1
|
Pandi-Perumal SR, Saravanan KM, Paul S, Warren Spence D, Chidambaram SB. Studying sleep orthologs in Epsilonproteobacteria through an evolutionary lens: investigating sleep mysteries through phylogenomics. World J Microbiol Biotechnol 2025; 41:154. [PMID: 40289222 DOI: 10.1007/s11274-025-04361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
The current study employed phylogenomic methods to examine sleep-related genes' evolutionary role and significance in Sulfurimonas paralvinellae of the Epsilonproteobacteria class. This has facilitated the identification of conserved sleep orthologs, including DnaK (Hsp70), serine hydroxymethyltransferase (SHMT), and potassium channel family proteins, exhibiting sequence similarities ranging from 39.13% to 61.45%. These findings align with prior research indicating that chaperones and ion channels are conserved during sleep. This was demonstrated by the observation that proteins with fewer domains exhibited more significant conservation than others, such as adenylate kinase (AK). Distinct adaptations in bifunctional protein-serine/threonine kinases and phosphatases were linked to S. paralvinellae, an extremophilic organism adapted to high-pressure and/or high-temperature conditions, indicating functional divergence influenced by the organism's environment. The Gene Ontology study results indicated catalytic activity, potassium channel function, and cellular processes, underscoring the significance of ion channels in regulating the sleep-wake cycle. Furthermore, the categories not recognized as particularly significant for the over-represented genes encompassed metabolic and signal transduction categories, suggesting enhanced functional flexibility within this protein subfamily. The findings emphasize that orthologous interactions are complex and influenced by subfunctionalization and neofunctionalization of ecology and evolution. These findings enhance the existing understanding of the evolution of sleep-related genes and their association with metabolic and environmental changes, providing a foundation for subsequent experimental investigations and cross-taxonomic comparisons.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India.
- Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | | | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | | | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India.
- Centre for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India.
| |
Collapse
|
2
|
Zhong Y, Li Y, Wang Z, Cui L, Lv S, Zhu H, Yuan Q, Lai Q, Wang S, Jiang L. Sulfurimonas microaerophilic sp. nov. and Sulfurimonas diazotrophicus sp. nov.: Two Novel Nitrogen-Fixing and Hydrogen- and Sulfur-Oxidizing Chemolithoautotrophs Within the Campylobacteria Isolated from Mangrove Sediments. Microorganisms 2025; 13:713. [PMID: 40284549 PMCID: PMC12029903 DOI: 10.3390/microorganisms13040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Two novel marine hydrogen- and sulfur-oxidizing bacteria, designated HSL1-7T and HSL3-1T, were isolated from mangrove sediments from Fujian Province, China. Strain HSL1-7T exhibited Gram-negative, rod-shaped to slightly curved morphology with polar flagellum-driven motility, whereas strain HSL3-1T was Gram-negative, rod-shaped and non-motile. Strain HSL1-7T and HSL3-1T were obligate chemolithoautotrophs, capable of using molecular hydrogen and thiosulfate as an energy source, and molecular oxygen and elemental sulfur as the electron acceptors for growth. Cellular fatty acid profiles revealed similar predominant components (C16:1ω7c, C16:0, C18:1ω7c, and C14:0) in both strains. Strains HSL1-7T and HSL3-1T were strongly diazotrophic, as demonstrated by 15N2 fixation when a fixed nitrogen source was absent from the growth medium. The DNA G+C contents of strains HSL1-7T and HSL3-1T were determined to be 36.1% and 57.3%, respectively. Based on the 16S rRNA gene sequences, strains HSL1-7T and HSL3-1T exhibited the highest sequence similarities with Sulfurimonas marina B2T (98.5% and 94.45%, respectively). Notably, the 16S rRNA gene sequence similarity between strains HSL1-7T and HSL3-1T was 93.19%, indicating that they represent distinct species within the genus Sulfurimonas. Comparative genomic analyses revealed the presence of diverse metabolic profiles in strains HSL1-7T and HSL3-1T, including carbon fixation, hydrogen oxidation, sulfur oxidation, and nitrogen fixation. The combined phenotypic, chemotaxonomic, and phylogenetic evidence, including average nucleotide identity and in silico DNA-DNA hybridization values, shows that strains HSL1-7T and HSL3-1T represent two novel species of the genus Sulfurimonas for which the names Sulfurimonas microaerophilic sp. nov. and Sulfurimonas diazotrophicus sp. nov. are proposed, with the type strains HSL1-7T (=MCCC 1A18899T = KCTC 25640T) and HSL3-1T (=MCCC 1A18844T), respectively.
Collapse
Affiliation(s)
- Yangsheng Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Yufei Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Zhaodi Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Liang Cui
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Shiwei Lv
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Han Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Qing Yuan
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
- School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361012, China
| |
Collapse
|
3
|
Galès G, Hennart M, Hannoun M, Postec A, Erauso G. Metabolic versatility and nitrate reduction pathways of a new thermophilic bacterium of the Deferrivibrionaceae: Deferrivibrio metallireducens sp. nov isolated from hot sediments of Vulcano Island, Italy. PLoS One 2025; 20:e0315093. [PMID: 40067810 PMCID: PMC11896075 DOI: 10.1371/journal.pone.0315093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/20/2024] [Indexed: 03/15/2025] Open
Abstract
A novel thermophilic (optimum growth temperature ~ 60 °C) anaerobic Gram-negative bacterium, designated strain V6Fe1T, was isolated from sediments heated by the hydrothermal circulation of the Aeolian Islands (Vulcano, Italy) on the seafloor. Strain V6Fe1T belongs to the recently described family Deferrivibrionaceae in the phylum Deferribacterota. It grows chemoorganotrophically by fermentation of proteinaceous substrates and organic acids or by respiration of organic compounds using fumarate, nitrate, Fe(III), S°, and Mn(IV) as electron acceptors. The strain V6Fe1T can also grow chemolithoautotrophically using H2 as an electron donor and nitrate, nitrous oxide, Fe(III), Mn(IV), or sulfur as an electron acceptor. Stable isotope probing showed that V6Fe1T performs denitrification with nitrate reduction to dinitrogen and Dissimilatory Nitrate Reduction to Ammonium (DNRA). Culture experiments with RT-qPCR analysis of target genes revealed that strain V6Fe1T performs DNRA with the nitrite reductase formate-dependent NrfA and denitrification with an Hcp protein and other redox partners yet to be identified. Genomic analysis and experimental data suggest that strain V6Fe1T performs autotrophic carbon fixation via the recently discovered reversed oxidative TCA cycle (roTCA cycle). Based on genomic (ANI) and phenotypic properties, strain V6Fe1T ( = DSM 27501T = JCM 39088T) is proposed to be the type strain of a novel species named Deferrivibrio metallireducens.
Collapse
Affiliation(s)
- Grégoire Galès
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Mélanie Hennart
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Maverick Hannoun
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Anne Postec
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Gaël Erauso
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| |
Collapse
|
4
|
Li Y, Ye Z, Lai MC, Liu CS, Paull CK, Lin S, Lai SJ, You YT, Wu SY, Hung CC, Ding JY, Shih CJ, Wu YC, Zhao J, Xiao W, Wu CH, Dong G, Zhang H, Qiu W, Wang S, Chen SC. Microbial Communities in and Around the Siboglinid Tubeworms from the South Yungan East Ridge Cold Seep Offshore Southwestern Taiwan at the Northern South China Sea. Microorganisms 2024; 12:2452. [PMID: 39770655 PMCID: PMC11676240 DOI: 10.3390/microorganisms12122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
To date, only a few microbial community studies of cold seeps at the South China Sea (SCS) have been reported. The cold seep dominated by tubeworms was discovered at South Yungan East Ridge (SYER) offshore southwestern Taiwan by miniROV. The tubeworms were identified and proposed as Paraescarpia formosa sp. nov. through morphological and phylogenetic analyses. The endosymbionts in the trunk of P. formosa analyzed by a 16S rRNA gene clone library represented only one phylotype, which belonged to the family Sedimenticolaceae in Gammaproteobacteria. In addition, the archaeal and bacterial communities in the habitat of tubeworm P. formosa were investigated by using high-phylogenetic-resolution full-length 16S rRNA gene amplicon sequencing. The results showed that anerobic methane-oxidizing archaea (ANME)-1b was most abundant and ANME-2ab was minor in a consortia of the anerobic oxidation of methane (AOM). The known sulfate-reducing bacteria (SRB) partners in AOM consortia, such as SEEP-SRB1, -SRB2, and -SRB4, Desulfococcus and Desulfobulbus, occurred in a small population (0-5.7%) at the SYER cold seep, and it was suggested that ANME-1b and ANME-2ab might be coupled with multiple SRB in AOM consortia. Besides AOM consortia, various methanogenic archaea, including Bathyarchaeota (Subgroup-8), Methanocellales, Methanomicrobiales, Methanosarcinales, Methanofastidiosales and Methanomassiliicoccales, were identified, and sulfur-oxidizing bacteria Sulfurovum and Sulfurimonas in phylum Epsilonbacteraeota were dominant. This study revealed the first investigation of microbiota in and around tubeworm P. formosa discovered at the SYER cold seep offshore southwestern Taiwan. We could gain insights into the chemosynthetic communities in the deep sea, especially regarding the cold seep ecosystems at the SCS.
Collapse
Affiliation(s)
- Yin Li
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhiwei Ye
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Char-Shine Liu
- Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan; (C.-S.L.); (S.L.)
| | - Charles K. Paull
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039-9644, USA;
| | - Saulwood Lin
- Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan; (C.-S.L.); (S.L.)
| | - Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Yi-Ting You
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Sue-Yao Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Chuan-Chuan Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Jiun-Yan Ding
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300193, Taiwan; (C.-J.S.); (Y.-C.W.)
| | - Yen-Chi Wu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300193, Taiwan; (C.-J.S.); (Y.-C.W.)
| | - Jingjing Zhao
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Wangchuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
| | - Chih-Hung Wu
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Guowen Dong
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hangying Zhang
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming 365004, China
| | - Wanling Qiu
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Song Wang
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Sheng-Chung Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China; (Y.L.); (Z.Y.); (J.Z.); (W.X.); (C.-H.W.); (G.D.); (H.Z.); (W.Q.); (S.W.)
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming 365004, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-J.L.); (Y.-T.Y.); (S.-Y.W.); (C.-C.H.); (J.-Y.D.)
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
5
|
Yuan Q, Wang S, Wang S, Zhong Y, Jiang L. Genome sequence of Sulfurimonas sp. C5, a potential chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a mangrove sediment. Microbiol Resour Announc 2024; 13:e0047424. [PMID: 39315832 PMCID: PMC11556096 DOI: 10.1128/mra.00474-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Sulfurimonas sp. strain C5 (MCCC 1A19556) is a strain with potential chemolithoautotrophic sulfur-oxidizing function, which is isolated from a mangrove sediment sample collected from Quanzhou Bay, Fujian Province, China. This report describes the genome sequence of strain C5, which possesses the gene sets for the sulfur-oxidizing pathway.
Collapse
Affiliation(s)
- Qing Yuan
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Shufang Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - ShaSha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Yangsheng Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
6
|
Li X, Cheng R, Zhang C, Shao Z. Genomic diversity of phages infecting the globally widespread genus Sulfurimonas. Commun Biol 2024; 7:1428. [PMID: 39488617 PMCID: PMC11531552 DOI: 10.1038/s42003-024-07079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
The widespread bacterial genus Sulfurimonas is metabolically versatile and occupies a key ecological niche in different habitats, but its interaction with bacteriophages remains unexplored. Here we systematically investigated the genetic diversity, taxonomy and interaction patterns of Sulfurimonas-associated phages based on sequenced microbial genomes and metagenomes. High-confidence phage contigs related to Sulfurimonas were retrieved from various ecosystems, clustered into 61 viral operational taxonomic units across three viral realms, including Duplodnaviria, Monodnaviria and Varidnaviria. Head-tail phages of Caudoviricetes were assigned to 19 genus-level viral clusters, the majority of which were distantly related to known viruses. Notably, diverse double jelly-roll viruses and inoviruses were also linked to Sulfurimonas, representing two commonly overlooked phage groups. Historical and current phage infections were revealed, implying viral impact on the evolution of host adaptive immunity. Additionally, phages carrying auxiliary metabolic genes might benefit hosts by compensating or augmenting sulfur metabolism. This study highlights the diversity and novelty of Sulfurimonas-associated phages with divergent tailless lineages, providing basis for further investigation of phage-host interactions within this genus.
