1
|
Abdulsada ZK, Kibbee R, Princz J, Örmeci B. Impact of Silver and Copper Oxide Nanoparticles on Anaerobic Digestion of Sludge and Bacterial Community Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:236. [PMID: 39940212 PMCID: PMC11820454 DOI: 10.3390/nano15030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
The effect of metal nanoparticles on the anaerobic digestion of sludge and the sludge bacterial community are still not well-understood, and both improvements and inhibitions have been reported. This study investigated the impact of 2, 10, and 30 mg/g TS silver and copper oxide nanoparticles (AgNPs and CuONPs) on the mesophilic anaerobic digestion of sludge and the bacterial community structure. The reactors were monitored for changes in tCOD, sCOD, TS, VS, biogas generation, and cell viability. Also, the relative abundance and taxonomic distribution of the bacterial communities were analyzed at the phylum and genus levels, including the genera involved in anaerobic digestion. Both AgNPs and CuONPs exhibited some inhibition on anaerobic digestion of sludge and biogas generation, and the inhibition was more evident at higher concentrations. CuONPs had a stronger inhibitory effect compared to AgNPs. After the introduction of AgNPs and CuONPs, cell viability initially decreased over the first two weeks but recovered after that. At high concentrations, AgNPs and CuONPs decreased the overall bacterial diversity, and inhibited the dominant bacterial species, allowing those in less abundance to flourish. The relative abundance of the bacteria responsible for hydrolysis and acidogenesis increased and the relative abundance of acetogenic bacteria decreased with higher AgNP and CuONP concentrations. The majority of the parameters measured for monitoring the anaerobic digestion performance and bacterial community were not statistically significant at 2 mg/g TS of AgNPs and CuONPs, which represents naturally present concentrations in wastewater sludge that are below the USEPA ceiling concentration limits.
Collapse
Affiliation(s)
- Zainab K. Abdulsada
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (Z.K.A.); (R.K.)
| | - Richard Kibbee
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (Z.K.A.); (R.K.)
| | - Juliska Princz
- Environment and Climate Change Canada, 335 River Road South, Ottawa, ON K1V 1C7, Canada;
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (Z.K.A.); (R.K.)
| |
Collapse
|
2
|
Mura J, Ranchou-Peyruse M, Guignard M, Ducousso M, Larregieu M, Isaure MP, Le Hécho I, Hoareau G, Poulain M, Buruti MDS, Chiquet P, Caumette G, Petit A, Cézac P, Ranchou-Peyruse A. Experimental simulation of H 2 coinjection via a high-pressure reactor with natural gas in a low-salinity deep aquifer used for current underground gas storage. Front Microbiol 2024; 15:1439866. [PMID: 39144216 PMCID: PMC11322146 DOI: 10.3389/fmicb.2024.1439866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
If dihydrogen (H2) becomes a major part of the energy mix, massive storage in underground gas storage (UGS), such as in deep aquifers, will be needed. The development of H2 requires a growing share of H2 in natural gas (and its current infrastructure), which is expected to reach approximately 2% in Europe. The impact of H2 in aquifers is uncertain, mainly because its behavior is site dependent. The main concern is the consequences of its consumption by autochthonous microorganisms, which, in addition to energy loss, could lead to reservoir souring and alter the petrological properties of the aquifer. In this work, the coinjection of 2% H2 in a natural gas blend in a low-salinity deep aquifer was simulated in a three-phase (aquifer rock, formation water, and natural gas/H2 mix) high-pressure reactor for 3 months with autochthonous microorganisms using a protocol described in a previous study. This protocol was improved by the addition of protocol coupling experimental measures and modeling to calculate the pH and redox potential of the reactor. Modeling was performed to better analyze the experimental data. As in previous experiments, sulfate reduction was the first reaction to occur, and sulfate was quickly consumed. Then, formate production, acetogenesis, and methanogenesis occurred. Overall, H2 consumption was mainly caused by methanogenesis. Contrary to previous experiments simulating H2 injection in aquifers of higher salinity using the same protocol, microbial H2 consumption remained limited, probably because of nutrient depletion. Although calcite dissolution and iron sulfide mineral precipitation likely occurred, no notable evolution of the rock phase was observed after the experiment. Overall, our results suggested that H2 can be stable in this aquifer after an initial loss. More generally, aquifers with low salinity and especially low electron acceptor availability should be favored for H2 costorage with natural gas.
Collapse
Affiliation(s)
- Jean Mura
- LaTEP, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
| | - Magali Ranchou-Peyruse
- LaTEP, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
- IPREM, CNRS, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
- Joint Laboratory SEnGA, E2S UPPA, Pau, France
| | - Marion Guignard
- IPREM, CNRS, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
| | - Marion Ducousso
- LaTEP, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
- Joint Laboratory SEnGA, E2S UPPA, Pau, France
| | - Marie Larregieu
- IPREM, CNRS, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
| | - Marie-Pierre Isaure
- IPREM, CNRS, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
| | - Isabelle Le Hécho
- IPREM, CNRS, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
- Joint Laboratory SEnGA, E2S UPPA, Pau, France
| | - Guilhem Hoareau
- LFCR, CNRS, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
| | - Marie Poulain
- LaTEP, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
- Joint Laboratory SEnGA, E2S UPPA, Pau, France
| | | | - Pierre Chiquet
- Joint Laboratory SEnGA, E2S UPPA, Pau, France
- Geosciences Department, Teréga, Pau, France
| | - Guilhem Caumette
- Joint Laboratory SEnGA, E2S UPPA, Pau, France
- Environment Department, Teréga, Pau, France
| | - Anélia Petit
- Geosciences Department, Storengy, Bois-Colombes, France
| | - Pierre Cézac
- LaTEP, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
- Joint Laboratory SEnGA, E2S UPPA, Pau, France
| | - Anthony Ranchou-Peyruse
- IPREM, CNRS, E2S UPPA, Université de Pau et des Pays de l’Adour, Pau, France
- Joint Laboratory SEnGA, E2S UPPA, Pau, France
| |
Collapse
|
3
|
Liu Z, Cui Z, Guo Z, Li D, He Z, Liu W, Yue X, Zhou A. Insights into the effect of nitrate photolysis on short-chain fatty acids production from waste activated sludge in anaerobic fermentation system: Performance and mechanisms. WATER RESEARCH 2024; 258:121772. [PMID: 38761600 DOI: 10.1016/j.watres.2024.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/20/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Nitrate photolysis has become an efficient, low-cost and promising technology for emerging contaminants removal, while its performance and mechanism for waste activated sludge (WAS) treatment is still unknown. This study innovatively introduced nitrate photolysis for WAS disintegration, and investigated the effect of nitrate addition (150-375 mg N/L) for short-chain fatty acids (SCFAs) production during anaerobic fermentation (AF). The results showed that nitrate photolysis significantly promoted the SCFAs production from WAS, and peaked at 280.7 mg/g VSS with 7-d fermentation with 150 mg N/L addition (150N-UV), which increased by 8.8-35.0 % and 10.7-23.3 % compared with other photolysis groups and sole nitrate groups. Effective release of the soluble organics was observed in the nitrate photolysis groups during AF, especially soluble proteins, reaching 1505.4 mg COD/L at 9 d in 150N-UV group, promoted by 7.0∼15.7 % than nitrate/nitrate photolysis groups. The model compounds simulation experiment further demonstrated the positive effect of nitrate photolysis on organics hydrolysis and SCFAs accumulation. The result of the radical capture and quenching verified the reactive oxygen species contributed more compared with reactive nitrogen species. Functional group analysis confirmed the effective bioconversion of the macromolecular organics during the fermentation. Moreover, the nitrate photolysis enhanced the enrichment of the functional consortia, including anaerobic fermentation bacteria (AFB), e.g., Fnoticella, Romboutsia, Gracilibacter and Sedimentibacter, and nitrate reducing bacteria (NRB), e.g., Acinerobacter and Ahniella. The macrogenetic analysis further revealed that glycolysis, amino acid metabolism, acetate metabolism and nitrogen metabolism were the dominating metabolic pathways during fermentation, and the abundance of the relevant genes were enhanced in 150N-UV group.
