ca7(T) in the family Bacillaceae. The strain showed DNA-DNA similarities of 48 % (reciprocal 47 %) to B. nanhaiensis DSM 23009(T), 31 % (reciprocal 36 %) to B. barbaricus V2-BIII-A2(T) and 29 % (reciprocal 39 %) to B. arsenicus DSM 15822(T), respectively. These results clearly demonstrate that strain Ca7(T) is a representative of a novel species, which can be differentiated from its closest relatives by physiological and biochemical tests. Because of the low sequence similarity of strain Ca7(T) to B. subtilis, which was shared by B. nanhaiensis, B. barbaricus, B. arsenicus, B. gelatini, B. rigui, B. solisalsi and B. macauensis, and their unique lipid patterns, we propose that strain Ca7(T) represents a novel species in a novel genus for which the name Fictibacillus phosphorivorans gen. nov., sp. nov. is proposed. The type strain is Ca7(T) (= CCM 8426(T) = LMG 27063(T)). In addition we propose the reclassification of B. nanhaiensis, B. barbaricus, B. arsenicus, B. rigui, B. macauensis, B. solisalsi and B. gelatini as Fictibacillus nanhaiensis comb. nov., Fictibacillus barbaricus comb. nov., Fictibacillus arsenicus comb. nov., Fictibacillus rigui comb. nov., Fictibacillus macauensis comb. nov., Fictibacillus solisalsi comb. nov. and Fictibacillus gelatini comb. nov., respectively [type strains JSM 082006(T) (= DSM 23009(T) = KCTC 13712(T)), V2-BIII-A2(T) ( = CCM 4982(T) = DSM 14730(T)), Con a/3(T) ( = MTCC 4380(T) = DSM 15822(T) = JCM 12167(T)), WPCB074(T) ( = KCTC 13278(T) = JCM 16348(T)), ZFHKF-1(T) ( = JCM 13285(T) = DSM 17262(T)), YC1(T) ( = KCTC 13181(T) = CGMCC 1.6854(T)) and LMG 21881(T) ( = DSM 15866(T)), respectively].
Collapse
Affiliation(s)
- Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Wolfgang Dott
- Institut für Hygiene und Umweltmedizin, RWTH Aachen, Germany
| | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| |
Collapse
|
32
|
Yen JH, Wang YS, Hsu WS, Chen WC. Phylogenetic changes in soil microbial and diazotrophic diversity with application of butachlor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:49-56. [PMID: 23030440 DOI: 10.1080/03601234.2012.716729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We investigated changes in population and taxonomic distribution of cultivable bacteria and diazotrophs with butachlor application in rice paddy soils. Population changes were measured by the traditional plate-count method, and taxonomic distribution was studied by 16S rDNA sequencing, then maximum parsimony phylogenic analysis with bootstrapping (1,000 replications). The bacterial population was higher after 39 than 7 days of rice cultivation, which indicated the augmentation of soil microbes by rice root exudates. The application of butachlor increased the diazotrophic population in both upper (0-3 cm) and lower (3-15 cm) layers of soils. Especially at day 39, the population of diazotrophs was 1.8 and 1.6 times that of the control in upper and lower layer soils, respectively. We found several bacterial strains only with butachlor application; examples are strains closest to Bacillus arsenicus, B. marisflavi, B. luciferensis, B. pumilus, and Pseudomonas alvei. Among diazotrophs, three strains closely related to Streptomyces sp. or Rhrizobium sp. were found only with butachlor application. The population of cultivable bacteria and the species composition were both changed with butachlor application, which explains in part the contribution of butachlor to augmenting soil nitrogen-fixing ability.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
33
|
Abstract
Here, we report the draft genome sequence of Bacillus macauensis ZFHKF-1, a novel long-chain bacterium previously isolated and identified by us (Zhang T, Fan XJ, Hanada S, Kamagata Y, Fang HHP, J. Syst. Evol. Microbiol. 56:349-353, 2006). The genome provides basic genetic information to understand this particular species and explore the potential mechanism of long-chain formation. The type strain is ZFHKF-1 (= JCM 13285 = DSM 17262).