Collapse
Affiliation(s)
- Xiaofeng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Ruolin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources; State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
7
|
Hatakeyama S, Mino S, Mizobata M, Takada M, Tsuchiya J, Yamaki S, Ando Y, Sawabe T, Takai K. Hydrogenimonas leucolamina sp. nov., a hydrogen- and sulphur-oxidizing mesophilic chemolithoautotroph isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Western Pacific Ocean. Int J Syst Evol Microbiol 2024; 74. [PMID: 39436681 DOI: 10.1099/ijsem.0.006553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
A novel mesophilic bacterium, strain SS33T, was isolated from a deep-sea hydrothermal vent chimney at Suiyo Seamount, Izu-Bonin Arc, Western Pacific Ocean. The cells of strain SS33T were motile short rods with a single polar flagellum. The growth of strain SS33T was observed at the temperature range between 33 and 55 °C (optimum growth at 45 °C), at the pH range between 5.0 and 7.1 (optimum growth at pH 6.0) and in the presence of between 2.0 and 4.5% (w/v) NaCl [optimum growth at 3.5% (w/v)]. Strain SS33T was a facultative anaerobic chemolithoautotroph using molecular hydrogen and elemental sulphur as the sole electron donor. Nitrate, nitrous oxide, sulphate, elemental sulphur and molecular oxygen were capable of serving as the sole electron acceptor. Phylogenetic analysis based on 16S rRNA gene sequences placed strain SS33T in the genus Hydrogenimonas belonging to the class Epsilonproteobacteria. The closely related species of strain SS33T were Hydrogenimonas urashimensis SSM-Sur55T (95.96%), Hydrogenimonas thermophila EP1-55-1%T (95.75%) and Hydrogenimonas cancrithermarum ISO32T (95.24%). According to the taxonomic and physiological characteristics, it is proposed that strain SS33T was classified into a novel species of genus Hydrogenimonas, Hydrogenimonas leucolamina sp. nov., with SS33T (=JCM 39184T =KCTC 25253T) as the type strain. Furthermore, the genome comparison of Epsilonproteobacteria revealed that their [NiFe] hydrogenase genes belonging to Group 1b could be divided into two phylogenetic lineages and suggested that the reverse gyrase gene has been lost after division to the genus Hydrogenimonas.
Collapse
Affiliation(s)
- Shuya Hatakeyama
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Mana Mizobata
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Mako Takada
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Jiro Tsuchiya
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shogo Yamaki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yasuhiro Ando
- Laboratory of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
8
|
Wang L, Cheng X, Guo Y, Cao J, Sun M, Hwang JS, Liu R, Fang J. Novel isolates of hydrogen-oxidizing chemolithoautotrophic Sulfurospirillum provide insight to the functions and adaptation mechanisms of Campylobacteria in shallow-water hydrothermal vents. mSystems 2024; 9:e0014824. [PMID: 39166872 PMCID: PMC11406935 DOI: 10.1128/msystems.00148-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Enhancing the availability of representative isolates from hydrothermal vents (HTVs) is imperative for comprehending the microbial processes that propel the vent ecosystem. In recent years, Campylobacteria have emerged as the predominant and ubiquitous taxon across both shallow and deep-sea vent systems. Nevertheless, only a few isolates have been cultured, primarily originating from deep-sea HTVs. Presently, no cultivable isolates of Campylobacteria are accessible in shallow water vent systems (<200 m), which exhibit markedly distinct environmental conditions from their deep-sea counterparts. In this study, we enriched a novel isolate (genus Sulfurospirillum, Campylobacteria) from shallow-water HTVs of Kueishan Island. Genomic and physiological analysis revealed that this novel Campylobacteria species grows on a variety of substrate and carbon/energy sources. The pan-genome and phenotypic comparisons with 12 previously isolated Sulfurospirillum species from different environments supported the identification of functional features in Sulfurospirillum genomes crucial for adaptation to vent environments, such as sulfur oxidation, carbon fixation, biofilm formation, and benzoate/toluene degradation, as well as diverse genes related with signal transportation. To conclude, the metabolic characteristics of this novel Campylobacteria augment our understanding of Campylobacteria spanning from deep-sea to shallow-water vent systems.IMPORTANCECampylobacteria emerge as the dominant and ubiquitous taxa within vent systems, playing important roles in the vent ecosystems. However, isolated representatives of Campylobacteria have been mainly from the deep-sea hydrothermal fields, leaving a significant knowledge gap regarding the functions, activities, and adaptation strategies of the vent microorganisms in shallow-water hydrothermal vents (HTVs). This study bridges this gap by providing insights into the phenomics and genomic diversity of genus Sulfurospirillum (order Campylobacterales, class Campylobacteria) based on data derived from a novel isolate obtained from shallow-water HTVs. Our mesophilic isolate of Sulfurospirillum not only augments the genus diversity of Campylobacteria pure cultures derived from vent systems but also serves as the inaugural reference isolate for Campylobacteria in shallow-water environments.
Collapse
Affiliation(s)
- Li Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Xinyi Cheng
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yizhe Guo
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Junwei Cao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Mingye Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Rulong Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Li X, Cheng R, Zhang C, Shao Z. Genomic characterization of SNW-1, a novel prophage of the deep-sea vent chemolithoautotroph Sulfurimonas indica NW79. Genet Mol Biol 2024; 47:e20230355. [PMID: 39093930 PMCID: PMC11290706 DOI: 10.1590/1678-4685-gmb-2023-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/17/2024] [Indexed: 08/04/2024] Open
Abstract
The globally widespread genus Sulfurimonas are playing important roles in different habitats, including the deep-sea hydrothermal vents. However, phages infecting Sulfurimonas have never been isolated and characterized to date. In the present study, a novel prophage SNW-1 was identified from Sulfurimonas indica NW79. Whole genome sequencing resulted in a circular, double-stranded DNA molecule of 37,096 bp with a mol% G+C content of 37. The genome includes 64 putative open reading frames, 33 of which code for proteins with predicted functions. Presence of hallmark genes associated with Caudoviricetes and genes involved in lysis and lysogeny indicated that SNW-1 should be a temperate, tailed phage. Phylogenetic and comparative proteomic analyses suggested that Sulfurimonas phage SNW-1 was distinct from other double stranded DNA phages and might represent a new viral genus.
Collapse
Affiliation(s)
- Xiaofeng Li
- Ningbo University, Institute of Plant Virology, State Key Laboratory
for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products,
Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of
Agriculture and Zhejiang Province, Ningbo, China
- Third Institute of Oceanography, Ministry of Natural Resources, Key
Laboratory of Marine Genetic Resources, Xiamen, China
| | - Ruolin Cheng
- Third Institute of Oceanography, Ministry of Natural Resources, Key
Laboratory of Marine Genetic Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource,
Xiamen, China
| | - Chuanxi Zhang
- Ningbo University, Institute of Plant Virology, State Key Laboratory
for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products,
Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of Ministry of
Agriculture and Zhejiang Province, Ningbo, China
| | - Zongze Shao
- Third Institute of Oceanography, Ministry of Natural Resources, Key
Laboratory of Marine Genetic Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource,
Xiamen, China
| |
Collapse
|
10
|
Grégoire DS, George NA, Hug LA. Microbial methane cycling in a landfill on a decadal time scale. Nat Commun 2023; 14:7402. [PMID: 37973978 PMCID: PMC10654671 DOI: 10.1038/s41467-023-43129-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Landfills generate outsized environmental footprints due to microbial degradation of organic matter in municipal solid waste, which produces the potent greenhouse gas methane. With global solid waste production predicted to increase substantially in the next few decades, there is a pressing need to better understand the temporal dynamics of biogeochemical processes that control methane cycling in landfills. Here, we use metagenomic approaches to characterize microbial methane cycling in waste that was landfilled over 39 years. Our analyses indicate that newer waste supports more diverse communities with similar composition compared to older waste, which contains lower diversity and more varied communities. Older waste contains primarily autotrophic organisms with versatile redox metabolisms, whereas newer waste is dominated by anaerobic fermenters. Methane-producing microbes are more abundant, diverse, and metabolically versatile in new waste compared to old waste. Our findings indicate that predictive models for methane emission in landfills overlook methane oxidation in the absence of oxygen, as well as certain microbial lineages that can potentially contribute to methane sinks in diverse habitats.
Collapse
Affiliation(s)
- Daniel S Grégoire
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Nikhil A George
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
11
|
Goffredi SK, Panossian B, Brzechffa C, Field N, King C, Moggioli G, Rouse GW, Martín-Durán JM, Henry LM. A dynamic epibiont community associated with the bone-eating polychaete genus Osedax. mBio 2023; 14:e0314022. [PMID: 37382438 PMCID: PMC10470745 DOI: 10.1128/mbio.03140-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/08/2023] [Indexed: 06/30/2023] Open
Abstract
Osedax, the deep-sea annelid found at sunken whalefalls, is known to host Oceanospirillales bacterial endosymbionts intracellularly in specialized roots, which help it feed exclusively on vertebrate bones. Past studies, however, have also made mention of external bacteria on their trunks. During a 14-yr study, we reveal a dynamic, yet persistent, shift of Campylobacterales integrated into the epidermis of Osedax, which change over time as the whale carcass degrades on the sea floor. The Campylobacterales associated with seven species of Osedax, which comprise 67% of the bacterial community on the trunk, appear initially dominated by the genus Arcobacter (at early time points <24 mo), the Sulfurospirillum at intermediate stages (~50 mo), and the Sulfurimonas at later stages (>140 mo) of whale carcass decomposition. Metagenome analysis of the epibiont metabolic capabilities suggests potential for a transition from heterotrophy to autotrophy and differences in their capacity to metabolize oxygen, carbon, nitrogen, and sulfur. Compared to free-living relatives, the Osedax epibiont genomes were enriched in transposable elements, implicating genetic exchange on the host surface, and contained numerous secretions systems with eukaryotic-like protein (ELP) domains, suggesting a long evolutionary history with these enigmatic, yet widely distributed deep-sea worms. IMPORTANCE Symbiotic associations are widespread in nature and we can expect to find them in every type of ecological niche. In the last twenty years, the myriad of functions, interactions and species comprising microbe-host associations has fueled a surge of interest and appreciation for symbiosis. During this 14-year study, we reveal a dynamic population of bacterial epibionts, integrated into the epidermis of 7 species of a deep-sea worm group that feeds exclusively on the remains of marine mammals. The bacterial genomes provide clues of a long evolutionary history with these enigmatic worms. On the host surface, they exchange genes and appear to undergo ecological succession, as the whale carcass habitat degrades over time, similar to what is observed for some free-living communities. These, and other annelid worms are important keystone species for diverse deep-sea environments, yet the role of attached external bacteria in supporting host health has received relatively little attention.