Collapse
Affiliation(s)
- Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030024, China
| | - Zhixuan Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhengtong Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Dengfei Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Zhangwei He
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Shanxi 710055, China
| | - Wenzong Liu
- Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China.
| |
Collapse
|
4
|
Engel K, Ford SE, Binns WJ, Diomidis N, Slater GF, Neufeld JD. Stable microbial community in compacted bentonite after 5 years of exposure to natural granitic groundwater. mSphere 2023; 8:e0004823. [PMID: 37772811 PMCID: PMC10597416 DOI: 10.1128/msphere.00048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023] Open
Abstract
The Materials Corrosion Test (MaCoTe) at the Underground Research Laboratory in Grimsel, Switzerland, assesses the microbiology and corrosion behavior of engineered barrier components of a deep geological repository (DGR) for long-term disposal of high-level nuclear waste. Diversity and temporal changes of bentonite-associated microbial community profiles were assessed under DGR-like conditions for compacted Wyoming MX-80 bentonite (1.25 g/cm3 and 1.50 g/cm3 targeted dry densities) exposed to natural groundwater. Using culture-dependent and molecular techniques, samples taken from the outside layer of 5-year borehole modules revealed up to 66% and 23% of 16S rRNA gene sequences affiliated with Desulfosporosinus and Desulfovibrio, respectively. Putatively involved in sulfate reduction, these taxa were almost undetectable within the bentonite core. Instead, microbial profiles of the inner bentonite core were similar to uncompacted bentonite used to pack modules years earlier, and were consistent with a previously published 1-year time point, revealing no detectable microbial growth. Abundances of culturable aerobic and anaerobic heterotrophic bacteria in the uncompacted bentonite were relatively low, with less than 1,000 and 100 colony-forming units (CFUs) per gram dry weight, respectively. Nearly 5 years after emplacement, culturable heterotrophic bacterial CFUs and sulfate-reducing bacteria did not change significantly inside the bentonite core. Phospholipid fatty acid data indicated similar lipid abundance, and corresponding cell abundance estimates, for inner 5-year MaCoTe bentonite samples compared to those previously obtained for 1-year incubations. Collectively, our results provide complementary evidence for microbial stability inside highly compacted bentonite exposed to conditions that mimic engineered barrier components of a deep geological repository. IMPORTANCE The long-term safety of a deep geological repository for used nuclear fuel is dependent on the performance of the engineered and natural barriers. Microbial activity can produce chemical species that can influence the corrosion of the disposal containers for used nuclear fuel. Although previous studies have evaluated the microbiology of compacted bentonite clay within subsurface environments, these have been limited to relatively short incubations (i.e., 1 year). The current study provides a unique 5-year perspective that reinforces previous findings of growth inhibition for bentonite clay exposed to in situ subsurface conditions.
Collapse
Affiliation(s)
- Katja Engel
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Sian E. Ford
- School of Geography & Earth Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Greg F. Slater
- School of Geography & Earth Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Josh D. Neufeld
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Wang M, Ren T, Yin M, Lu K, Xu H, Huang X, Zhang X. Enhanced Anaerobic Wastewater Treatment by a Binary Electroactive Material: Pseudocapacitance/Conductance-Mediated Microbial Interspecies Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12072-12082. [PMID: 37486327 DOI: 10.1021/acs.est.3c01986] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Anaerobic digestion (AD) is a promising method to treat organic matter. However, AD performance was limited by the inefficient electron transfer and metabolism imbalance between acid-producing bacteria and methanogens. In this study, a novel binary electroactive material (Fe3O4@biochar) with pseudocapacitance (1.4 F/g) and conductance (10.2 μS/cm) was exploited to store-release electrons as well as enhance the direct electron transfer between acid-producing bacteria and methanogens during the AD process. The mechanism of pseudocapacitance/conductance on mediating interspecies electron transfer was deeply studied at each stage of AD. In the hydrolysis acidification stage, the pseudocapacitance of Fe3O4@biochar acting as electron acceptors proceeded NADH/NAD+ transformation of bacteria to promote ATP synthesis by 21% which supported energy for organics decomposition. In the methanogenesis stage, the conductance of Fe3O4@biochar helped the microbes establish direct interspecies electron transfer (DIET) to increase the coenzyme F420 content by 66% and then improve methane production by 13%. In the complete AD experiment, electrons generated from acid-producing bacteria were rapidly transported to methanogens via conductors. Excess electrons were buffered by the pseudocapacitor and then gradually released to methanogens which alleviated the drastic drop in pH. These findings provided a strategy to enhance the electron transfer in anaerobic treatment as well as guided the design of electroactive materials.
Collapse
Affiliation(s)
- Mingwei Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengxi Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kechao Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Quéméneur M, Mei N, Monnin C, Postec A, Guasco S, Jeanpert J, Maurizot P, Pelletier B, Erauso G. Microbial taxa related to natural hydrogen and methane emissions in serpentinite-hosted hyperalkaline springs of New Caledonia. Front Microbiol 2023; 14:1196516. [PMID: 37485525 PMCID: PMC10359428 DOI: 10.3389/fmicb.2023.1196516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The southeastern part of New Caledonia main island (Grande Terre) is the location of a large ophiolitic formation that hosts several hyperalkaline springs discharging high pH (∼11) and warm (<40°C) fluids enriched in methane (CH4) and hydrogen (H2). These waters are produced by the serpentinization of the ultrabasic rock formations. Molecular surveys had previously revealed the prokaryotic diversity of some of these New Caledonian springs, especially from the submarine chimneys of Prony Bay hydrothermal field. Here we investigate the microbial community of hyperalkaline waters from on-land springs and their relationships with elevated concentrations of dissolved H2 (21.1-721.3 μmol/L) and CH4 (153.0-376.6 μmol/L). 16S rRNA gene analyses (metabarcoding and qPCR) provided evidence of abundant and diverse prokaryotic communities inhabiting hyperalkaline fluids at all the collected springs. The abundance of prokaryotes was positively correlated to the H2/CH4 ratio. Prokaryotes consisted mainly of bacteria that use H2 as an energy source, such as microaerophilic Hydrogenophaga/Serpentinimonas (detected in all sources on land) or anaerobic sulfate-reducing Desulfonatronum, which were exclusively found in the most reducing (Eh ref H2 ∼ -700 mV) and the most H2-enriched waters discharging at the intertidal spring of the Bain des Japonais. The relative abundance of a specific group of uncultured Methanosarcinales that thrive in serpentinization-driven ecosystems emitting H2, considered potential H2-consuming methanogens, was positively correlated with CH4 concentrations, and negatively correlated to the relative abundance of methylotrophic Gammaproteobacteria. Firmicutes were also numerous in hyperalkaline waters, and their relative abundance (e.g., Gracilibacter or Dethiobacter) was proportional to the dissolved H2 concentrations, but their role in the H2 budget remains to be assessed. The prokaryotic communities thriving in New Caledonia hyperalkaline waters are similar to those found in other serpentinite-hosted high-pH waters worldwide, such as Lost City (North Atlantic) and The Cedars (California).