Collapse
|
34
|
Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile. Extremophiles 2012; 16:523-38. [PMID: 22555750 DOI: 10.1007/s00792-012-0452-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
Abstract
Microbial populations are involved in the arsenic biogeochemical cycle in catalyzing arsenic transformations and playing indirect roles. To investigate which ecotypes among the diverse microbial communities could have a role in cycling arsenic in salt lakes in Northern Chile and to obtain clues to facilitate their isolation in pure culture, sediment samples from Salar de Ascotán and Salar de Atacama were cultured in diluted LB medium amended with NaCl and arsenic, at different incubation conditions. The samples and the cultures were analyzed by nucleic acid extraction, fingerprinting analysis, and sequencing. Microbial reduction of As was evidenced in all the enrichments carried out in anaerobiosis. The results revealed that the incubation factors were more important for determining the microbial community structure than arsenic species and concentrations. The predominant microorganisms in enrichments from both sediments belonged to the Firmicutes and Proteobacteria phyla, but most of the bacterial ecotypes were confined to only one system. The occurrence of an active arsenic biogeochemical cycle was suggested in the system with the highest arsenic content that included populations compatible with microorganisms able to transform arsenic for energy conservation, accumulate arsenic, produce H(2), H(2)S and acetic acid (potential sources of electrons for arsenic reduction) and tolerate high arsenic levels.
Collapse
|
35
|
Shakya S, Pradhan B, Smith L, Shrestha J, Tuladhar S. Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 95 Suppl:S250-S255. [PMID: 21868146 DOI: 10.1016/j.jenvman.2011.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 06/29/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
Arsenic (As) contamination of groundwater is a serious Environmental Health Management issue of drinking water sources especially in Terai region of Nepal. Many studies have reported that due to natural abundance of arsenic in the environment, various bacteria have developed different resistance mechanisms for arsenic compound. In this study, the culturable arsenic-resistant bacteria indigenous to surfacewater as well as groundwater from Rautahat District of Nepal were randomly isolated by standard plate count method on the basis of viable growth on plate count agar amended with arsenate ranging from 0, 0.5, 10, 40, 80 to 160 milligram per liter (mg/l). With respect to the morphological and biochemical tests, nine morphologically distinct potent arsenate tolerant bacteria showed relatedness with Micrococcus varians, Micrococcus roseus, Micrococcus luteus, Pseudomonas maltophilia, Pseudomonas sp., Vibrio parahaemolyticus, Bacillus cereus, Bacillus smithii 1 and Bacillus smithii 2. The isolates were capable of tolerating more than 1000 mg/l of arsenate and 749 mg/l of arsenite. Likewise, bioaccumulation capability was highest with M. roseus (85.61%) and the least with B. smithii (47.88%) indicating the potential of the organisms in arsenic resistance and most probably in bioremediation.
Collapse
Affiliation(s)
- S Shakya
- Department of Biotechnology, Kathmandu University, Dhulikhel, Kavre, P.O. Box 6250, Kathmandu, Nepal.
| | | | | | | | | |
Collapse
|
36
|
Isolation, purification, and characterization of xylanase produced by a new species of bacillus in solid state fermentation. Int J Microbiol 2012; 2012:683193. [PMID: 22315613 PMCID: PMC3270423 DOI: 10.1155/2012/683193] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 11/17/2022] Open
Abstract
A thermoalkalophilic new species of Bacillus, similar to Bacillus arseniciselenatis DSM 15340, produced extracellular xylanase under solid state fermentation when wheat bran is used as carbon source. The extracellular xylanase was isolated by ammonium sulfate (80%) precipitation and purified using ion exchange chromatography. The molecular weight of xylanase was ~29.8 kDa. The optimum temperature and pH for the enzyme activity were 50°C and pH 8.0. The enzyme was active on birchwood xylan and little active on p-nitrophenyl xylopyranoside but not on Avicel, CMC, cellobiose, and starch, showing its absolute substrate specificity. For birchwood xylan, the enzyme gave a Km 5.26 mg/mL and Vmax 277.7 μmol/min/mg, respectively. In addition, the xylanase was also capable of producing high-quality xylo-oligosaccharides, which indicated its application potential not only in pulp biobleaching processes but also in the nutraceutical industry.