Collapse
Affiliation(s)
- Shana K. Goffredi
- Department of Biology, Occidental College, Los Angeles, California, USA
| | - Balig Panossian
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Camille Brzechffa
- Department of Biology, Occidental College, Los Angeles, California, USA
| | - Naomi Field
- Department of Biology, Occidental College, Los Angeles, California, USA
| | - Chad King
- Monterey Bay National Marine Sanctuary, Monterey, California, USA
| | - Giacomo Moggioli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Greg W. Rouse
- Scripps Oceanography, University of California, La Jolla, California, USA
| | - José M. Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Lee M. Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
12
|
Sun QL, Xu K, Cao L, Du Z, Wang M, Sun L. Nitrogen and sulfur cycling driven by Campylobacterota in the sediment-water interface of deep-sea cold seep: a case in the South China Sea. mBio 2023; 14:e0011723. [PMID: 37409803 PMCID: PMC10470523 DOI: 10.1128/mbio.00117-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Chemoautotrophs within Campylobacterota, especially Sulfurovum and Sulfurimonas, are abundant in the seawater-sediment interface of the Formosa cold seep in the South China Sea. However, the in situ activity and function of Campylobacterota are unknown. In this study, the geochemical role of Campylobacterota in the Formosa cold seep was investigated with multiple means. Two members of Sulfurovum and Sulfurimonas were isolated for the first time from deep-sea cold seep. These isolates are new chemoautotrophic species that can use molecular hydrogen as an energy source and CO2 as a sole carbon source. Comparative genomics identified an important hydrogen-oxidizing cluster in Sulfurovum and Sulfurimonas. Metatranscriptomic analysis detected high expression of hydrogen-oxidizing gene in the RS, suggesting that H2 was likely an energy source in the cold seep. Genomic analysis indicated that the Sulfurovum and Sulfurimonas isolates possess a truncated sulfur-oxidizing system, and metatranscriptomic analysis revealed that Sulfurovum and Sulfurimonas with this genotype were active in the surface of RS and likely contributed to thiosulfate production. Furthermore, geochemical and in situ analyses revealed sharply decreased nitrate concentration in the sediment-water interface due to microbial consumption. Consistently, the denitrification genes of Sulfurimonas and Sulfurovum were highly expressed, suggesting an important contribution of these bacteria to nitrogen cycling. Overall, this study demonstrated that Campylobacterota played a significant role in the cycling of nitrogen and sulfur in a deep-sea cold seep. IMPORTANCE Chemoautotrophs within Campylobacterota, in particular Sulfurovum and Sulfurimonas, are ubiquitous in deep-sea cold seeps and hydrothermal vents. However, to date, no Sulfurovum or Sulfurimonas has been isolated from cold seeps, and the ecological roles of these bacteria in cold seeps remain to be investigated. In this study, we obtained two isolates of Sulfurovum and Sulfurimonas from Formosa cold seep, South China Sea. Comparative genomics, metatranscriptomics, geochemical analysis, and in situ experimental study indicated collectively that Campylobacterota played a significant part in nitrogen and sulfur cycling in cold seep and was the cause of thiosulfate accumulation and sharp reduction of nitrate level in the sediment-water interface. The findings of this study promoted our understanding of the in situ function and ecological role of deep-sea Campylobacterota.
Collapse
Affiliation(s)
- Qing-lei Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
| | - Ke Xu
- College of Life Science, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lei Cao
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zengfeng Du
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Mazière C, Duran R, Dupuy C, Cravo-Laureau C. Microbial mats as model to decipher climate change effect on microbial communities through a mesocosm study. Front Microbiol 2023; 14:1039658. [PMID: 37396368 PMCID: PMC10308941 DOI: 10.3389/fmicb.2023.1039658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Marine environments are expected to be one of the most affected ecosystems by climate change, notably with increasing ocean temperature and ocean acidification. In marine environments, microbial communities provide important ecosystem services ensuring biogeochemical cycles. They are threatened by the modification of environmental parameters induced by climate change that, in turn, affect their activities. Microbial mats, ensuring important ecosystem services in coastal areas, are well-organized communities of diverse microorganisms representing accurate microbial models. It is hypothesized that their microbial diversity and metabolic versatility will reveal various adaptation strategies in response to climate change. Thus, understanding how climate change affects microbial mats will provide valuable information on microbial behaviour and functioning in changed environment. Experimental ecology, based on mesocosm approaches, provides the opportunity to control physical-chemical parameters, as close as possible to those observed in the environment. The exposure of microbial mats to physical-chemical conditions mimicking the climate change predictions will help to decipher the modification of the microbial community structure and function in response to it. Here, we present how to expose microbial mats, following a mesocosm approach, to study the impact of climate change on microbial community.
Collapse
Affiliation(s)
- C. Mazière
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés)—2, rue Olympe de Gouges, Bât. ILE, La Rochelle, France
| | - R. Duran
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
| | - C. Dupuy
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés)—2, rue Olympe de Gouges, Bât. ILE, La Rochelle, France
| | - C. Cravo-Laureau
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
| |
Collapse
|
14
|
Gheibzadeh MS, Manyumwa CV, Tastan Bishop Ö, Shahbani Zahiri H, Parkkila S, Zolfaghari Emameh R. Genome Study of α-, β-, and γ-Carbonic Anhydrases from the Thermophilic Microbiome of Marine Hydrothermal Vent Ecosystems. BIOLOGY 2023; 12:770. [PMID: 37372055 DOI: 10.3390/biology12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| |
Collapse
|
15
|
Gao P, Fan K. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review. Arch Microbiol 2023; 205:162. [PMID: 37010699 DOI: 10.1007/s00203-023-03520-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) inhabit oilfield production systems. Sulfur oxidation driven by SOB and dissimilatory sulfate reduction driven by SRB play important roles in sulfur cycle of oil reservoirs. More importantly, hydrogen sulfide produced by SRB is an acidic, flammable, and smelly toxic gas associated with reservoir souring, corrosion of oil-production facilities, and personnel safety. Effective control of SRB is urgently needed for the oil industry. This depends on an in-depth understanding of the microbial species that drive sulfur cycle and other related microorganisms in oil reservoir environments. Here, we identified SOB and SRB in produced brines of Qizhong block (Xinjiang Oilfield, China) from metagenome sequencing data based on reported SOB and SRB, reviewed metabolic pathways of sulfur oxidation and dissimilatory sulfate reduction, and ways for SRB control. The existing issues and future research of microbial sulfur cycle and SRB control are also discussed. Knowledge of the distribution of the microbial populations, their metabolic characteristics and interactions can help to develop an effective process to harness these microorganisms for oilfield production.
Collapse
Affiliation(s)
- Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Keyan Fan
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
16
|
Molari M, Hassenrueck C, Laso-Pérez R, Wegener G, Offre P, Scilipoti S, Boetius A. A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes. Nat Microbiol 2023; 8:651-665. [PMID: 36894632 PMCID: PMC10066037 DOI: 10.1038/s41564-023-01342-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023]
Abstract
Members of the bacterial genus Sulfurimonas (phylum Campylobacterota) dominate microbial communities in marine redoxclines and are important for sulfur and nitrogen cycling. Here we used metagenomics and metabolic analyses to characterize a Sulfurimonas from the Gakkel Ridge in the Central Arctic Ocean and Southwest Indian Ridge, showing that this species is ubiquitous in non-buoyant hydrothermal plumes at Mid Ocean Ridges across the global ocean. One Sulfurimonas species, USulfurimonas pluma, was found to be globally abundant and active in cold (<0-4 °C), oxygen-saturated and hydrogen-rich hydrothermal plumes. Compared with other Sulfurimonas species, US. pluma has a reduced genome (>17%) and genomic signatures of an aerobic chemolithotrophic metabolism using hydrogen as an energy source, including acquisition of A2-type oxidase and loss of nitrate and nitrite reductases. The dominance and unique niche of US. pluma in hydrothermal plumes suggest an unappreciated biogeochemical role for Sulfurimonas in the deep ocean.
Collapse
Affiliation(s)
- Massimiliano Molari
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | - Rafael Laso-Pérez
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| | - Stefano Scilipoti
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
17
|
Kang S, Vo TKQ, An SA, Kim HS. Investigating the effects of physical properties of sulphur-based carriers on autotrophic denitrification. ENVIRONMENTAL TECHNOLOGY 2023; 44:108-117. [PMID: 34344268 DOI: 10.1080/09593330.2021.1964610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, four sulphur-based carriers (C1-C4) which have different mass ratio of sodium silicate to carrier from 30% to 50% (C1-C3) and the existence of water (C4) were prepared in order to evaluate the effect of the different physical properties on denitrification in sulphur-based autotrophic processes. While the apparent density and the compressive strength decreased as the proportion of sodium silicate increased and water was added in the carriers, the average pore size and the porosity increased from 0.43 to 3.13 µm and from 38% to 67%, respectively. The treatment system using the carrier C4 with the highest surface area was stabilized most rapidly and achieved the highest nitrogen removal efficiency of 85.6 ± 5.0% during a relatively short HRT of 3 h. The efficiency of nitrate removal was enhanced by 36.9% due to the increase of the ratio of sodium silicate in the carriers from C1 to C3, and more 4.8% point of removal rate increased in the carrier C4 by adding water to the carrier C3. The sum of Thiobacillus and Sulfurimonas was obtained up to 65.90% among the microbial community in the carrier C4 which has the highest distribution (38.35%) of pore size above 20 µm considered to be favourable for retaining autotrophic denitrifiers. From the above results, it is obvious that the physical properties of the sulphur-based carrier and its ability of denitrification can be influenced significantly by the composition of the carrier.
Collapse
Affiliation(s)
- Soyeon Kang
- Department of Environmental Engineering and Energy, Myongji University, Yongin-si, Republic of Korea
| | - Thi-Kim-Quyen Vo
- Faculty of Environment - Natural Resources and Climate Change, Ho Chi Minh City University of Food Industry (HUFI), Ho Chi Minh City, Vietnam
| | - Sun-A An
- Department of Environmental Engineering and Energy, Myongji University, Yongin-si, Republic of Korea
| | - Han-Seung Kim
- Department of Environmental Engineering and Energy, Myongji University, Yongin-si, Republic of Korea
| |
Collapse
|
18
|
Zhou Z, St John E, Anantharaman K, Reysenbach AL. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. MICROBIOME 2022; 10:241. [PMID: 36572924 PMCID: PMC9793634 DOI: 10.1186/s40168-022-01424-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/11/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND When deep-sea hydrothermal fluids mix with cold oxygenated fluids, minerals precipitate out of solution and form hydrothermal deposits. These actively venting deep-sea hydrothermal deposits support a rich diversity of thermophilic microorganisms which are involved in a range of carbon, sulfur, nitrogen, and hydrogen metabolisms. Global patterns of thermophilic microbial diversity in deep-sea hydrothermal ecosystems have illustrated the strong connectivity between geological processes and microbial colonization, but little is known about the genomic diversity and physiological potential of these novel taxa. Here we explore this genomic diversity in 42 metagenomes from four deep-sea hydrothermal vent fields and a deep-sea volcano collected from 2004 to 2018 and document their potential implications in biogeochemical cycles. RESULTS Our dataset represents 3635 metagenome-assembled genomes encompassing 511 novel and recently identified genera from deep-sea hydrothermal settings. Some of the novel bacterial (107) and archaeal genera (30) that were recently reported from the deep-sea Brothers volcano were also detected at the deep-sea hydrothermal vent fields, while 99 bacterial and 54 archaeal genera were endemic to the deep-sea Brothers volcano deposits. We report some of the first examples of medium- (≥ 50% complete, ≤ 10% contaminated) to high-quality (> 90% complete, < 5% contaminated) MAGs from phyla and families never previously identified, or poorly sampled, from deep-sea hydrothermal environments. We greatly expand the novel diversity of Thermoproteia, Patescibacteria (Candidate Phyla Radiation, CPR), and Chloroflexota found at deep-sea hydrothermal vents and identify a small sampling of two potentially novel phyla, designated JALSQH01 and JALWCF01. Metabolic pathway analysis of metagenomes provides insights into the prevalent carbon, nitrogen, sulfur, and hydrogen metabolic processes across all sites and illustrates sulfur and nitrogen metabolic "handoffs" in community interactions. We confirm that Campylobacteria and Gammaproteobacteria occupy similar ecological guilds but their prevalence in a particular site is driven by shifts in the geochemical environment. CONCLUSION Our study of globally distributed hydrothermal vent deposits provides a significant expansion of microbial genomic diversity associated with hydrothermal vent deposits and highlights the metabolic adaptation of taxonomic guilds. Collectively, our results illustrate the importance of comparative biodiversity studies in establishing patterns of shared phylogenetic diversity and physiological ecology, while providing many targets for enrichment and cultivation of novel and endemic taxa. Video Abstract.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily St John
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
19
|
Vasquez-Cardenas D, Hidalgo-Martinez S, Hulst L, Thorleifsdottir T, Helgason GV, Eiriksson T, Geelhoed JS, Agustsson T, Moodley L, Meysman FJR. Biogeochemical impacts of fish farming on coastal sediments: Insights into the functional role of cable bacteria. Front Microbiol 2022; 13:1034401. [PMID: 36620049 PMCID: PMC9814725 DOI: 10.3389/fmicb.2022.1034401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Fish farming in sea cages is a growing component of the global food industry. A prominent ecosystem impact of this industry is the increase in the downward flux of organic matter, which stimulates anaerobic mineralization and sulfide production in underlying sediments. When free sulfide is released to the overlying water, this can have a toxic effect on local marine ecosystems. The microbially-mediated process of sulfide oxidation has the potential to be an important natural mitigation and prevention strategy that has not been studied in fish farm sediments. We examined the microbial community composition (DNA-based 16S rRNA gene) underneath two active fish farms on the Southwestern coast of Iceland and performed laboratory incubations of resident sediment. Field observations confirmed the strong geochemical impact of fish farming on the sediment (up to 150 m away from cages). Sulfide accumulation was evidenced under the cages congruent with a higher supply of degradable organic matter from the cages. Phylogenetically diverse microbes capable of sulfide detoxification were present in the field sediment as well as in lab incubations, including cable bacteria (Candidatus Electrothrix), which display a unique metabolism based on long-distance electron transport. Microsensor profiling revealed that the activity of cable bacteria did not exert a dominant impact on the geochemistry of fish farm sediment at the time of sampling. However, laboratory incubations that mimic the recovery process during fallowing, revealed successful enrichment of cable bacteria within weeks, with concomitant high sulfur-oxidizing activity. Overall our results give insight into the role of microbially-mediated sulfide detoxification in aquaculture impacted sediments.