Collapse
Affiliation(s)
- Marianne Quéméneur
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Nan Mei
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
| | - Christophe Monnin
- Géosciences Environnement Toulouse, UMR 5563 (CNRS/UPS/IRD/CNES), Toulouse, France
| | - Anne Postec
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Sophie Guasco
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Julie Jeanpert
- Direction de l’Industrie, des Mines et de l’Energie, Nouméa, New Caledonia
| | - Pierre Maurizot
- Direction de l’Industrie, des Mines et de l’Energie, Nouméa, New Caledonia
| | | | - Gaël Erauso
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
7
|
Zhang F, Ge R, Wan Z, Li G, Cao L. Dual effects of PFOA or PFOS on reductive dechlorination of trichloroethylene (TCE). WATER RESEARCH 2023; 240:120093. [PMID: 37210970 DOI: 10.1016/j.watres.2023.120093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
PFASs and chlorinated solvents are the common co-contaminants in soil and groundwater at firefighter training areas (FTAs). Although PFASs mixtures could have adverse impacts on bioremediation of trichloroethylene (TCE) by inhibiting Dehalococcoides (Dhc), little is known about the effect and contribution of PFOA or PFOS on dechlorination of TCE by non-Dhc organohalide-respiring bacteria (OHRB). To study this, PFOA and PFOS were amended to the growth medium of a non-Dhc OHRB-containing enrichment culture to determine the impact on dechlorination. This study demonstrated that high levels of PFOA or PFOS (100 mg L-1) inhibited TCE dechlorination in four non-Dhc OHRB-containing community including Geobacter, Desulfuromonas, Desulfitobacterium, and Dehalobacter, but low levels of PFOA or PFOS (≤10 mg L-1) enhanced TCE dechlorination. Four non-Dhc OHRB were less inhibited by PFOA than that by PFOS, and high level of PFOS killed Desulfitobacterium and Dehalobacter and decreased the biodiversity of bacterial community. Although most fermenters were killed by the presence of 100 mg L-1 PFOS, two important co-cultures (Desulfovibrio and Sedimentibacter) of OHRB were enriched, indicating that the syntrophic relationships between OHRB and co-cultures still remained, and PFOA or PFOS inhibited TCE dechlorination by directly repressing non-Dhc OHRB. Our results highlight that the bioattenuation of chloroethene contamination could be confounded by non-Dhc OHRB in high levels of PFOS contaminated subsurface environments at FTAs.
Collapse
Affiliation(s)
- Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Runlei Ge
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Ziren Wan
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Guanghe Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Lifeng Cao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
8
|
El Houari A, Carpenter M, Chaplin D, Golyshin P, McDonald JE. Lutispora saccharofermentans sp. nov., a mesophilic, non-spore-forming bacterium isolated from a lab-scale methanogenic landfill bioreactor digesting anaerobic sludge, and emendation of the genus Lutispora to include species which are non-spore-forming and mesophilic. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748601 DOI: 10.1099/ijsem.0.005683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A novel anaerobic, mesophilic, non-spore-forming bacterium (strain m25T) was isolated from methanogenic enrichment cultures obtained from a lab-scale methanogenic landfill bioreactor containing anaerobic digester sludge. Cells were Gram-stain-negative, catalase-positive, oxidase-negative, rod-shaped, and motile by means of a flagellum. The genomic DNA G+C content was 40.11 mol%. The optimal NaCl concentration, temperature and pH for growth were 2.5 g l-1, 35 °C and at pH 7.0, respectively. Strain m25T was able to grow in the absence of yeast extract on glycerol, pyruvate, arginine and cysteine. In the presence of 0.2 % yeast extract, strain m25T grew on carbohydrates and was able to use glucose, cellobiose, fructose, raffinose and galactose. The novel strain could utilize glycerol, urea, pyruvate, peptone and tryptone. The major fatty acids were iso-C15 : 0, C14 : 0, C16 : 0 DMA (dimethyl acetal) and iso-C15 : 0 DMA. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the new isolate was closely related to Lutispora thermophila EBR46T (95.02 % 16S rRNA gene sequence similarity). Genome relatedness was determined using both average nucleotide identity and amino acid identity analyses, the results of which both strongly supported that strain m25T belongs to the genus Lutispora. Based on its unique phylogenetic features, strain m25T is considered to represent a novel species within the genus Lutispora. Moreover, based on its unique physiologic features, mainly the lack of spore formation, a proposal to amend the genus Lutispora is also provided to include the non-spore-forming and mesophilic species. Lutispora saccharofermentans sp. nov. is proposed. The type strain of the species is m25T (=DSM 112749T=ATCC TSD-268T).
Collapse
Affiliation(s)
| | - Morgan Carpenter
- School of Natural Sciences, Environment Center Wales, Bangor University, UK
| | - Daniel Chaplin
- Centre for Environmental Biotechnology (CEB), Bangor University, UK
| | - Peter Golyshin
- Centre for Environmental Biotechnology (CEB), Bangor University, UK
| | - James E McDonald
- School of Natural Sciences, Environment Center Wales, Bangor University, UK.,Current address: School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Pavlova ON, Izosimova ON, Chernitsyna SM, Ivanov VG, Pogodaeva TV, Khabuev AV, Gorshkov AG, Zemskaya TI. Anaerobic oxidation of petroleum hydrocarbons in enrichment cultures from sediments of the Gorevoy Utes natural oil seep under methanogenic and sulfate-reducing conditions. MICROBIAL ECOLOGY 2022; 83:899-915. [PMID: 34255112 DOI: 10.1007/s00248-021-01802-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
This article presents the first experimental data on the ability of microbial communities from sediments of the Gorevoy Utes natural oil seep to degrade petroleum hydrocarbons under anaerobic conditions. Like in marine ecosystems associated with oil discharge, available electron acceptors, in particular sulfate ions, affect the composition of the microbial community and the degree of hydrocarbon conversion. The cultivation of the surface sediments under sulfate-reducing conditions led to the formation of a more diverse bacterial community and greater loss of n-alkanes (28%) in comparison to methanogenic conditions (6%). Microbial communities of both surface and deep sediments are more oriented to degrade polycyclic aromatic hydrocarbons (PAHs), to which the degree of the PAH conversion testifies (up to 46%) irrespective of the present electron acceptors. Microorganisms with the uncultured closest homologues from thermal habitats, sediments of mud volcanoes, and environments contaminated with hydrocarbons mainly represented microbial communities of enrichment cultures. The members of the phyla Firmicutes, Chloroflexi, and Caldiserica (OP5), as well as the class Deltaproteobacteria and Methanomicrobia, were mostly found in enrichment cultures. The influence of gas-saturated fluids may be responsible for the presence in the bacterial 16S rRNA gene libraries of the sequences of "rare taxa": Planctomycetes, Ca. Atribacteria (OP9), Ca. Armatimonadetes (OP10), Ca. Latescibacteria (WS3), Ca. division (AC1), Ca. division (OP11), and Ca. Parcubacteria (OD1), which can be involved in hydrocarbon oxidation.