Collapse
|
37
|
Controversy over the report on a bacterium that feeds on arsenic. J Biosci 2011; 36:555-7. [PMID: 21857101 DOI: 10.1007/s12038-011-9076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Cuebas M, Villafane A, McBride M, Yee N, Bini E. Arsenate reduction and expression of multiple chromosomal ars operons in Geobacillus kaustophilus A1. Microbiology (Reading) 2011; 157:2004-2011. [DOI: 10.1099/mic.0.048678-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Geobacillus kaustophilus strain A1 was previously isolated from a geothermal environment for its ability to grow in the presence of high arsenate levels. In this study, the molecular mechanisms of arsenate resistance of the strain were investigated. As(V) was reduced to As(III), as shown by HPLC analysis. Consistent with the observation that the micro-organism is not capable of anaerobic growth, no respiratory arsenate reductases were identified. Using specific PCR primers based on the genome sequence of G. kaustophilus HTA426, three unlinked genes encoding detoxifying arsenate reductases were detected in strain A1. These genes were designated arsC1, arsC2 and arsC3. While arsC3 is a monocistronic locus, sequencing of the regions flanking arsC1 and arsC2 revealed the presence of additional genes encoding a putative arsenite transporter and an ArsR-like regulator upstream of each arsenate reductase, indicating the presence of sequences with putative roles in As(V) reduction, As(III) export and arsenic-responsive regulation. RT-PCR demonstrated that both sets of genes were co-transcribed. Furthermore, arsC1 and arsC2, monitored by quantitative real-time RT-PCR, were upregulated in response to As(V), while arsC3 was constitutively expressed at a low level. A mechanism for regulation of As(V) detoxification by Geobacillus that is both consistent with our findings and relevant to the biogeochemical cycle of arsenic and its mobility in the environment is proposed.
Collapse
Affiliation(s)
- Mariola Cuebas
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| | - Aramis Villafane
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| | - Michelle McBride
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| | - Nathan Yee
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901-8551, USA
| | - Elisabetta Bini
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| |
Collapse
|
39
|
Nithya C, Gnanalakshmi B, Pandian SK. Assessment and characterization of heavy metal resistance in Palk Bay sediment bacteria. MARINE ENVIRONMENTAL RESEARCH 2011; 71:283-294. [PMID: 21377723 DOI: 10.1016/j.marenvres.2011.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/31/2011] [Accepted: 02/04/2011] [Indexed: 05/30/2023]
Abstract
The present study aimed at characterizing the heavy metal resistance and assessing the resistance pattern to multiple heavy metals (300 mmol L⁻¹) by Palk Bay sediment bacteria. From 46 isolates, 24 isolates showed resistance to more than eight heavy metals. Among the 24 isolates S8-06 (Bacillus arsenicus), S8-10 (Bacillus pumilus), S8-14 (B. arsenicus), S6-01 (Bacillus indicus), S6-04 (Bacillus clausii), SS-06 (Planococcus maritimus) and SS-08 (Staphylococcus pasteuri) exhibited high resistance against arsenic, mercury, cobalt, cadmium, lead and selenium. Plasmid curing confirmed that the heavy metal resistance in S8-10 is chromosomal borne. Upon treatment with the heavy metals, the strain S8-10 showed many morphological and physiological changes as shown by SEM, FTIR and AAS analysis. S8-10 removed 47% of cadmium and 96% of lead from the growth medium. The study suggests that sediment bacteria can be biological indicators of heavy metal contamination.