Collapse
Affiliation(s)
- Diana Vasquez-Cardenas
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands,Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium,*Correspondence: Diana Vasquez-Cardenas,
| | | | - Lucas Hulst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | | | | | | | - Leon Moodley
- NORCE Norwegian Research Centre, Randaberg, Norway
| | - Filip J. R. Meysman
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands,Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
20
|
Tanikawa D, Motokawa D, Itoiri Y, Kimura ZI, Ito M, Nagano A. Biogas purification and ammonia load reduction in sewage treatment by two-stage down-flow hanging sponge reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158355. [PMID: 36041617 DOI: 10.1016/j.scitotenv.2022.158355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
In this study, a two-stage down-flow hanging sponge (TSDHS) reactor was used as biotrickling filter for biogas desulfurization by utilizing the anaerobic digester supernatant (ADS) of sewage sludge of an activated sludge process (ASP). The reactor comprises a closed-type first-stage down-flow hanging sponge (1st DHS) and an open-type second-stage down-flow hanging sponge (2nd DHS) reactors. In the 1st DHS, hydrogen sulfide in biogas was dissolved into the ADS, and then it was oxidized into elemental sulfur and sulfate by microbe using dissolved oxygen and nitrite in the ADS. More than 99.9 % of hydrogen sulfide was removed within 400 s of empty bed residence time, and >50 % of removed hydrogen sulfide was oxidized into elemental sulfur and accumulated at the surface of the sponge carrier in the 1st DHS. The 1st DHS effluent was fed into the 2nd DHS for nitrogen removal via nitrification and sulfur-based denitrification with the recirculation of the 2nd DHS effluent under nonaeration condition. In the 2nd DHS, 36.8 % of ammonia and 5.3 % of total inorganic nitrogen were removed. Sulfurimonas and Halothiobacillus were increased and contributed to the sulfur-based denitrification as well as the accumulation of elemental sulfur in the 1st DHS, respectively. In the 2nd DHS, Nitrosococcus, Nitrobacter, and Sulfuritalea were considered as the contributors of nitrogen removal via nitrification and sulfur-based denitrification. Further, this study shows that a TSDHS reactor can achieve not only desulfurization of biogas in the 1st DHS but also a 3.5 %-15 % reduction of the ammonia load in the 2nd DHS by effective utilization of the ADS during sewage treatment, assuming that the ADS is returned to the ASP.
Collapse
Affiliation(s)
- Daisuke Tanikawa
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan.
| | - Daisuke Motokawa
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan
| | - Yuya Itoiri
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan
| | - Zen-Ichiro Kimura
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan
| | - Masahiro Ito
- Technical Research & Development Center, Sanki Engineering Co., Ltd., P.C. 2420007 Yamato, Japan
| | - Akihiro Nagano
- Technical Research & Development Center, Sanki Engineering Co., Ltd., P.C. 2420007 Yamato, Japan
| |
Collapse
|
21
|
Pérez-Rodríguez I, Sievert SM, Fogel ML, Foustoukos DI. Physiological and metabolic responses of chemolithoautotrophic NO 3 - reducers to high hydrostatic pressure. GEOBIOLOGY 2022; 20:857-869. [PMID: 36081384 DOI: 10.1111/gbi.12522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
We investigated the impact of pressure on thermophilic, chemolithoautotrophic NO 3 - reducing bacteria of the phyla Campylobacterota and Aquificota isolated from deep-sea hydrothermal vents. Batch incubations at 5 and 20 MPa resulted in decreased NO 3 - consumption, lower cell concentrations, and overall slower growth in Caminibacter mediatlanticus (Campylobacterota) and Thermovibrio ammonificans (Aquificota), relative to batch incubations near standard pressure (0.2 MPa) conditions. Nitrogen isotope fractionation effects from chemolithoautotrophic NO 3 - reduction by both microorganisms were, on the contrary, maintained under all pressure conditions. Comparable chemolithoautotrophic NO 3 - reducing activities between previously reported natural hydrothermal vent fluid microbial communities dominated by Campylobacterota at 25 MPa and Campylobacterota laboratory isolates at 0.2 MPa, suggest robust similarities in cell-specific NO 3 - reduction rates and doubling times between microbial populations and communities growing maximally under similar temperature conditions. Physiological and metabolic comparisons of our results with other studies of pressure effects on anaerobic chemolithoautotrophic processes (i.e., microbial S0 -oxidation coupled to Fe(III) reduction and hydrogenotrophic methanogenesis) suggest that anaerobic chemolithoautotrophs relying on oxidation-reduction (redox) reactions that yield higher Gibbs energies experience larger shifts in cell-specific respiration rates and doubling times at increased pressures. Overall, our results advance understanding of the role of pressure, its relationship with temperature and redox conditions, and their effects on seafloor chemolithoautotrophic NO 3 - reduction and other anaerobic chemolithoautotrophic processes.
Collapse
Affiliation(s)
- Ileana Pérez-Rodríguez
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Marilyn L Fogel
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Dionysis I Foustoukos
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
| |
Collapse
|
22
|
Wang Z, Wang S, Lai Q, Wei S, Jiang L, Shao Z. Sulfurimonas marina sp. nov., an obligately chemolithoautotrophic, sulphur-oxidizing bacterium isolated from a deep-sea sediment sample from the South China Sea. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel marine bacterium, designated strain B2T, was isolated from a deep-sea sediment sample collected from the South China Sea. Cells were observed to be Gram-stain negative, motile and rod shaped with a single polar flagellum. B2T could grow at 10–45 °C (optimum, 35 °C), pH 4.5–9.0 (optimum, pH 7.0) and in the presence of 1.0–8.0 % (w/v) NaCl (optimum, 3.0%). The isolate grew chemolithoautotrophically with sulphide, elemental sulphur and thiosulphate as electron donors, carbon dioxide as the sole carbon source, and molecular oxygen as the sole electron acceptor. Molecular hydrogen did not support growth. The predominant fatty acids of B2T were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The results of phylogenetic analysis based on 16S rRNA gene sequence indicated that B2T represented a member of the genus
Sulfurimonas
, with the highest similarity to the 16S rRNA gene sequences of
Sulfurimonas indica
NW8NT (95.9 %),
Sulfurimonas crateris
SN118T (95.7 %),
Sulfurimonas xiamenensis
1-1NT (95.6 %) and
Sulfurimonas paralvinellae
GO25T (95.4 %). Sequence similarities to other members of the genus
Sulfurimonas
were less than 95.0 %. In addition, the average nucleotide identity (ANI) value and digital DNA–DNA hybridization (dDDH) estimate between B2T and
S. indica
NW8NT were 73.0 and 23.7 %, respectively. The size of the complete genome of B2T is 22 61 034 bp, with a DNA G+C content of 36.0 mol %. On the basis of the phenotypic, phylogenetic and genomic data presented here, strain B2T represent a novel species of the genus
Sulfurimonas
, for which the name Sulfurimonas marina sp. nov. is proposed, with the type strain B2T (=MCCC 1A14515T=KCTC 15852T).
Collapse
Affiliation(s)
- Zhaodi Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, PR China
| | - Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Shiping Wei
- School of Marine Sciences, China University of Geosciences, Beijing 100083, PR China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
23
|
Wei M, Zeng X, Han X, Shao Z, Xie Q, Dong C, Wang Y, Qiu Z. Potential autotrophic carbon-fixer and Fe(II)-oxidizer Alcanivorax sp. MM125-6 isolated from Wocan hydrothermal field. Front Microbiol 2022; 13:930601. [PMID: 36316996 PMCID: PMC9616709 DOI: 10.3389/fmicb.2022.930601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
The genus Alcanivorax is common in various marine environments, including in hydrothermal fields. They were previously recognized as obligate hydrocarbonoclastic bacteria, but their potential for autotrophic carbon fixation and Fe(II)-oxidation remains largely elusive. In this study, an in situ enrichment experiment was performed using a hydrothermal massive sulfide slab deployed 300 m away from the Wocan hydrothermal vent. Furthermore, the biofilms on the surface of the slab were used as an inoculum, with hydrothermal massive sulfide powder from the same vent as an energy source, to enrich the potential iron oxidizer in the laboratory. Three dominant bacterial families, Alcanivoraceae, Pseudomonadaceae, and Rhizobiaceae, were enriched in the medium with hydrothermal massive sulfides. Subsequently, strain Alcanivorax sp. MM125-6 was isolated from the enrichment culture. It belongs to the genus Alcanivorax and is closely related to Alcanivorax profundimaris ST75FaO-1 T (98.9% sequence similarity) indicated by a phylogenetic analysis based on 16S rRNA gene sequences. Autotrophic growth experiments on strain MM125-6 revealed that the cell concentrations were increased from an initial 7.5 × 105 cells/ml to 3.13 × 108 cells/ml after 10 days, and that the δ13C VPDB in the cell biomass was also increased from 234.25‰ on day 2 to gradually 345.66 ‰ on day 10. The gradient tube incubation showed that bands of iron oxides and cells formed approximately 1 and 1.5 cm, respectively, below the air-agarose medium interface. In addition, the SEM-EDS data demonstrated that it can also secrete acidic exopolysaccharides and adhere to the surface of sulfide minerals to oxidize Fe(II) with NaHCO3 as the sole carbon source, which accelerates hydrothermal massive sulfide dissolution. These results support the conclusion that strain MM125-6 is capable of autotrophic carbon fixation and Fe(II) oxidization chemoautotrophically. This study expands our understanding of the metabolic versatility of the Alcanivorax genus as well as their important role(s) in coupling hydrothermal massive sulfide weathering and iron and carbon cycles in hydrothermal fields.