Collapse
Affiliation(s)
- O N Pavlova
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.
| | - O N Izosimova
- Laboratory of Chromatography, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - S M Chernitsyna
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - V G Ivanov
- Laboratory of Hydrology and Hydrophysics, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - T V Pogodaeva
- Laboratory of Hydrochemistry and Atmosphere Chemistry, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - A V Khabuev
- Laboratory of Lake Baikal Geology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - A G Gorshkov
- Laboratory of Chromatography, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - T I Zemskaya
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
10
|
Corona Ramírez A, Cailleau G, Fatton M, Dorador C, Junier P. Diversity of Lysis-Resistant Bacteria and Archaea in the Polyextreme Environment of Salar de Huasco. Front Microbiol 2022; 13:826117. [PMID: 36687602 PMCID: PMC9847572 DOI: 10.3389/fmicb.2022.826117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 01/25/2023] Open
Abstract
The production of specialized resting cells is a remarkable strategy developed by several organisms to survive unfavorable environmental conditions. Spores are specialized resting cells that are characterized by low to absent metabolic activity and higher resistance. Spore-like cells are known from multiple groups of bacteria, which can form spores under suboptimal growth conditions (e.g., starvation). In contrast, little is known about the production of specialized resting cells in archaea. In this study, we applied a culture-independent method that uses physical and chemical lysis, to assess the diversity of lysis-resistant bacteria and archaea and compare it to the overall prokaryotic diversity (direct DNA extraction). The diversity of lysis-resistant cells was studied in the polyextreme environment of the Salar de Huasco. The Salar de Huasco is a high-altitude athalassohaline wetland in the Chilean Altiplano. Previous studies have shown a high diversity of bacteria and archaea in the Salar de Huasco, but the diversity of lysis-resistant microorganisms has never been investigated. The underlying hypothesis was that the combination of extreme abiotic conditions might favor the production of specialized resting cells. Samples were collected from sediment cores along a saline gradient and microbial mats were collected in small surrounding ponds. A significantly different diversity and composition were found in the sediment cores or microbial mats. Furthermore, our results show a high diversity of lysis-resistant cells not only in bacteria but also in archaea. The bacterial lysis-resistant fraction was distinct in comparison to the overall community. Also, the ability to survive the lysis-resistant treatment was restricted to a few groups, including known spore-forming phyla such as Firmicutes and Actinobacteria. In contrast to bacteria, lysis resistance was widely spread in archaea, hinting at a generalized resistance to lysis, which is at least comparable to the resistance of dormant cells in bacteria. The enrichment of Natrinema and Halarchaeum in the lysis-resistant fraction could hint at the production of cyst-like cells or other resistant cells. These results can guide future studies aiming to isolate and broaden the characterization of lysis-resistant archaea.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Mathilda Fatton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Cristina Dorador
- Department of Biotechnology, University of Antofagasta, Antofagasta, Chile
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland,*Correspondence: Pilar Junier,
| |
Collapse
|
11
|
Wang Y, Mairinger W, Raj SJ, Yakubu H, Siesel C, Green J, Durry S, Joseph G, Rahman M, Amin N, Hassan MZ, Wicken J, Dourng D, Larbi E, Adomako LAB, Senayah AK, Doe B, Buamah R, Tetteh-Nortey JNN, Kang G, Karthikeyan A, Roy S, Brown J, Muneme B, Sene SO, Tuffuor B, Mugambe RK, Bateganya NL, Surridge T, Ndashe GM, Ndashe K, Ban R, Schrecongost A, Moe CL. Quantitative assessment of exposure to fecal contamination in urban environment across nine cities in low-income and lower-middle-income countries and a city in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 763:143007. [PMID: 34718001 DOI: 10.1016/j.scitotenv.2020.143007] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND During 2014 to 2019, the SaniPath Exposure Assessment Tool, a standardized set of methods to evaluate risk of exposure to fecal contamination in the urban environment through multiple exposure pathways, was deployed in 45 neighborhoods in ten cities, including Accra and Kumasi, Ghana; Vellore, India; Maputo, Mozambique; Siem Reap, Cambodia; Atlanta, United States; Dhaka, Bangladesh; Lusaka, Zambia; Kampala, Uganda; Dakar, Senegal. OBJECTIVE Assess and compare risk of exposure to fecal contamination via multiple pathways in ten cities. METHODS In total, 4053 environmental samples, 4586 household surveys, 128 community surveys, and 124 school surveys were collected. E. coli concentrations were measured in environmental samples as an indicator of fecal contamination magnitude. Bayesian methods were used to estimate the distributions of fecal contamination concentration and contact frequency. Exposure to fecal contamination was estimated by the Monte Carlo method. The contamination levels of ten environmental compartments, frequency of contact with those compartments for adults and children, and estimated exposure to fecal contamination through any of the surveyed environmental pathways were compared across cities and neighborhoods. RESULTS Distribution of fecal contamination in the environment and human contact behavior varied by city. Universally, food pathways were the most common dominant route of exposure to fecal contamination across cities in low-income and lower-middle-income countries. Risks of fecal exposure via water pathways, such as open drains, flood water, and municipal drinking water, were site-specific and often limited to smaller geographic areas (i.e., neighborhoods) instead of larger areas (i.e., cities). CONCLUSIONS Knowledge of the relative contribution to fecal exposure from multiple pathways, and the environmental contamination level and frequency of contact for those "dominant pathways" could provide guidance for Water, Sanitation, and Hygiene (WASH) programming and investments and enable local governments and municipalities to improve intervention strategies to reduce the risk of exposure to fecal contamination.
Collapse
Affiliation(s)
- Yuke Wang
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Wolfgang Mairinger
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Suraja J Raj
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Habib Yakubu
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Casey Siesel
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jamie Green
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sarah Durry
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - George Joseph
- Water Global Practice, The World Bank, Washington, DC, USA
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nuhu Amin
- Environmental Interventions Unit, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | - Eugene Larbi
- Training Research and Networking for Development (TREND), Accra, Ghana
| | | | | | - Benjamin Doe
- Training Research and Networking for Development (TREND), Accra, Ghana
| | - Richard Buamah
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Gagandeep Kang
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Arun Karthikeyan
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Sheela Roy
- Wellcome Research Laboratory, Christian Medical College, Vellore, India
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bacelar Muneme
- Water Supply and Mapping, WE Consult, Maputo, Mozambique
| | - Seydina O Sene
- Initiative Prospective Agricole et Rurale (IPAR), Dakar, Senegal
| | - Benedict Tuffuor
- Training Research and Networking for Development (TREND), Accra, Ghana
| | - Richard K Mugambe
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Najib Lukooya Bateganya
- Department of Environment and Public Health, Kampala Capital City Authority, Kampala, Uganda
| | - Trevor Surridge
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Lusaka, Zambia
| | | | - Kunda Ndashe
- Department of Environmental Health, Faculty of Health Science, Lusaka Apex Medical University, Lusaka, Zambia
| | - Radu Ban
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Christine L Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Zheng X, Wang H, Yan Q, Zhang G, Chen C. Simultaneous nitrogen removal and methane production from Taihu blue algae against ammonia inhibition using integrated bioelectrochemical system (BES). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146144. [PMID: 33684748 DOI: 10.1016/j.scitotenv.2021.146144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Simultaneous nitrogen removal and methane production using an integrated bioelectrochemical system (BES) during the anaerobic digestion (AD) process of Taihu blue algae were investigated. Upon an applied voltage of 0.4 V and total solids (TS) ratio of blue algae to anaerobic sludge as 1:1, the highest methanogenesis potential as 69.12 mL/g VS could be obtained, attaining 18.7 times of the TS ratio group of 3:1. Moreover, methane production of the integrated BES group reached 3.18 times of the AD group using conical flask, even with the same TS ratio (1:1) and initial ammonia nitrogen concentration (1000 mg NH4+-N/L). Apart from the bettered electrochemical performance, bio-augmented microbial genus responsible for acetoclastic methanogenesis, power generation, resisting to hostile circumstance, co-existence with hydrogenotrophic methanogens could all be enriched. Therefore, integrated BES with appropriate TS ratio under applied voltage might help offset both the ammonia and electrical stress, thereby to maintain enhanced biomethanation performance.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China..