Collapse
Affiliation(s)
- Chari Nithya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | | | | |
Collapse
|
40
|
Abstract
A novel Gram-stain-positive, slightly halophilic, facultatively alkaliphilic, catalase-positive, oxidase-negative, endospore-forming, motile, rod-shaped, aerobic bacterium, designated strain JSM 082006T, was isolated from an oyster collected from Naozhou Island in the South China Sea. The isolate grew in 0–18 % (w/v) NaCl (optimum, 0.5–4.0 %), at pH 6.0–10.5 (optimum, pH 8.0) and at 15–45 °C (optimum, 30 °C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and C16 : 0. Strain JSM 082006T contained MK-7 as the predominant respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as the major polar lipids. The genomic DNA G+C content was 40.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 082006T should be assigned to the genus Bacillus and that it was most closely related to the type strains of Bacillus barbaricus (sequence similarity 99.1 %) and Bacillus arsenicus (97.5 %), followed by those of Bacillus rigui (96.6 %) and Bacillus solisalsi (96.1 %). Phylogenetic analysis, DNA–DNA relatedness values, phenotypic characteristics and chemotaxonomic data support the view that strain JSM 082006T represents a novel species of the genus Bacillus, for which the name Bacillus nanhaiensis sp. nov. is proposed; the type strain is JSM 082006T ( = DSM 23009T = KCTC 13712T).
Collapse
|
41
|
Arsenic-resistant Pseudomonas spp. and Bacillus sp. bacterial strains reducing As(V) to As(III), isolated from Alps soils, Italy. Folia Microbiol (Praha) 2011; 56:29-35. [DOI: 10.1007/s12223-011-0010-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 11/26/2022]
|
42
|
Banerjee S, Datta S, Chattyopadhyay D, Sarkar P. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:1736-1747. [PMID: 22175878 DOI: 10.1080/10934529.2011.623995] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Arsenic (As) is a metalloid and considered harmful due to its toxic and carcinogenic effects. Removal of arsenic is of great importance for human welfare. The main objective of this study was to isolate arsenic-resistant bacteria that are capable of removing arsenic from the environment. Soil samples were collected from an arsenic-affected area of West Bengal, India and 10 different bacterial strains were isolated. The minimum inhibitory concentration (MIC) values of the isolates varied widely in the range 50-125 mM (As) as arsenate and 10-100 mM (As) as arsenite. TEM and EDAX analysis were done to confirm intracellular accumulation of arsenic. The 16s RNA and phylogenetic analysis showed that seven isolates belonged to γ-proteobacterium, two isolates belonged to Firmicutes and one was identified as Kocuria genera. Some of these bacteria could oxidize arsenite to arsenate and all others could reduce arsenate to arsenite. The growth pattern of the bacterial strains in presence and absence of arsenic was also observed. All the 10 isolates exhibited multiple heavy metal (like Ni, Zn, Cu, Pb, Co, etc.) tolerances. Thus, these new bacterial strains could conveniently be used for bioremediation of soil and effluents and the enzymes produced by them may be used for commercial exploitation.
Collapse
Affiliation(s)
- Suchanda Banerjee
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, India
| | | | | | | |
Collapse
|
43
|
Nithya C, Pandian SK. Isolation of heterotrophic bacteria from Palk Bay sediments showing heavy metal tolerance and antibiotic production. Microbiol Res 2010; 165:578-93. [DOI: 10.1016/j.micres.2009.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 10/23/2009] [Accepted: 10/31/2009] [Indexed: 11/24/2022]
|
44
|
Abstract
Two Gram-stain-positive strains, WPCB074Tand WPCB165, were isolated from fresh water collected from the Woopo wetland (Republic of Korea). Both strains were strictly aerobic, motile, endospore-forming rods. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains WPCB074Tand WPCB165 belonged to the genusBacillusand that strain WPCB074Twas most closely related toBacillus solisalsiYC1T(98.4 % sequence similarity),B. barbaricusV2-BIII-A2T(97.7 %),B. macauensisZFHKF-1T(96.9 %),B. arsenicusCon a/3T(96.4 %) andB. gelatiniLMG 21880T(95.1 %). The 16S rRNA gene sequences of strains WPCB074Tand WPCB165 differed at one position (99.9 % similarity), suggesting that these two strains constitute a single species. DNA–DNA relatedness between strain WPCB074Tand the type strains ofB. solisalsi,B. barbaricus,B. macauensis,B. arsenicusandB. gelatiniwere 26, 17, 20, 14 and 7 %, respectively. Strain WPCB074Twas characterized by having cell-wall peptidoglycan based onmeso-diaminopimelic acid, MK-7 as the predominant menaquinone and iso-C15 : 0and anteiso-C15 : 0as the major fatty acids. The DNA G+C content of strain WPCB074Twas 41.9 mol%. On the basis of phenotypic properties, phylogeny and genomic distinctiveness, strain WPCB074Trepresents a novel species of the genusBacillusfor which the nameBacillus riguisp. nov. is proposed. The type strain is WPCB074T(=KCTC 13278T=JCM 16348T).