Collapse
Affiliation(s)
- Mingcong Wei
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiqiu Han
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Qian Xie
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanqi Dong
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Yejian Wang
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zhongyan Qiu
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| |
Collapse
|
24
|
Grouzdev D, Gaisin V, Lunina O, Krutkina M, Krasnova E, Voronov D, Baslerov R, Sigalevich P, Savvichev A, Gorlenko V. Microbial communities of stratified aquatic ecosystems of Kandalaksha Bay (White Sea) shed light on the evolutionary history of green and brown morphotypes of Chlorobiota. FEMS Microbiol Ecol 2022; 98:6693937. [PMID: 36073352 DOI: 10.1093/femsec/fiac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022] Open
Abstract
Anoxygenic photoautotrophic metabolism of green sulfur bacteria of the family Chlorobiaceae played a significant role in establishing the Earth's biosphere. Two known major ecological forms of these phototrophs differ in their pigment composition and, therefore, in color: the green and brown forms. The latter form often occurs in low-light environments and is specialized to harvest blue light, which can penetrate to the greatest depth in the water column. In the present work, metagenomic sequencing was used to investigate the natural population of brown Chl. phaeovibrioides ZM in a marine stratified Zeleny Mys lagoon in the Kandalaksha Bay (the White Sea) to supplement the previously obtained genomes of brown Chlorobiaceae. The genomes of brown and green Chlorobiaceae were investigated using comparative genome analysis and phylogenetic and reconciliation analysis to reconstruct the evolution of these ecological forms. Our results support the suggestion that the last common ancestor of Chlorobiaceae belonged to the brown form, i.e. it was adapted to the conditions of low illumination. However, despite the vertical inheritance of these characteristics, among modern Chlorobiaceae populations, the genes responsible for synthesizing the pigments of the brown form are subject to active horizontal transfer.
Collapse
Affiliation(s)
- Denis Grouzdev
- SciBear OU, 10115 Tallinn, Estonia.,School of Marine and Atmospheric Sciences, Stony Brook University, 11794, Stony Brook, USA
| | - Vasil Gaisin
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.,Current affiliation: Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Olga Lunina
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | | | - Elena Krasnova
- Pertsov White Sea Biological Station, 184042, Republic Karelia, Russia
| | - Dmitry Voronov
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127051, Moscow, Russia
| | - Roman Baslerov
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Pavel Sigalevich
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Alexander Savvichev
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Vladimir Gorlenko
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
25
|
Shang S, Li L, Zhang Z, Zang Y, Chen J, Wang J, Wu T, Xia J, Tang X. The Effects of Secondary Growth of Spartina alterniflora after Treatment on Sediment Microorganisms in the Yellow River Delta. Microorganisms 2022; 10:microorganisms10091722. [PMID: 36144325 PMCID: PMC9506343 DOI: 10.3390/microorganisms10091722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
As a typical invasive species, Spartina alterniflora is widely recognized as one of the primary threats to biodiversity in various habitats, including wetlands. Although the invasion by S. alterniflora has been managed in multiple ways, it may reappear after treatment. How S. alterniflora affects the soil microbial community in coastal wetlands during its regeneration process has not yet been clarified. Here, rhizosphere soil samples (RSPs) and bulk soil samples (SSPs) were collected in the S. alterniflora community and a high-throughput sequencing method was conducted to analyze the composition and diversity of soil microorganisms. Meanwhile, we also obtain the soil physicochemical properties. In the present study, there was no significant difference in the alpha diversity of both bacterial and fungal communities in the SSP and RSP groups. The PCoA (principal coordinate analysis) also showed that the microbial community structure did not differ significantly between the SSP and RSP groups. The results showed that except for pH, the total sulfur (TS) content, total nitrogen (TN) content, and electrical conductivity (EC) did not differ significantly (p > 0.05) between the SSP and RSP groups. The composition of the bacterial and fungal community in the rhizosphere of S. alterniflora was similar to that found in the surrounding soils. The top two dominant bacterial phyla were Proteobacteria and Desulfobacterota in the present study. Venn diagram results also support this view; most OTUs belong to the common OTUs of the two groups, and the proportion of unique OTUs is relatively small. The LEfSe (LDA effect size) analysis showed that Campylobacterota (at the phylum level) and Sulfurimonas (at the genus level) significantly increased in the RSP group, implying that the increased Sulfurimonas might play an essential role in the invasion by S. alterniflora during the under-water period. Overall, these results suggest that the bacterial and fungal communities were not significantly affected by the S. alterniflora invasion due to the short invasion time.
Collapse
Affiliation(s)
- Shuai Shang
- School of Biological & Environmental Engineering, Binzhou University, Binzhou 256600, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
- Correspondence: (S.S.); (X.T.)
| | - Liangyu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| | - Zaiwang Zhang
- School of Biological & Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Yu Zang
- Department of Natural Resources, First Institute of Oceanography, Qingdao 266100, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| | - Jun Wang
- School of Biological & Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Tao Wu
- School of Biological & Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Jiangbao Xia
- School of Biological & Environmental Engineering, Binzhou University, Binzhou 256600, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou 256600, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
- Correspondence: (S.S.); (X.T.)
| |
Collapse
|
26
|
Kojima H, Kato Y, Watanabe T, Fukui M. Sulfurimonas aquatica sp. nov., a sulfur-oxidizing bacterium isolated from water of a brackish lake. Arch Microbiol 2022; 204:559. [PMID: 35976522 DOI: 10.1007/s00203-022-03167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
A novel chemolithoautotrophic bacterium, strain H1576T, was isolated from water of a brackish lake. Strain H1576T grew aerobically on inorganic sulfur compounds. Hydrogen gas did not support autotrophic growth, and heterotrophic growth was not observed. Cells were rod shaped, motile, 1.5-2.7 μm in length and 0.6-0.7 μm in width. Growth was observed at 3-22 °C with an optimum growth temperature of 13-15 °C. The pH range for growth was 6.0-7.4 with an optimum pH of 6.6-6.8. Major fatty acids were summed feature 3 (C16: 1ω7c and/or C16: 1ω6c). The complete genome of strain H1576T consists of a circular chromosome and a plasmid, with total length of 2.8 Mbp and G+C content of 46.4 mol%. Phylogenetic analyses indicated that strain H1576T belongs to the genus Sulfurimonas but distinct from representatives of existing species. On the basis of genomic and phenotypic characteristics, a new species named Sulfurimonas aquatica sp. nov. is proposed with the type strain of strain H1576T (= BCRC 81254T = JCM 35004T).
Collapse
Affiliation(s)
- Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Yukako Kato
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| | - Tomohiro Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
27
|
Barbato M, Palma E, Marzocchi U, Cruz Viggi C, Rossetti S, Aulenta F, Scoma A. Snorkels enhance alkanes respiration at ambient and increased hydrostatic pressure (10 MPa) by either supporting the TCA cycle or limiting alternative routes for acetyl-CoA metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115244. [PMID: 35598451 DOI: 10.1016/j.jenvman.2022.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The impact of piezosensitive microorganisms is generally underestimated in the ecology of underwater environments exposed to increasing hydrostatic pressure (HP), including the biodegradation of crude oil components. Yet, no isolated pressure-loving (piezophile) microorganism grows optimally on hydrocarbons, and no isolated piezophile at all has a HP optimum <10 MPa (e.g. 1000 m below sea water level). Piezosensitive heterotrophs are thus largely accountable for oil clean up < 10 MPa, however, they are affected by such a mild HP increase in ways which are not completely clear. In a first study, the application of a bioelectrochemical system (called "oil-spill snorkel") enhanced the alkane oxidation capacity in sediments collected at surface water but tested up to 10 MPa. Here, the fingerprint left on transcript abundance was studied to explore which metabolic routes are 1) supported by snorkels application and 2) negatively impacted by HP increase. Transcript abundance was comparable for beta-oxidation across all treatments (also at a taxonomical level), while the metabolism of acetyl-CoA was highly impacted: at either 0.1 or 10 MPa, snorkels supported acetyl-CoA oxidation within the TCA cycle, while in negative controls using non-conductive rods several alternative routes for acetyl-CoA were stimulated (including those leading to internal carbon reserves e.g. 2,3 butanediol and dihydroxyacetone). In general, increased HP had opposite effects as compared to snorkels, thus indicating that snorkels could enhance hydrocarbons oxidation by alleviating in part the stressing effects imposed by increased HP on the anaerobic, respiratory electron transport chain. 16S rRNA gene analysis of sediments and biofilms on snorkels suggest a crosstalk between oil-degrading, sulfate-reducing microorganisms and sulfur oxidizers. In fact, no sulfur was deposited on snorkels, however, iron, aluminum and phosphorous were found to preferentially deposit on snorkels at 10 MPa. This data indicates that a passive BES such as the oil-spill snorkel can mitigate the stress imposed by increased HP on piezosensitive microorganisms (up to 10 MPa) without being subjected to passivation. An improved setup applying these principles can further support this deep-sea bioremediation strategy.
Collapse
Affiliation(s)
- Marta Barbato
- Engineered Microbial Systems (EMS) Lab, Industrial Biotechnology Section, Department of Biological and Chemical Engineering (BCE), Aarhus University, Aarhus, Denmark; Microbiology Section, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Enza Palma
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Ugo Marzocchi
- Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark; Center for Water Technology WATEC, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, Italy.
| | - Alberto Scoma
- Engineered Microbial Systems (EMS) Lab, Industrial Biotechnology Section, Department of Biological and Chemical Engineering (BCE), Aarhus University, Aarhus, Denmark; Microbiology Section, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
28
|
Unraveling pharmaceuticals removal in a sulfur-driven autotrophic denitrification process: Performance, kinetics and mechanisms. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Arora-Williams K, Holder C, Secor M, Ellis H, Xia M, Gnanadesikan A, Preheim SP. Abundant and persistent sulfur-oxidizing microbial populations are responsive to hypoxia in the Chesapeake Bay. Environ Microbiol 2022; 24:2315-2332. [PMID: 35304940 PMCID: PMC9310604 DOI: 10.1111/1462-2920.15976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 01/04/2023]
Abstract
The number, size and severity of aquatic low‐oxygen dead zones are increasing worldwide. Microbial processes in low‐oxygen environments have important ecosystem‐level consequences, such as denitrification, greenhouse gas production and acidification. To identify key microbial processes occurring in low‐oxygen bottom waters of the Chesapeake Bay, we sequenced both 16S rRNA genes and shotgun metagenomic libraries to determine the identity, functional potential and spatiotemporal distribution of microbial populations in the water column. Unsupervised clustering algorithms grouped samples into three clusters using water chemistry or microbial communities, with extensive overlap of cluster composition between methods. Clusters were strongly differentiated by temperature, salinity and oxygen. Sulfur‐oxidizing microorganisms were found to be enriched in the low‐oxygen bottom water and predictive of hypoxic conditions. Metagenome‐assembled genomes demonstrate that some of these sulfur‐oxidizing populations are capable of partial denitrification and transcriptionally active in a prior study. These results suggest that microorganisms capable of oxidizing reduced sulfur compounds are a previously unidentified microbial indicator of low oxygen in the Chesapeake Bay and reveal ties between the sulfur, nitrogen and oxygen cycles that could be important to capture when predicting the ecosystem response to remediation efforts or climate change.
Collapse
Affiliation(s)
- Keith Arora-Williams
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Christopher Holder
- Department of Earth and Planetary Sciences, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Maeve Secor
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Hugh Ellis
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Meng Xia
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Anand Gnanadesikan
- Department of Earth and Planetary Sciences, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sarah P Preheim
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
30
|
Interaction between Microbes, Minerals, and Fluids in Deep-Sea Hydrothermal Systems. MINERALS 2021. [DOI: 10.3390/min11121324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery of deep-sea hydrothermal vents in the late 1970s widened the limits of life and habitability. The mixing of oxidizing seawater and reduction of hydrothermal fluids create a chemical disequilibrium that is exploited by chemosynthetic bacteria and archaea to harness energy by converting inorganic carbon into organic biomass. Due to the rich variety of chemical sources and steep physico-chemical gradients, a large array of microorganisms thrive in these extreme environments, which includes but are not restricted to chemolithoautotrophs, heterotrophs, and mixotrophs. Past research has revealed the underlying relationship of these microbial communities with the subsurface geology and hydrothermal geochemistry. Endolithic microbial communities at the ocean floor catalyze a number of redox reactions through various metabolic activities. Hydrothermal chimneys harbor Fe-reducers, sulfur-reducers, sulfide and H2-oxidizers, methanogens, and heterotrophs that continuously interact with the basaltic, carbonate, or ultramafic basement rocks for energy-yielding reactions. Here, we briefly review the global deep-sea hydrothermal systems, microbial diversity, and microbe–mineral interactions therein to obtain in-depth knowledge of the biogeochemistry in such a unique and geologically critical subseafloor environment.