| | - Guangsheng Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
13
|
Gomes MM, Sakamoto IK, Silva Rabelo CAB, Silva EL, Varesche MBA. Statistical optimization of methane production from brewery spent grain: Interaction effects of temperature and substrate concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112363. [PMID: 33756388 DOI: 10.1016/j.jenvman.2021.112363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the effects of thermal pretreatment of brewery spent grain (BSG) (by autoclave 121 °C, 1.45 atm for 30 min) on methane production (CH4). Operation temperature (31-59 °C) and substrate concentration (8.3-19.7 g BSG.L-1) factors were investigated by Response Surface Methodology (RSM) and Central Composite Design (CCD). Values ranging from 81.1 ± 2.0 to 290.1 ± 3.5 mL CH4.g-1 TVS were obtained according to operation temperature and substrate concentration variation. The most adverse condition for methanogenesis (81.1 ± 2.0 mL CH4.g-1 TVS) was at 59 °C and 14 g BSG.L-1, in which there was increase in the organic matter concentration from 173.6 ± 4.94 to 3036 ± 7.78 mg.L-1) result of a higher final concentration of volatile fatty acids (VFA, 2662.7 mg.L-1). On the other hand, the optimum condition predicted by the statistical model was at 35 °C and 18 g BSG.L-1 (289.1 mL CH4.g-1 TVS), which showed decrease in the organic matter concentration of 78.6% and a lower final concentration of VFA (533.2 mg.L-1). Hydrogenospora and Methanosaeta were identified in this optimum CH4 production condition, where acetoclastic methanogenic pathway prevailed. The CH4 production enhancement was concomitant to acetic acid concentration decrease (from 578.9 to 135.7 mg.L-1).
Collapse
Affiliation(s)
- Marina Mauro Gomes
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil.
| | - Isabel Kimiko Sakamoto
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil
| | - Camila Abreu B Silva Rabelo
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil
| | - Edson Luiz Silva
- Center of Exact Sciences and Technology, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP CEP, 13565-905, Brazil
| | - Maria Bernadete Amâncio Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil.
| |
Collapse
|
14
|
Metabarcoding profiling of microbial diversity associated with trout fish farming. Sci Rep 2021; 11:421. [PMID: 33432095 PMCID: PMC7801479 DOI: 10.1038/s41598-020-80236-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/27/2020] [Indexed: 01/04/2023] Open
Abstract
Earthy and musty off-flavors are routinely observed in farmed trout worldwide. The microbial association to the production of those off-flavors was previously reported. The current manuscript aimed to catalog the microbial enrichment (eukaryotes and prokaryotes) in semi-intensive aquaculture freshwater sources that might influence the trout aquaculture quality production. The 16S rRNA and ITS metabarcoding analyses were applied on the inflow- and pond-water samples from trout farms previously recorded a malodor fish products and located alongside Moosach and Sempt Rivers in Bavaria province, Germany. The results showed that more than 99% of the detected prokaryotic OTUs (Operational Taxonomic Unit identification) were bacteria as of ~ 75.57% were Proteobacteria, and ~ 14.4% were Bacteroidetes. Meanwhile, 118 out of 233 of the eukaryotic OTUs were known species. Of these, ~ 45% were plant pathogens, and ~ 28% were mushroom/yeasts. Based on the comparative analysis between inflow- and pond-water samples, several pro- and eukaryotic microorganisms that affect the trout aquaculture water quality and industry have been detected, including the malodor-producing microorganisms, e.g., Cyanobacteria and Actinobacteria, along with fish infectious microorganisms, e.g., Chilodonella cyprinid, Metschnikowia bicuspidate. Additionally, the effect of the human- and industrial-related activities around the sampling area on the microbiota of the investigated farms were highlighted.
Collapse
|
15
|
Wang F, Wang J, Li Z, Zan S, Du M. Promoting anaerobic digestion by algae-based hydrochars in a continuous reactor. BIORESOURCE TECHNOLOGY 2020; 318:124201. [PMID: 33031976 DOI: 10.1016/j.biortech.2020.124201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
The microalgae and macroalgae-based hydrochars produced by hydrothermal carbonization were mainly used as biofuels, however, their application in anaerobic digestion (AD) was little known. This study investigated the effects of microalgae Chlorella-based hydrochar (HC-C) and macroalgae Laminaria-based hydrochar (HC-L) on a continuous AD reactor under different organic loading rates (OLR). The AD process stability of hydrochars supplemented reactors were performed well under the increase of OLR from 2.6 to 6.5 g COD/L/d, and HC-C and HC-L addition could significantly enhance the daily methane yield by 36.0% and 31.4%, respectively. Interestingly, the possible mechanisms of HC-C and HC-L on the enhanced AD were similar, namely increasing sludge granulation, promoting the Methanothrix relative abundance and key enzyme activities, and further facilitating potential direct interspecies electron transfer between methanogens and organic-degrading bacteria. This study provided an implication on the potential application of algae-based hydrochars in wastewater treatment and energy recovery.
Collapse
Affiliation(s)
- Fengbo Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
16
|
Lim EY, Tian H, Chen Y, Ni K, Zhang J, Tong YW. Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar. BIORESOURCE TECHNOLOGY 2020; 314:123751. [PMID: 32619808 DOI: 10.1016/j.biortech.2020.123751] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 05/22/2023]
Abstract
One of the major obstacles for thermophilic anaerobic digestion is the process instability during start-up. This study proposed the use of a cost-effective additive, biochar, to accelerate and stabilize the start-up of thermophilic semi-continuous food waste anaerobic digestion. The results showed that the reactors with biochar addition resulted in up to 18% higher methane yield as compared to the control reactors (without biochar). The key microbial networks were elucidated through thermochemical and microbial analysis. Particularly, the addition of biochar promoted the growth of electroactive Clostridia and other electroactive bacteria, while the absence of biochar promoted the growth of homoacetogenic Clostridia and syntrophic acetate oxidizing bacteria. It was revealed that biochar promoted direct interspecies electron transfer between the microbes and was responsible for the faster degradation of volatile fatty acids. Furthermore, reactors with biochar also enhanced the thermodynamically favourable acetoclastic methanogenic pathway due to the higher abundance of Methanosarcina.
Collapse
Affiliation(s)
- Ee Yang Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, S117576 Singapore, Singapore
| | - Hailin Tian
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yangyang Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Kewei Ni
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, S117576 Singapore, Singapore; NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
17
|
Microbial community types and signature-like soil bacterial patterns from fortified prehistoric hills of Thuringia (Germany). COMMUNITY ECOL 2020. [DOI: 10.1007/s42974-020-00017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract16S rRNA profiling has been applied for the investigation of bacterial communities of surface soil samples from forest-covered areas of ten prehistorical ramparts from different parts of Thuringia. Besides the majority bacterial types that are present in all samples, there could be identified bacteria that are highly abundant in some places and absent or low abundant in others. These differences are mainly related to the acidity of substrate and distinguish the communities of lime stone hills from soils of sand/quartzite and basalt hills. Minority components of bacterial communities show partially large differences that cannot be explained by the pH of the soil or incidental effects, only. They reflect certain relations between the communities of different places and could be regarded as a kind of signature-like patterns. Such relations had also been found in a comparison of the data from ramparts with formerly studied 16S rRNA profiling from an iron-age burial field. The observations are supporting the idea that a part of the components of bacterial communities from soil samples reflect their ecological history and can be understood as the “ecological memory” of a place. Probably such memory effects can date back to prehistoric times and might assist in future interpretations of archaeological findings on the prehistoric use of a place, on the one hand. On the other hand, the genetic profiling of soils of prehistoric places contributes to the evaluation of anthropogenic effects on the development of local soil bacterial diversity.