Collapse
|
45
|
Liebeke M, Brözel VS, Hecker M, Lalk M. Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria. Appl Microbiol Biotechnol 2009; 83:161-73. [PMID: 19308401 DOI: 10.1007/s00253-009-1965-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 11/25/2022]
Abstract
We investigated the composition of soil-extracted solubilized organic and inorganic matter (SESOM) prepared from three different soils. Growth of various bacterial strains in these soil extracts was evaluated to find appropriate conditions for ecophysiological approaches. Analysis of SESOM by (1)H-NMR and gas chromatography/mass spectrometry revealed a complex mixture of organic compounds. An oak forest SESOM supported the growth of several gram-positive and gram-negative soil-derived heterotrophic bacteria, whereas beech forest and grassland soil extracts did not. A metabolomic approach was performed by determining the extracellular metabolite profile of Bacillus licheniformis in SESOM. The results demonstrated that determination of the organic composition of SESOM during batch culturing is feasible. This makes SESOM amenable to studying the ecophysiology of a range of soil bacteria growing on soil-dissolved organic matter under more defined laboratory conditions. SESOM may also increase success in isolating previously uncultured or novel soil bacteria. Cell populations and the corresponding extracellular medium can be obtained readily and specific components extracted, paving the way for proteomic, transcriptomic, and metabolomic analyses. The synthetic carbon mixture based on SESOM, which mimics soil abilities, shows a positive impact on higher cell yields and longer cultivation time for biotechnological relevant bacteria.
Collapse
Affiliation(s)
- Manuel Liebeke
- Department of Pharmaceutical Biology, Ernst-Moritz-Arndt University of Greifswald, Friedrich-Ludwig Jahn Street 17, 17487 Greifswald, Germany
| | | | | | | |
Collapse
|
46
|
Shrestha RA, Lama B, Joshi J, Sillanpää M. Effects of Mn(II) and Fe(II) on microbial removal of arsenic (III). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2008; 15:303-307. [PMID: 18461377 DOI: 10.1007/s11356-008-0005-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/23/2008] [Indexed: 05/26/2023]
Abstract
GOAL, SCOPE, AND BACKGROUND Arsenic contamination in groundwater creates severe health problems in the world. There are many physiochemical and biological methods available for remediation of arsenic from groundwater. Among them, microbial remediation could be taken as one of the least expensive methods, though it takes longer treatment time. The main objective of this research was to study the improvement on remediation by addition of some essential ion salts such as Mn and Fe. MATERIALS AND METHODS Staphylococcus aureus, Bacillus subtilis, Klebsiella oxytoca, and Escherichia coli were taken as model microbes from Dhulikhel, 30 km east from Kathmandu, Nepal. RESULTS AND DISCUSSION Microbes used in this study showed different abilities in their removal of As(III) with and without addition of Mn and Fe salts. The trend of remediation increased with time. S. aureus was found to be the best among the microbes used. It showed almost 100% removal after 48-h culture, both with and without Fe and Mn salts. Rate of removal of As increased with addition of Fe and Mn for all microbes. Removal efficiency was found to increase by about 32% on average after addition of salts in 24-h cultures of S. aureus.