Collapse
|
31
|
Genus-Specific Carbon Fixation Activity Measurements Reveal Distinct Responses to Oxygen Among Hydrothermal Vent Campylobacteria. Appl Environ Microbiol 2021; 88:e0208321. [PMID: 34788061 DOI: 10.1128/aem.02083-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular surveys of low temperature deep-sea hydrothermal vent fluids have shown that Campylobacteria (prev. Epsilonproteobacteria) often dominate the microbial community and that three genera - Arcobacter, Sulfurimonas and Sulfurovum - frequently coexist. In this study, we used replicated radiocarbon incubations of deep-sea hydrothermal fluids to investigate activity of each genus under three experimental conditions. To quantify genus-specific radiocarbon incorporation, we used newly designed oligonucleotide probes for Arcobacter, Sulfurimonas, and Sulfurovum to quantify their activity using catalyzed-reporter deposition fluorescence in-situ hybridization (CARD-FISH) combined with fluorescence-activated cell sorting. All three genera actively fixed CO2 in short-term (∼ 20 h) incubations, but responded differently to the additions of nitrate and oxygen. Oxygen additions had the largest effect on community composition, and caused a pronounced shift in community composition at the amplicon sequence variant (ASV) level after only 20 h of incubation. The effect of oxygen on carbon fixation rates appeared to depend on the initial starting community. The presented results support the hypothesis that these chemoautotrophic genera possess functionally redundant core metabolic capabilities, but also reveal finer-scale differences in growth likely reflecting adaptation of physiologically-distinct phylotypes to varying oxygen concentrations in situ. Overall, our study provides new insights into how oxygen controls community composition and total chemoautotrophic activity, and underscores how quickly deep-sea vent microbial communities respond to disturbances. Importance: Sulfidic environments worldwide are often dominated by sulfur-oxidizing, carbon-fixing Campylobacteria. Environmental factors associated with this group's dominance are now understood, but far less is known about the ecology and physiology of members of subgroups of chemoautotrophic Campylobacteria. In this study, we used a novel method to differentiate the genus-specific chemoautotrophic activity of three subtypes of Campylobacteria. In combination with evidence from microscopic counts, chemical consumption/production during incubations, and DNA-based measurements, our data show that oxygen concentration affects both community composition and chemoautotrophic function in situ. These results help us better understand factors controlling microbial diversity at deep-sea hydrothermal vents, and provide first-order insights into the ecophysiological differences between these distinct microbial taxa.
Collapse
|
32
|
Bu H, Carvalho G, Yuan Z, Bond P, Jiang G. Biotrickling filter for the removal of volatile sulfur compounds from sewers: A review. CHEMOSPHERE 2021; 277:130333. [PMID: 33780683 DOI: 10.1016/j.chemosphere.2021.130333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Volatile sulfur compounds (VSCs) were identified as the dominant priority odorants emitted from sewers, including hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl disulfide (DMDS) and dimethyl sulfide (DMS). Biotrickling filter (BTF) is a widely-applied technology for odour abatement in sewers because of its relatively low operating cost and efficient H2S removal. The authors review the mechanisms and performance of BTF for the removal of these four VSCs, and discuss the key influencing factors including of empty bed residence time (EBRT), pH, temperature, nutrients, water content, trickling operation and packing materials. Besides, measures to improve the VSCs removal in BTF are proposed in the context of key influencing factors. Finally, the review assesses the new challenges of BTF for sewer emissions treatment, namely with respect to the performance of BTF for greenhouse gases (GHG) treatment.
Collapse
Affiliation(s)
- Hao Bu
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Philip Bond
- School of Biomedical Sciences, Queensland University of Technology, QLD, Australia
| | - Guangming Jiang
- School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, Australia.
| |
Collapse
|
33
|
Bacterial community structure and functional profiling of high Arctic fjord sediments. World J Microbiol Biotechnol 2021; 37:133. [PMID: 34255189 DOI: 10.1007/s11274-021-03098-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Kongsfjorden, an Arctic fjord is significantly affected by the glacier melt and Atlantification, both the processes driven by accelerated warming in the Arctic. This has lead to changes in primary production, carbon pool and microbial communities, especially that in the sediment. In this study, we have examined the bacterial community structure of surface (0-2 cm) and subsurface (3-9 cm) sediments of Kongsfjorden using the high throughput sequencing analysis. Results revealed that bacterial community structure of Kongsfjorden sediments were dominated by phylum Proteobacteria followed by Bacteroidetes and Epsilonbacteraeota. While α- and γ-Proteobacterial class were dominant in surface sediments; δ-Proteobacteria were found to be predominant in subsurface sediments. The bacterial community structure in the surface and subsurface sediments showed significant variations (p ≤ 0.05). Total organic carbon could be one of the major parameters controlling the bacterial diversity in the surface and subsurface sediments. Functional prediction analysis indicated that the bacterial community could be involved in the degradation of complex organic compounds such as glycans, glycosaminoglycans, polycyclic aromatic hydrocarbons and also in the biosynthesis of secondary metabolites.
Collapse
|
34
|
Carboni MF, Florentino AP, Costa RB, Zhan X, Lens PNL. Enrichment of Autotrophic Denitrifiers From Anaerobic Sludge Using Sulfurous Electron Donors. Front Microbiol 2021; 12:678323. [PMID: 34163455 PMCID: PMC8215349 DOI: 10.3389/fmicb.2021.678323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
This study compared the rates and microbial community development in batch bioassays on autotrophic denitrification using elemental sulfur (S0), pyrite (FeS2), thiosulfate (S2O3 2-), and sulfide (S2-) as electron donor. The performance of two inocula was compared: digested sludge (DS) from a wastewater treatment plant of a dairy industry and anaerobic granular sludge (GS) from a UASB reactor treating dairy wastewater. All electron donors supported the development of a microbial community with predominance of autotrophic denitrifiers during the enrichments, except for sulfide. For the first time, pyrite revealed to be a suitable substrate for the growth of autotrophic denitrifiers developing a microbial community with predominance of the genera Thiobacillus, Thioprofundum, and Ignavibacterium. Thiosulfate gave the highest denitrification rates removing 10.94 mM NO3 - day-1 and 8.98 mM NO3 - day-1 by DS and GS, respectively. This was 1.5 and 6 times faster than elemental sulfur and pyrite, respectively. Despite the highest denitrification rates observed in thiosulfate-fed enrichments, an evaluation of the most relevant parameters for a technological application revealed elemental sulfur as the best electron donor for autotrophic denitrification with a total cost of 0.38 € per m3 of wastewater treated.
Collapse
Affiliation(s)
- M. F. Carboni
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - A. P. Florentino
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - R. B. Costa
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| | - X. Zhan
- Department of Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - P. N. L. Lens
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
35
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
36
|
16S rRNA gene amplicon-based metagenomic analysis of bacterial communities in the rhizospheres of selected mangrove species from Mida Creek and Gazi Bay, Kenya. PLoS One 2021; 16:e0248485. [PMID: 33755699 PMCID: PMC7987175 DOI: 10.1371/journal.pone.0248485] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/28/2021] [Indexed: 12/30/2022] Open
Abstract
Prokaryotic communities play key roles in biogeochemical transformation and cycling of nutrients in the productive mangrove ecosystem. In this study, the vertical distribution of rhizosphere bacteria was evaluated by profiling the bacterial diversity and community structure in the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) from Mida Creek and Gazi Bay, Kenya, using DNA-metabarcoding. Alpha diversity was not significantly different between sites, but, significantly higher in the rhizospheres of S. alba and R. mucronata in Gazi Bay than in Mida Creek. Chemical parameters of the mangrove sediments significantly correlated inversely with alpha diversity metrics. The bacterial community structure was significantly differentiated by geographical location, mangrove species and sampling depth, however, differences in mangrove species and sediment chemical parameters explained more the variation in bacterial community structure. Proteobacteria (mainly Deltaproteobacteria and Gammaproteobacteria) was the dominant phylum while the families Desulfobacteraceae, Pirellulaceae and Syntrophobacteraceae were dominant in both study sites and across all mangrove species. Constrained redundancy analysis indicated that calcium, potassium, magnesium, electrical conductivity, pH, nitrogen, sodium, carbon and salinity contributed significantly to the species–environment relationship. Predicted functional profiling using PICRUSt2 revealed that pathways for sulfur and carbon metabolism were significantly enriched in Gazi Bay than Mida Creek. Overall, the results indicate that bacterial community composition and their potential function are influenced by mangrove species and a fluctuating influx of nutrients in the mangrove ecosystems of Gazi Bay and Mida Creek.
Collapse
|
37
|
Sulfurimonas sediminis sp. nov., a novel hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal vent at the Longqi system, southwestern Indian ocean. Antonie Van Leeuwenhoek 2021; 114:813-822. [PMID: 33742343 DOI: 10.1007/s10482-021-01560-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
A novel marine hydrogen- and sulfur-oxidizing bacterium, designated strain S2-6 T, was isolated from the deep-sea sediment samples at the Longqi hydrothermal system, southwestern Indian Ocean. Cells were Gram-stain-negative, motile, short rods with a single polar flagellum. Growth was observed at 10-45 °C (optimum 33 °C), pH 5.0-8.0 (optimum pH 7.0) and 1.5 to 6.0% (w/v) NaCl with an optimum at 3.0% (w/v). The isolate was an obligate chemolithoautotroph capable of growth using thiosulfate, tetrathionate, elemental sulfur or sodium sulfide as the energy source, and oxygen or nitrate as the sole electron acceptor. When hydrogen was used as the energy source, strain S2-6 T could respire oxygen, nitrate or element sulfur. The major cellular fatty acids of strain S2-6 T were summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0 and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The total size of its genome was 2,320,257 bp and the genomic DNA G + C content was 37.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and core genes showed that the novel isolate belonged to the genus Sulfurimonas and was most closely related to Sulfurimonas paralvinellae GO25T (96.8% sequence identity) and Sulfurimonas autotrophica OK10T (95.8% sequence identity). The average nucleotide identity and DNA-DNA hybridization values between strain S2-6 T and S. paralvinellae GO25T and S. autotrophica OK10T were 74.6%-81.2% and 19.1%-24.6%, respectively. Based on the polyphase taxonomical data, strain S2-6 T represents a novel species of the genus Sulfurimonas, for which the name Sulfurimonas sediminis sp. nov. is proposed, with the type strain S2-6 T (= MCCC 1A14513T = KCTC 15854 T).