Collapse
|
18
|
Tsuchiya Y, Chiba E, Sugino T, Kawashima K, Hasunuma T, Kushibiki S, Kim YH, Sato S. Notice of RETRACTION: Changes in rumen fermentation, bacterial community, and predicted functional pathway in Holstein cows with and without subacute ruminal acidosis during the periparturient period. J Dairy Sci 2020; 103:4702-4716. [PMID: 32171513 DOI: 10.3168/jds.2019-17546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
The authors have elected to retract this paper in accordance with the following points. The article as written contains misleading information and omits important details. Cows in this study were assigned to groups based on the current definition of subacute ruminal acidosis; they were housed on two different farms and fed two different sets of rations in this study. However, multiple farms were not described in the materials and methods and this was not accounted for in the statistical analysis as published. The diets shown in Table 1 were not actually fed to animals; rather, the proportions of ingredients listed represent an average of the two farms housing the cows.
The authors regret the errors.
Collapse
Affiliation(s)
- Yoshiyuki Tsuchiya
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Ena Chiba
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Toshihisa Sugino
- The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Kenji Kawashima
- Chiba Prefectural Livestock Research Center, Yachimata, Chiba 289-1113, Japan
| | - Toshiya Hasunuma
- Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama 939-8153, Japan
| | - Shiro Kushibiki
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.
| | - Shigeru Sato
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
19
|
Du R, Cao S, Zhang H, Peng Y. Formation of partial-denitrification (PD) granular sludge from low-strength nitrate wastewater: The influence of loading rates. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121273. [PMID: 31585283 DOI: 10.1016/j.jhazmat.2019.121273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Granular sludge has been believed to be a promising technology in wastewater biological treatment. However, the formation of granules at low substrate concentration is a difficult task that has seldom been achieved. This study aimed at forming the granules in the recently developed partial-denitrification (PD, NO3--N→NO2--N) for nitrite production. Two sequencing batch reactors (SBRs) were operated at a low nitrate of 30 mg N/L with nitrate loading rate (NLR) of 0.12 (R1) and 0.24 kg N/m3/d (R2). Results showed that the granulation of PD sludge experienced a developing and matured process with the progressive increase in size followed by maintaining a stable value. Higher NLR resulted in a more rapid granulation with the larger and looser structure. While the granules under lower NLR appeared to be denser and more compact with better settling ability. Microbial communities of two SBRs were revealed to show little difference, with the PD functional bacteria of Thauera (50.7% in R1 and 55.4% in R2) dominated during the granulation process. The Flavobacterium, likely to be closely related with sludge granulation, accounted for a higher proportion in R2 (10.16%) than R1 (5.91%), which might result in a larger granule formed in R2. This study clearly confirmed the feasibility of granulation of PD sludge under low nitrogen loads, shedding new light on the low-strength nitrate wastewater treatment with an efficient and economical way.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Shenbin Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Hanyu Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
20
|
Gupta A, Sar P. Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:464-482. [PMID: 31971065 DOI: 10.1080/10934529.2019.1709362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Development of an appropriate bioremediation strategy for acid mine drainage (AMD) impacted environment is imperative for sustainable mining but remained critically challenged due to the paucity of knowledge on desired microbiological factors and their nutrient requirements. The present study was conducted to utilize the potential of an anaerobic, acid-tolerant, Fe3+ and SO42- reducing microbial consortium for in situ remediation of highly acidic (pH 3.21), SO42- rich (6285 mg/L) mine drainage impacted soil (AIS). A microbial consortium enriched from AMD system and composed of Clostridiales and Bacillales members was characterized and tested for in situ application through microcosms. A combination of bioaugmentation (enriched consortium) and biostimulation (cellulose) allowed 97% reduction in dissolved sulfate and rise in pH up to 7.5. 16S rRNA gene-based amplicon sequencing confirmed that although the bioaugmented community could survive in AIS, availability of carbon source was necessary for superior iron- and sulfate- reduction. Quantitative PCR of dsrB gene confirmed the role of carbon source in boosting the SO42- reduction activities of sulfate reducers. This study demonstrated that native AIS harbored limited catabolic activities required for the remediation but addition of catabolically active microbial populations along with necessary carbon and energy source facilitate the bioremediation of AIS.
Collapse
Affiliation(s)
- Abhishek Gupta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
21
|
Luo SG, Chen SC, Cao WZ, Lin WH, Sheu YT, Kao CM. Application of γ-PGA as the primary carbon source to bioremediate a TCE-polluted aquifer: A pilot-scale study. CHEMOSPHERE 2019; 237:124449. [PMID: 31376698 DOI: 10.1016/j.chemosphere.2019.124449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The effectiveness of using gamma poly-glutamic acid (γ-PGA) as the primary carbon and nitrogen sources to bioremediate trichloroethene (TCE)-contaminated groundwater was studied in this pilot-scale study. γ-PGA (40 L) solution was injected into the aquifer via the injection well (IW) for substrate supplement. Groundwater samples were collected from monitor wells and IW and analyzed for TCE and its byproducts, geochemical indicators, dechlorinating bacteria, and microbial diversity periodically. Injected γ-PGA resulted in an increase in total organic carbon (TOC) (up to 9820 mg/L in IW), and the TOC biodegradation caused the formation of anaerobic conditions. Increased ammonia concentration (because of amine release from γ-PGA) resulted in the neutral condition in groundwater, which benefited the growth of Dehalococcoides. The negative zeta potential and micro-scale diameter of γ-PGA allowed its globule to distribute evenly within soil pores. Up to 93% of TCE removal was observed (TCE dropped from 0.14 to 0.01 mg/L) after 59 days of γ-PGA injection, and TCE dechlorination byproducts were also biodegraded subsequently. Next generation sequence (NGS) analyses were applied to determine the dominant bacterial communities. γ-PGA supplement developed reductive dechlorinating conditions and caused variations in microbial diversity and dominant bacterial species. The dominant four groups of bacterial communities including dechlorinating bacteria, vinyl chloride degrading bacteria, hydrogen producing bacteria, and carbon biodegrading bacteria.
Collapse
Affiliation(s)
- S G Luo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - S C Chen
- Department of Life Sciences, National Central University, Chung-Li, Taiwan.
| | - W Z Cao
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - W H Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Y T Sheu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| |
Collapse
|
22
|
Wang HZ, Lv XM, Yi Y, Zheng D, Gou M, Nie Y, Hu B, Nobu MK, Narihiro T, Tang YQ. Using DNA-based stable isotope probing to reveal novel propionate- and acetate-oxidizing bacteria in propionate-fed mesophilic anaerobic chemostats. Sci Rep 2019; 9:17396. [PMID: 31758023 PMCID: PMC6874663 DOI: 10.1038/s41598-019-53849-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Propionate is one of the most important intermediates of anaerobic fermentation. Its oxidation performed by syntrophic propionate-oxidizing bacteria coupled with hydrogenotrophic methanogens is considered to be a rate-limiting step for methane production. However, the current understanding of SPOB is limited due to the difficulty of pure culture isolation. In the present study, two anaerobic chemostats fed with propionate as the sole carbon source were operated at different dilution rates (0.05 d-1 and 0.15 d-1). The propionate- and acetate-oxidizing bacteria in the two methanogenic chemostats were investigated combining DNA-stable isotope probing (DNA-SIP) and 16S rRNA gene high-throughput sequencing. The results of DNA-SIP with 13C-propionate/acetate suggested that, Smithella, Syntrophobacter, Cryptanaerobacter, and unclassified Rhodospirillaceae may be putative propionate-oxidizing bacteria; unclassified Spirochaetaceae, unclassified Synergistaceae, unclassified Elusimicrobia, Mesotoga, and Gracilibacter may contribute to acetate oxidation; unclassified Syntrophaceae and Syntrophomonas may be butyrate oxidizers. By DNA-SIP, unclassified OTUs with 16S rRNA gene abundance higher than 62% of total Bacteria in the PL chemostat and 38% in the PH chemostat were revealed to be related to the degradation of propionate. These results suggest that a variety of uncultured bacteria contribute to propionate degradation during anaerobic digestion. The functions and metabolic characteristics of these bacteria require further investigation.