Collapse
|
47
|
Pepi M, Volterrani M, Renzi M, Marvasi M, Gasperini S, Franchi E, Focardi SE. Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization. J Appl Microbiol 2008; 103:2299-308. [PMID: 18045414 DOI: 10.1111/j.1365-2672.2007.03471.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to isolate arsenic-resistant bacteria from contaminated sediment of the Orbetello Lagoon, Italy, to characterize isolates for As(III), As(V), heavy metals resistance, and from the phylogenetic point of view. METHODS AND RESULTS Enrichment cultures were carried out in the presence of 6.75 mmol l(-1) of As(III), allowing isolation of ten bacterial strains. Four isolates, ORAs1, ORAs2, ORAs5 and ORAs6, showed minimum inhibitory concentration values equal or superior to 16.68 mmol l(-1) and 133.47 mmol l(-1) in the presence of As(III) and As(V), respectively. Isolate ORAs2 showed values of 1.8 mmol l(-1) in the presence of Cd(II) and 7.7 mmol l(-1) of Zn(II), and isolate ORAs1 pointed out a value of 8.0 mmol l(-1) in the presence of Cu(II). Analysis of 16S rRNA gene sequences revealed that they can be grouped in the three genera Aeromonas, Bacillus and Pseudomonas. Phylogenetic analysis of the four more arsenic-resistant strains was also performed. CONCLUSION Isolates are highly resistant to both As(III) and As(V) and they could represent good candidates for bioremediation processes of native polluted sediments. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides original results on levels of resistance to arsenic and to assigning genera of bacterial strains isolated from arsenic-polluted sediments.
Collapse
Affiliation(s)
- M Pepi
- Department of Environmental Sciences, University of Siena, Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Wang W, Sun M, Liu WS. Isolation and characterisation of H2O2-decomposing bacteria from Antarctic seawater. ANN MICROBIOL 2008. [DOI: 10.1007/bf03179441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Chaturvedi P, Shivaji S. Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 2007; 56:2765-2770. [PMID: 17158975 DOI: 10.1099/ijs.0.64508-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain HHS 31(T), a Gram-positive, motile, rod-shaped, non-spore-forming, alkaliphilic bacterium, was isolated from the melt water of a glacier. Phenotypic and chemotaxonomic characteristics indicate that strain HHS 31(T) is related to species of the genus Exiguobacterium. The 16S rRNA gene sequence similarities between HHS 31(T) and strains of known species confirm that it is closely related to members of the genus Exiguobacterium (93-99 %) and that it exhibits >97 % similarity with Exiguobacterium acetylicum DSM 20416(T) (98.9 %), Exiguobacterium antarcticum DSM 14480(T) (98.0 %), Exiguobacterium oxidotolerans JCM 12280(T) (97.9 %) and Exiguobacterium undae DSM 14481(T) (97.4 %). Phylogenetic analysis based on the 16S rRNA gene sequence further confirms the affiliation of HHS 31(T) with the genus Exiguobacterium. However, the levels of DNA-DNA relatedness between HHS 31(T) and E. oxidotolerans JCM 12280(T), E. acetylicum DSM 20416(T), E. undae DSM 14481(T) and E. antarcticum DSM 14480(T) are 50, 63, 67 and 28 %, respectively. Strain HHS 31(T) also differs from these four closely related species in terms of a number of phenotypic traits. The phenotypic, chemotaxonomic and phylogenetic data suggest that HHS 31(T) merits the status of a novel species, for which the name Exiguobacterium indicum sp. nov. is proposed. The type strain is HHS 31(T) (=LMG 23471(T)=IAM 15368(T)).
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - S Shivaji
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| |
Collapse
|
50
|
Fajardo-Cavazos P, Nicholson W. Bacillus endospores isolated from granite: close molecular relationships to globally distributed Bacillus spp. from endolithic and extreme environments. Appl Environ Microbiol 2006; 72:2856-63. [PMID: 16597992 PMCID: PMC1449054 DOI: 10.1128/aem.72.4.2856-2863.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain approximately 500 cultivable Bacillus spores and approximately 10(4) total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted.
Collapse
Affiliation(s)
- Patricia Fajardo-Cavazos
- Department of Microbiology and Cell Science, Room 201-B, Space Life Sciences Laboratory, Building M6-1025/SLSL, University of Florida, Kennedy Space Center, FL 32899, USA
| | | |
Collapse
|