Collapse
|
38
|
Wang S, Jiang L, Hu Q, Cui L, Zhu B, Fu X, Lai Q, Shao Z, Yang S. Characterization of Sulfurimonas hydrogeniphila sp. nov., a Novel Bacterium Predominant in Deep-Sea Hydrothermal Vents and Comparative Genomic Analyses of the Genus Sulfurimonas. Front Microbiol 2021; 12:626705. [PMID: 33717015 PMCID: PMC7952632 DOI: 10.3389/fmicb.2021.626705] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the genus Sulfurimonas within the class Campylobacteria are predominant in global deep-sea hydrothermal environments and widespread in global oceans. However, only few bacteria of this group have been isolated, and their adaptations for these extreme environments remain poorly understood. Here, we report a novel mesophilic, hydrogen- and sulfur-oxidizing bacterium, strain NW10T, isolated from a deep-sea sulfide chimney of Northwest Indian Ocean.16S rRNA gene sequence analysis showed that strain NW10T was most closely related to the vent species Sulfurimonas paralvinellae GO25T with 95.8% similarity, but ANI and DDH values between two strains were only 19.20 and 24.70%, respectively, indicating that strain NW10 represents a novel species. Phenotypic characterization showed strain NW10T is an obligate chemolithoautotroph utilizing thiosulfate, sulfide, elemental sulfur, or molecular hydrogen as energy sources, and molecular oxygen, nitrate, or elemental sulfur as electron acceptors. Moreover, hydrogen supported a better growth than reduced sulfur compounds. During thiosulfate oxidation, the strain can produce extracellular sulfur of elemental α-S8 with an unknown mechanism. Polyphasic taxonomy results support that strain NW10T represents a novel species of the genus Sulfurimonas, and named as Sulfurimonas hydrogeniphila sp. nov. Genome analyses revealed its diverse energy metabolisms driving carbon fixation via rTCA cycling, including pathways of sulfur/hydrogen oxidation, coupled oxygen/sulfur respiration and denitrification. Comparative analysis of the 11 available genomes from Sulfurimonas species revealed that vent bacteria, compared to marine non-vent strains, possess unique genes encoding Type V Sqr, Group II, and Coo hydrogenase, and are selectively enriched in genes related to signal transduction and inorganic ion transporters. These phenotypic and genotypic features of vent Sulfurimonas may explain their thriving in hydrothermal environments and help to understand the ecological role of Sulfurimonas bacteria in hydrothermal ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Qitao Hu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Liang Cui
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Bitong Zhu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Xiaoteng Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Suping Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| |
Collapse
|
39
|
Zhang T, Xiao X, Chen S, Zhao J, Chen Z, Feng J, Liang Q, Phelps TJ, Zhang C. Active Anaerobic Archaeal Methanotrophs in Recently Emerged Cold Seeps of Northern South China Sea. Front Microbiol 2021; 11:612135. [PMID: 33391242 PMCID: PMC7772427 DOI: 10.3389/fmicb.2020.612135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Cold seep ecosystems are developed from methane-rich fluids in organic rich continental slopes, which are the source of various dense microbial and faunal populations. Extensive studies have been conducted on microbial populations in this unique environment; most of them were based on DNA, which could not resolve the activity of extant organisms. In this study, RNA and DNA analyses were performed to evaluate the active archaeal and bacterial communities and their network correlations, particularly those participating in the methane cycle at three sites of newly developed cold seeps in the northern South China Sea (nSCS). The results showed that both archaeal and bacterial communities were significantly different at the RNA and DNA levels, revealing a higher abundance of methane-metabolizing archaea and sulfate-reducing bacteria in RNA sequencing libraries. Site ROV07-01, which exhibited extensive accumulation of deceased Calyptogena clam shells, was highly developed, and showed diverse and active anaerobic archaeal methanotrophs (ANME)-2a/b and sulfate-reducing bacteria from RNA libraries. Site ROV07-02, located near carbonate crusts with few clam shell debris, appeared to be poorly developed, less anaerobic and less active. Site ROV05-02, colonized by living Calyptogena clams, could likely be intermediary between ROV07-01 and ROV07-02, showing abundant ANME-2dI and sulfate-reducing bacteria in RNA libraries. The high-proportions of ANME-2dI, with respect to ANME-2dII in the site ROV07-01 was the first report from nSCS, which could be associated with recently developed cold seeps. Both ANME-2dI and ANME-2a/b showed close networked relationships with sulfate-reducing bacteria; however, they were not associated with the same microbial operational taxonomic units (OTUs). Based on the geochemical gradients and the megafaunal settlements as well as the niche specificities and syntrophic relationships, ANMEs appeared to change in community structure with the evolution of cold seeps, which may be associated with the heterogeneity of their geochemical processes. This study enriched our understanding of more active sulfate-dependent anaerobic oxidation of methane (AOM) in poorly developed and active cold seep sediments by contrasting DNA- and RNA-derived community structure and activity indicators.
Collapse
Affiliation(s)
- Tingting Zhang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Songze Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Jing Zhao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongheng Chen
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Junxi Feng
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China
| | - Qianyong Liang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China.,Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Tommy J Phelps
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
40
|
González-Cortés JJ, Almenglo F, Ramírez M, Cantero D. Simultaneous removal of ammonium from landfill leachate and hydrogen sulfide from biogas using a novel two-stage oxic-anoxic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141664. [PMID: 32835963 DOI: 10.1016/j.scitotenv.2020.141664] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Anoxic biodesulfurization has been achieved in several bioreactor systems that have shown robustness and high elimination capacities (ECs). However, the high operating costs of this technology, which are mainly caused by the high requirements of nitrite or nitrate, make its full-scale application difficult. In the present study, the use of biologically produced nitrate/nitrite by nitrification of two different ammonium substrates, namely synthetic medium and landfill leachate, is proposed as a novel alternative. The results demonstrate the feasibility of using both ammonium substrates as nutrient solutions. A maximum elemental sulfur production of 95 ± 1% and a maximum H2S EC of 141.18 g S-H2S m-3 h-1 (RE = 95.0%) was obtained using landfill leachate as the ammonium source. Next Generation Sequencing (NGS) analysis of the microbial community revealed that the most common genera present in the desulfurizing bioreactor were Sulfurimonas (91.8-50.9%) followed by Thauera (1.1-24.2%) and Lentimicrobium (2.0-9.7%).
Collapse
Affiliation(s)
- J J González-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain
| | - F Almenglo
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain
| | - M Ramírez
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain.
| | - D Cantero
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
41
|
Hu Q, Wang S, Lai Q, Shao Z, Jiang L. Sulfurimonas indica sp. nov., a hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal sulfide chimney in the Northwest Indian Ocean. Int J Syst Evol Microbiol 2020; 71. [PMID: 33263512 DOI: 10.1099/ijsem.0.004575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel mesophilic, hydrogen- and sulfur-oxidizing bacterium, designated strain NW8NT, was collected from a sulfide chimney at the deep-sea hydrothermal vent on the Carlsberg Ridge of the Northwest Indian Ocean. The cells were Gram-stain-negative, motile, short rods with a single polar flagellum. The temperature, pH and salinity ranges for growth of strain NW8NT were 4-40 °C (optimum, 33 °C), pH 4.5-7.5 (optimum, pH 5.5) and 340-680 mM NaCl (optimum, 510 mM). The isolate was an obligate chemolithoautotroph capable of growth using hydrogen, thiosulfate, sulfide or elemental sulphur as the sole energy source, carbon dioxide as the sole carbon source and molecular oxygen as the sole electron acceptor. The major cellular fatty acids of strain NW8NT were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The total size of its genome was 2 093 492 bp and the genomic DNA G+C content was 36.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and core genes showed that the novel isolate belonged to the genus Sulfurimonas and was most closely related to Sulfurimonas paralvinellae GO25T (97.4 % sequence identity). The average nucleotide identity and DNA-DNAhybridization values between strain NW8NT and S. paralvinellae GO25T was 77.8 and 21.1 %, respectively. Based on the phylogenetic, genomic and phenotypic data presented here, strain NW8NT represents a novel species of the genus Sulfurimonas, for which the name Sulfurimonas indica sp. nov. is proposed, with the type strain NW8NT (=MCCC 1A13988T=KTCC 15780T).
Collapse
Affiliation(s)
- Qitao Hu
- Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China
| | - Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China.,Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China
| | - Qiliang Lai
- Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China.,Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China
| | - Lijing Jiang
- Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China
| |
Collapse
|
42
|
Ma Y, Zheng X, Fang Y, Xu K, He S, Zhao M. Autotrophic denitrification in constructed wetlands: Achievements and challenges. BIORESOURCE TECHNOLOGY 2020; 318:123778. [PMID: 32736968 DOI: 10.1016/j.biortech.2020.123778] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The use of constructed wetlands for wastewater treatment is rapidly increasing worldwide due to their advantages of low operating and maintenance costs. Denitrification in constructed wetlands is dependent on the presence of organic carbon sources, and the shortage of organic carbon is the primary hurdle for nitrate removal. Therefore, the use of inorganic electronic donors has emerged as an alternative. This paper provides a comprehensive review of nitrate removal pathways using various inorganic electron donors and the performance and development of autotrophic denitrification in constructed wetlands. The main environmental parameters and operating conditions for nitrate removal in wetlands are discussed, and the challenges currently faced in the application of enhanced autotrophic denitrification wetlands are emphasized. Overall, this review illustrates the need for a deep understanding of the complex interrelationships among environmental and operational parameters and wetland substrates for improving the wastewater treatment performance of constructed wetlands.
Collapse
Affiliation(s)
- Yuhui Ma
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyong Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325600, China
| | - Yunqing Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325600, China.
| |
Collapse
|
43
|
Henkel JV, Vogts A, Werner J, Neu TR, Spröer C, Bunk B, Schulz-Vogt HN. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst Appl Microbiol 2020; 44:126155. [PMID: 33278714 DOI: 10.1016/j.syapm.2020.126155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Species of the genus Sulfurimonas are reported and isolated from terrestrial habitats and marine sediments and water columns with steep redox gradients. Here we report on the isolation of strains SoZ1 and GD2 from the pelagic redoxcline of the Black Sea and the Baltic Sea, respectively. Both strains are gram-stain-negative and appear as short and slightly curved motile rods. The autecological preferences for growth of strain SoZ1 were 0-25°C (optimum 20°C), pH 6.5-9.0 (optimum pH 7.5-8.0) and salinity 10-40gL-1 (optimum 25gL-1). Preferences for growth of strain GD2 were 0-20°C (optimum 15°C), pH 7.0-8.0 (optimum pH 7.0-7.5) and salinity 5-40gL-1 (optimum 21gL-1). Strain SoZ1 grew chemolithoautotrophically, while strain GD2 also showed heterotrophic growth with short chained fatty acids as carbon source. Both species utilized hydrogen (H2), sulfide (H2S here taken as the sum of H2S, HS- and S2-), elemental sulfur (S0) and thiosulfate (S2O32-) as electron donors and nitrate (NO3-), oxygen (O2) and particulate manganese oxide (MnO2) as electron acceptors. Based on 16S rRNA gene sequence similarity, both strains cluster within the genus Sulfurimonas with Sulfurimonas gotlandica GD1T as the closest cultured relative species with a sequence similarity of 96.74% and 96.41% for strain SoZ1 and strain GD2, respectively. Strains SoZ1 and GD2 share a ribosomal 16S sequence similarity of 99.27% and were demarcated based on average nucleotide identity and average amino acid identity of the whole genome sequence. These calculations have been applied to the whole genus. We propose the names Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov. for the thiotrophic manganese reducing culture isolates from the Black Sea and Baltic Sea, respectively.
Collapse
Affiliation(s)
- Jan V Henkel
- Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany.
| | - Angela Vogts
- Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Johannes Werner
- Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Thomas R Neu
- Helmholtz Centre for Environmental Research - UFZ, 39114 Magdeburg, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Heide N Schulz-Vogt
- Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| |
Collapse
|
44
|
Investigation of Biofilms Formed on Steelmaking Slags in Marine Environments for Water Depuration. Int J Mol Sci 2020; 21:ijms21186945. [PMID: 32971779 PMCID: PMC7555637 DOI: 10.3390/ijms21186945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Steelmaking slags are a promising resource as artificial seaweed beds for the reconstitution of marine environments. To grow seaweed well, the formation of biofilms is an essential process in biofouling. This study focused on the formation of initial biofilms on steelmaking slag samples and analyzed the resulting bacterial communities using the next-generation sequencing technique. Three types of steelmaking slag were submerged in an area of Ise Bay in Mie Prefecture, Japan, for 3 and 7 days in the summer and winter seasons to allow the formation of biofilms. The bacterial communities of these biofilms were richer in sulfur-oxidizing bacteria compared to the biofilms formed on polyurethane sponges. It was found that Helicobacteraceae dominantly grew on the biofilms formed on the slag samples. This shows that steelmaking slags have potential to be used as artificial seaweed beds and marine water purifiers.