Collapse
Affiliation(s)
- Hui-Zhong Wang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Xiao-Meng Lv
- Institute of New Energy and Low-Carbon Technology, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Yue Yi
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Dan Zheng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Yong Nie
- Department of Energy and Resources, College of Engineering, Peking University, Beijing, 100871, China
| | - Bing Hu
- Department of Energy and Resources, College of Engineering, Peking University, Beijing, 100871, China
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
23
|
Venkiteshwaran K, Benn N, Seyedi S, Zitomer D. Methane yield and lag correlate with bacterial community shift following bioplastic anaerobic co-digestion. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Gupta A, Dutta A, Sarkar J, Panigrahi MK, Sar P. Low-Abundance Members of the Firmicutes Facilitate Bioremediation of Soil Impacted by Highly Acidic Mine Drainage From the Malanjkhand Copper Project, India. Front Microbiol 2018; 9:2882. [PMID: 30619102 PMCID: PMC6297179 DOI: 10.3389/fmicb.2018.02882] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
Sulfate- and iron-reducing heterotrophic bacteria represented minor proportion of the indigenous microbial community of highly acidic, oligotrophic acid mine drainage (AMD), but they can be successfully stimulated for in situ bioremediation of an AMD impacted soil (AIS). These anaerobic microorganisms although played central role in sulfate- and metal-removal, they remained inactive in the AIS due to the paucity of organic carbon and extreme acidity of the local environment. The present study investigated the scope for increasing the abundance and activity of inhabitant sulfate- and iron-reducing bacterial populations of an AIS from Malanjkhand Copper Project. An AIS of pH 3.5, high soluble SO4 2- (7838 mg/l) and Fe (179 mg/l) content was amended with nutrients (cysteine and lactate). Thorough geochemical analysis, 16S rRNA gene amplicon sequencing and qPCR highlighted the intrinsic metabolic abilities of native bacteria in AMD bioremediation. Following 180 days incubation, the nutrient amended AIS showed marked increase in pH (to 6.6) and reduction in soluble -SO4 2- (95%), -Fe (50%) and other heavy metals. Concomitant to physicochemical changes a vivid shift in microbial community composition was observed. Members of the Firmicutes present as a minor group (1.5% of total community) in AIS emerged as the single most abundant taxon (∼56%) following nutrient amendments. Organisms affiliated to Clostridiaceae, Peptococcaceae, Veillonellaceae, Christensenellaceae, Lachnospiraceae, Bacillaceae, etc. known for their fermentative, iron and sulfate reducing abilities were prevailed in the amended samples. qPCR data corroborated with this change and further revealed an increase in abundance of dissimilatory sulfite reductase gene (dsrB) and specific bacterial taxa. Involvement of these enhanced populations in reductive processes was validated by further enrichments and growth in sulfate- and iron-reducing media. Amplicon sequencing of these enrichments confirmed growth of Firmicutes members and proved their sulfate- and iron-reduction abilities. This study provided a better insight on ecological perspective of Firmicutes members within the AMD impacted sites, particularly their involvement in sulfate- and iron-reduction processes, in situ pH management and bioremediation.
Collapse
Affiliation(s)
- Abhishek Gupta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Avishek Dutta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jayeeta Sarkar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mruganka Kumar Panigrahi
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
25
|
Xafenias N, Anunobi MO, Mapelli V. Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Meslé M, Dromart G, Haeseler F, Oger PM. Classes of organic molecules targeted by a methanogenic microbial consortium grown on sedimentary rocks of various maturities. Front Microbiol 2015; 6:589. [PMID: 26136731 PMCID: PMC4468910 DOI: 10.3389/fmicb.2015.00589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/28/2015] [Indexed: 11/30/2022] Open
Abstract
Organic-rich shales are populated by methanogenic consortia that are able to degrade the fossilized organic matter into methane gas. To identify the organic fraction effectively degraded, we have sequentially depleted two types of organic-rich sedimentary rocks, shale, and coal, at two different maturities, by successive solvent extractions to remove the most soluble fractions (maltenes and asphaltenes) and isolate kerogen. We show the ability of the consortia to produce methane from all rock samples, including those containing the most refractory organic matter, i.e., the kerogen. Shales yielded higher methane production than lignite and coal. Mature rocks yielded more methane than immature rocks. Surprisingly, the efficiency of the consortia was not influenced by the removal of the easily biodegradable fractions contained in the maltenes and asphaltenes. This suggests that one of the limitations of organic matter degradation in situ may be the accessibility to the carbon and energy source. Indeed, bitumen has a colloidal structure that may prevent the microbial consortia from reaching the asphaltenes in the bulk rock. Solvent extractions might favor the access to asphaltenes and kerogen by modifying the spatial organization of the molecules in the rock matrix.
Collapse
Affiliation(s)
- Margaux Meslé
- Laboratoire de Géologie de Lyon, CNRS UMR 5276, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon France
| | - Gilles Dromart
- Laboratoire de Géologie de Lyon, CNRS UMR 5276, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon France ; Tharsis-Energy, Ecole Normale Supérieure de Lyon, Lyon France
| | - Frank Haeseler
- Institut Français du Petrole Energies nouvelles, Rueil-Malmaison France
| | - Philippe M Oger
- Laboratoire de Géologie de Lyon, CNRS UMR 5276, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon France
| |
Collapse
|
27
|
Diversity of dechlorination pathways and organohalide respiring bacteria in chlorobenzene dechlorinating enrichment cultures originating from river sludge. Biodegradation 2014; 25:757-76. [DOI: 10.1007/s10532-014-9697-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
28
|
Abstract
The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely made this area of investigation more exciting. Particularly fascinating are their structural and physiological features allowing them to withstand extremely selective environmental conditions. These properties are often due to specific biomolecules (DNA, lipids, enzymes, osmolites, etc.) that have been studied for years as novel sources for biotechnological applications. In some cases (DNA-polymerase, thermostable enzymes), the search and applications successful exceeded preliminary expectations, but certainly further exploitations are still needed.
Collapse
|
29
|
Effect of temperature and hydraulic retention time on volatile fatty acid production based on bacterial community structure in anaerobic acidogenesis using swine wastewater. Bioprocess Biosyst Eng 2013; 36:791-8. [DOI: 10.1007/s00449-013-0905-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
30
|
Lee JH, Fredrickson JK, Kukkadapu RK, Boyanov MI, Kemner KM, Lin X, Kennedy DW, Bjornstad BN, Konopka AE, Moore DA, Resch CT, Phillips JL. Microbial reductive transformation of phyllosilicate Fe(III) and U(VI) in fluvial subsurface sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3721-3730. [PMID: 22414073 DOI: 10.1021/es204528m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The microbial reduction of Fe(III) and U(VI) was investigated in shallow aquifer sediments collected from subsurface flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and (57)Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in subsurface sediments incubated in sulfate-containing synthetic groundwater with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without, and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction of phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jaenicke S, Ander C, Bekel T, Bisdorf R, Dröge M, Gartemann KH, Jünemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Pühler A, Schlüter A, Goesmann A. Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One 2011; 6:e14519. [PMID: 21297863 PMCID: PMC3027613 DOI: 10.1371/journal.pone.0014519] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 12/14/2010] [Indexed: 01/06/2023] Open
Abstract
Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roche's GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the identification of additional genera and functional elements, providing a far more complete coverage of the community involved in anaerobic fermentative pathways leading to methane formation.
Collapse
Affiliation(s)
- Sebastian Jaenicke
- Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Christina Ander
- Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Bekel
- Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Regina Bisdorf
- Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | - Karl-Heinz Gartemann
- Department of Genetechnology/Microbiology, Bielefeld University, Bielefeld, Germany
| | - Sebastian Jünemann
- Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Department of Periodontology, University Hospital Münster, Münster, Germany
| | | | - Lutz Krause
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
| | - Felix Tille
- Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Martha Zakrzewski
- Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Alfred Pühler
- Institute for Genome Research and Systems Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Institute for Genome Research and Systems Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Alexander Goesmann
- Computational Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
32
|
Chang JS, Yoon IH, Lee JH, Kim KR, An J, Kim KW. Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2010; 32:95-105. [PMID: 19548094 DOI: 10.1007/s10653-009-9268-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 06/02/2009] [Indexed: 05/17/2023]
Abstract
Arsenic is subject to microbial interactions, which support a wide range of biogeochemical transformations of elements in natural environments such as wetlands. The arsenic detoxification potential of the bacterial strains was investigated with the arsenite oxidation gene, aox genotype, which were isolated from the natural and constructed wetlands. The isolates were able to grow in the presence of 10 mM of sodium arsenite (As(III) as NaAsO(2)) and 1 mM of D: +glucose. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that these isolated strains resembled members of the genus that have arsenic-resistant systems (Acinetobacter sp., Aeromonas sp., Agrobacterium sp., Comamonas sp., Enterobacter sp., Pantoea sp., and Pseudomonas sp.) with sequence similarities of 81-98%. One bacterial isolate identified as Pseudomonas stutzeri strain GIST-BDan2 (EF429003) showed the activity of arsenite oxidation and existence of aoxB and aoxR gene, which could play an important role in arsenite oxidation to arsenate. This reaction may be considered as arsenic detoxification process. The results of a batch test showed that P. stutzeri GIST-BDan2 (EF429003) completely oxidized in 1 mM of As(III) to As(V) within 25-30 h. In this study, microbial activity was evaluated to provide a better understanding of arsenic biogeochemical cycle in both natural and constructed wetlands, where ecological niches for microorganisms could be different, with a specific focus on arsenic oxidation/reduction and detoxification.
Collapse
Affiliation(s)
- Jin-Soo Chang
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju, 500-712, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
33
|
Sakai S, Conrad R, Liesack W, Imachi H. Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen isolated from rice field soil. Int J Syst Evol Microbiol 2010; 60:2918-2923. [PMID: 20097796 DOI: 10.1099/ijs.0.020883-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel hydrogenotrophic methanogen, designated strain MRE50(T), was isolated from a methanogenic consortium, which was originally established from an Italian rice field soil. Cells were non-motile rods, 1.3-2.8 μm long and 0.4-0.7 μm wide. Coccoid cells were also observed in cultures at the late-exponential phase of growth. Strain MRE50(T) grew at 37-55 °C (optimally at 45 °C), at pH 6-7.8 (optimally at pH 7.0) and in the presence of 0-20 g NaCl l(-1). The isolate utilized H(2)/CO(2) and formate for growth and methane production. Phylogenetic analyses of the 16S rRNA gene and the methanogen-specific marker gene mcrA showed that strain MRE50(T) is affiliated with the order Methanocellales, previously known as uncultured archaeal group Rice Cluster I. Based on both 16S rRNA gene and mcrA gene sequences, strain MRE50(T) was related most closely to Methanocella paludicola SANAE(T). Levels of sequence similarity were 92.5 and 86.1 %, respectively, indicating that strains MRE50(T) and Methanocella paludicola SANAE(T) represent different species within the genus Methanocella. In addition, although these strains shared phenotypic properties including cell morphology and substrate utilization, they differed with respect to susceptibility to antibiotics, and temperature and NaCl ranges for growth. Given the phenotypic differences and the distinct phylogenetic placement of the new isolate relative to the type species of the genus Methanocella, strain MRE50(T) is considered to represent a novel species of the genus Methanocella, for which the name Methanocella arvoryzae sp. nov. is proposed. The type strain is MRE50(T) (=NBRC 105507(T) =DSM 22066(T)).
Collapse
Affiliation(s)
- Sanae Sakai
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.,Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., 35043 Marburg, Germany.,Subsurface Geobiology Advanced Research (SUGAR) Team, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., 35043 Marburg, Germany
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., 35043 Marburg, Germany
| | - Hiroyuki Imachi
- Subsurface Geobiology Advanced Research (SUGAR) Team, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
34
|
Lee YJ, Romanek CS, Wiegel J. Desulfosporosinus youngiae sp. nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage. Int J Syst Evol Microbiol 2009; 59:2743-6. [PMID: 19625426 DOI: 10.1099/ijs.0.007336-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yong-Jin Lee
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
35
|
Shiratori H, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K. Lutispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes. Int J Syst Evol Microbiol 2008; 58:964-9. [PMID: 18398203 DOI: 10.1099/ijs.0.65490-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic, moderately thermophilic, spore-forming, rod-shaped bacterium (strain EBR46T) was isolated from an enrichment culture derived from an anaerobic thermophilic (55 degrees C) methanogenic bioreactor treating artificial solid wastes. Phylogeny based on 16S rRNA gene sequence analysis placed strain EBR46T within a distinct lineage between Clostridium clusters II and III. The closest recognized relative of strain EBR46T was Gracilibacter thermotolerans DSM 17427T (85.3 % 16S rRNA gene sequence similarity). The DNA G+C content of strain EBR46T was 36.2 mol%. The novel strain grew optimally at 55-58 degrees C and at pH 7.5-8.0 and was able to grow on peptone, tryptone, Casamino acids, casein hydrolysate, methionine, threonine, tryptophan, cysteine, lysine and serine in the presence of 0.2 % yeast extract. Carbohydrates were not utilized. The main products from tryptone utilization were acetate, iso-butyrate, propionate and iso-valerate. Strain EBR46T produced hydrogen sulfide from cysteine. The major fatty acids were iso-C15 : 0, C14 : 0, C16 : 0 DMA (dimethyl acetal) and iso-C15 : 0 DMA. Based on its unique phylogenetic and physiological features, strain EBR46T is considered to represent a novel species of a new genus, for which the name Lutispora thermophila gen. nov., sp. nov. is proposed. The type strain of the type species is EBR46T (=NBRC 102133T=DSM 19022T).
Collapse
Affiliation(s)
- Hatsumi Shiratori
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee YJ, Mackie RI, Cann IKO, Wiegel J. Description of Caldanaerobius fijiensis gen. nov., sp. nov., an inulin-degrading, ethanol-producing, thermophilic bacterium from a Fijian hot spring sediment, and reclassification of Thermoanaerobacterium polysaccharolyticum and Thermoanaerobacterium zeae as Caldanaerobius polysaccharolyticus comb. nov. and Caldanaerobius zeae comb. nov. Int J Syst Evol Microbiol 2008; 58:666-70. [DOI: 10.1099/ijs.0.65329-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|