Collapse
|
45
|
Wang CH, Gulmann LK, Zhang T, Farfan GA, Hansel CM, Sievert SM. Microbial colonization of metal sulfide minerals at a diffuse-flow deep-sea hydrothermal vent at 9°50'N on the East Pacific Rise. GEOBIOLOGY 2020; 18:594-605. [PMID: 32336020 DOI: 10.1111/gbi.12396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Metal sulfide minerals, including mercury sulfides (HgS), are widespread in hydrothermal vent systems where sulfur-oxidizing microbes are prevalent. Questions remain as to the impact of mineral composition and structure on sulfur-oxidizing microbial populations at deep-sea hydrothermal vents, including the possible role of microbial activity in remobilizing elemental Hg from HgS. In the present study, metal sulfides varying in metal composition, structure, and surface area were incubated for 13 days on and near a diffuse-flow hydrothermal vent at 9°50'N on the East Pacific Rise. Upon retrieval, incubated minerals were examined by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and epifluorescence microscopy (EFM). DNA was extracted from mineral samples, and the 16S ribosomal RNA gene sequenced to characterize colonizing microbes. Sulfur-oxidizing genera common to newly exposed surfaces (Sulfurimonas, Sulfurovum, and Arcobacter) were present on all samples. Differences in their relative abundance between and within incubation sites point to constraining effects of the immediate environment and the minerals themselves. Greater variability in colonizing community composition on off-vent samples suggests that the bioavailability of mineral-derived sulfide (as influenced by surface area, crystal structure, and reactivity) exerted greater control on microbial colonization in the ambient environment than in the vent environment, where dissolved sulfide is more abundant. The availability of mineral-derived sulfide as an electron donor may thus be a key control on the activity and proliferation of deep-sea chemosynthetic communities, and this interpretation supports the potential for microbial dissolution of HgS at hydrothermal vents.
Collapse
Affiliation(s)
- Chloe H Wang
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Chemistry, Haverford College, Haverford, PA, USA
| | - Lara K Gulmann
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Tong Zhang
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, China
| | - Gabriela A Farfan
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Mineral Sciences, Smithsonian Institution, Washington, DC, USA
| | - Colleen M Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Stefan M Sievert
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
46
|
van Grinsven S, Sinninghe Damsté JS, Villanueva L. Assessing the Effect of Humic Substances and Fe(III) as Potential Electron Acceptors for Anaerobic Methane Oxidation in a Marine Anoxic System. Microorganisms 2020; 8:E1288. [PMID: 32846903 PMCID: PMC7564286 DOI: 10.3390/microorganisms8091288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Marine anaerobic methane oxidation (AOM) is generally assumed to be coupled to sulfate reduction, via a consortium of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). ANME-1 are, however, often found as single cells, or only loosely aggregated with SRB, suggesting they perform a form of AOM independent of sulfate reduction. Oxidized metals and humic substances have been suggested as potential electron acceptors for ANME, but up to now, AOM linked to reduction of these compounds has only been shown for the ANME-2 and ANME-3 clades. Here, the effect of the electron acceptors anthraquinone-disulfonate (AQDS), a humic acids analog, and Fe3+ on anaerobic methane oxidation were assessed by incubation experiments with anoxic Black Sea water containing ANME-1b. Incubation experiments with 13C-methane and AQDS showed a stimulating effect of AQDS on methane oxidation. Fe3+ enhanced the ANME-1b abundance but did not substantially increase methane oxidation. Sodium molybdate, which was added as an inhibitor of sulfate reduction, surprisingly enhanced methane oxidation, possibly related to the dominant abundance of Sulfurospirillum in those incubations. The presented data suggest the potential involvement of ANME-1b in AQDS-enhanced anaerobic methane oxidation, possibly via electron shuttling to AQDS or via interaction with other members of the microbial community.
Collapse
Affiliation(s)
- Sigrid van Grinsven
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, 1797 SZ ’t Horntje, Texel, The Netherlands; (J.S.S.D.); (L.V.)
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, 1797 SZ ’t Horntje, Texel, The Netherlands; (J.S.S.D.); (L.V.)
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, 1797 SZ ’t Horntje, Texel, The Netherlands; (J.S.S.D.); (L.V.)
| |
Collapse
|
47
|
Brito J, Valle A, Almenglo F, Ramírez M, Cantero D. Characterization of eubacterial communities by Denaturing Gradient Gel Electrophoresis (DGGE) and Next Generation Sequencing (NGS) in a desulfurization biotrickling filter using progressive changes of nitrate and nitrite as final electron acceptors. N Biotechnol 2020; 57:67-75. [PMID: 32360635 DOI: 10.1016/j.nbt.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/26/2022]
Abstract
Anoxic biotrickling filters (BTFs) represent a technology with high H2S elimination capacity and removal efficiencies widely studied for biogas desulfurization. Three changes in the final electron acceptors were made using nitrate and nitrite during an operating period of 520 days. The stability and performance of the anoxic BTF were maintained when a significant perturbation was applied to the system that involved the progressive change of nitrate to nitrite and vice versa. Here the impact of electron acceptor changes on the microbial community was characterized by denaturing gel gradient electrophoresis (DGGE) and next generation sequencing (NGS). Both platforms revealed that the community underwent changes during the perturbations but was resilient because the removal capacity did not significantly change. Proteobacteria and Bacteroidetes were the main Phyla and Sulfurimonas and Thiobacillus the main nitrate-reducing sulfide-oxidizing bacteria (NR-SOB) genera involved in the biodesulfurization process.
Collapse
Affiliation(s)
- Javier Brito
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| | - Antonio Valle
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain.
| | - Fernando Almenglo
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| | - Martín Ramírez
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| | - Domingo Cantero
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
48
|
Cojean ANY, Lehmann MF, Robertson EK, Thamdrup B, Zopfi J. Controls of H 2S, Fe 2 +, and Mn 2 + on Microbial NO 3 --Reducing Processes in Sediments of an Eutrophic Lake. Front Microbiol 2020; 11:1158. [PMID: 32612583 PMCID: PMC7308436 DOI: 10.3389/fmicb.2020.01158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022] Open
Abstract
Understanding the biogeochemical controls on the partitioning between nitrogen (N) removal through denitrification and anaerobic ammonium oxidation (anammox), and N recycling via dissimilatory nitrate (NO3 -) reduction to ammonium (DNRA) is crucial for constraining lacustrine N budgets. Besides organic carbon, inorganic compounds may serve as electron donors for NO3 - reduction, yet the significance of lithotrophic NO3 - reduction in the environment is still poorly understood. Conducting incubation experiments with additions of 15N-labeled compounds and reduced inorganic substrates (H2S, Fe2+, Mn2+), we assessed the role of alternative electron donors in regulating the partitioning between the different NO3 --reducing processes in ferruginous surface sediments of Lake Lugano, Switzerland. In sediment slurry incubations without added inorganic substrates, denitrification and DNRA were the dominant NO3 --reducing pathways, with DNRA contributing between 31 and 46% to the total NO3 - reduction. The contribution of anammox was less than 1%. Denitrification rates were stimulated by low to moderate additions of ferrous iron (Fe2+ ≤ 258 μM) but almost completely suppressed at higher levels (≥1300 μM). Conversely, DNRA was stimulated only at higher Fe2+ concentrations. Dissolved sulfide (H2S, i.e., sum of H2S, HS- and S2-) concentrations up to ∼80 μM, strongly stimulated denitrification, but did not affect DNRA significantly. At higher H2S levels (≥125 μM), both processes were inhibited. We were unable to find clear evidence for Mn2+-supported lithotrophic NO3 - reduction. However, at high concentrations (∼500 μM), Mn2+ additions inhibited NO3 - reduction, while it did not affect the balance between the two NO3 - reduction pathways. Our results provide experimental evidence for chemolithotrophic denitrification or DNRA with Fe2+ and H2S in the Lake Lugano sediments, and demonstrate that all tested potential electron donors, despite the beneficial effect at low concentrations of some of them, can inhibit NO3 - reduction at high concentration levels. Our findings thus imply that the concentration of inorganic electron donors in lake sediments can act as an important regulator of both benthic denitrification and DNRA rates, and suggest that they can exert an important control on the relative partitioning between microbial N removal and N retention in lakes.
Collapse
Affiliation(s)
- Adeline N. Y. Cojean
- Department of Environmental Sciences, Aquatic and Stable Isotope Biogeochemistry, University of Basel, Basel, Switzerland
| | - Moritz F. Lehmann
- Department of Environmental Sciences, Aquatic and Stable Isotope Biogeochemistry, University of Basel, Basel, Switzerland
| | | | - Bo Thamdrup
- Department of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark
| | - Jakob Zopfi
- Department of Environmental Sciences, Aquatic and Stable Isotope Biogeochemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
49
|
Wang Y, Shen L, Wu J, Zhong F, Cheng S. Step-feeding ratios affect nitrogen removal and related microbial communities in multi-stage vertical flow constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137689. [PMID: 32169643 DOI: 10.1016/j.scitotenv.2020.137689] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Step-feeding (SF) strategies have been adopted in several types of constructed wetlands (CWs) to enhance nitrogen (N) removal. However, it is unclear how SF affects the N-transforming bacterial communities in CWs. Herein, four multi-stage vertical flow constructed wetlands (MS-VFCWs), each including three vertical flow stages (stage 1-3), were operated under different SF ratios (0%, 10%, 20% and 30%) in the stage 2. The physicochemical influent and effluent parameters, i.e., redox potential (ORP), pH value, chemical oxygen demand (COD), total nitrogen (TN), ammonia (NH4+-N), nitrate (NO3--N), and nitrite (NO2--N), free-ammonia (FA) concentration, COD/TN ratio, as well as the abundance, structure, and activity of N-transforming bacteria were investigated. Results showed that N removal in a multi-stage vertical flow constructed wetland in the absence of SF was 45.0 ± 7.74%. Alternatively, a combined SF ratio of 20% increased N removal to 61.7% ± 4.50%, accounting for a 37.1% increase compared to the SF ratio of 0%. In the microbial community, FA was determined to be the primary physicochemical parameter governing nitrification processes in MS-VFCWs. Further, partial nitrification processes played an important role in ammonium removal during stage 1, while ammonia-oxidizing archaea were major contributors to ammonium removal in stage 3. Furthermore, abundance of nitrite reductase genes (nirS, nirK) and relative abundance of denitrifying bacteria increased with increasing SF ratio; while the nirS/nirK ratio and the alpha diversity of nirK denitrifiers were significantly affected by SF ratios, and the influent NO3--N concentration was related to a shift in denitrifier composition toward strains containing the nirS gene. Autotrophic (e.g., Thiobacillus, Sulfurimonas, Arenimonas, Gallionella and Methyloparacoccus) and facultative chemolithoautotrophic (e.g., Pseudomonas and Denitratisoma) denitrifying bacteria were enriched in stage 2. Hence, the synergy between heterotrophic and autotrophic denitrifying bacteria promoted excellent N removal efficiency with a low COD/TN ratio.
Collapse
Affiliation(s)
- Ying Wang
- Tongji University, College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Ministry of Education, 200092, PR China
| | - Linya Shen
- Tongji University, College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Ministry of Education, 200092, PR China
| | - Juan Wu
- Tongji University, College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Ministry of Education, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| | - Fei Zhong
- Nantong University, School of Life Science, Nantong 226019, PR China
| | - Shuiping Cheng
- Tongji University, College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Ministry of Education, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
50
|
de Lima E Silva MR, Feitosa de Lima Gomes PC, Okada DY, Sakamoto IK, Varesche MBA. The use of non-adapted anaerobic consortium in batch reactors enable to couple polychlorinated biphenyl degradation and community adaptation. ENVIRONMENTAL TECHNOLOGY 2020; 41:1766-1779. [PMID: 30457445 DOI: 10.1080/09593330.2018.1547794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The removal of polychlorinated biphenyls (PCBs) and PCB biosorption was investigated in anaerobic batch reactors with non-adapted sludge fed with 1.5 mg L-1 of six PCB congener (PCB 10, 28, 52, 153, 138 and 180), mineral medium and co-substrates. PCBs were analyzed by gas chromatography using headspace solid-phase microextraction (HS-SPME). In the methanogenic reactor the methane production, COD (Carbon Organic Demand) removal (90% of initial 2292.60 mg L-1) and consumption of volatile organic acids were verified. Nevertheless, anaerobic activity was not observed in the reactor with inactivated biomass and biosorption range of 38% to 89% was measured for distinct PCB congeners in this reactor. The PCB removal was calculated from the PCB bioavailable (not biosorbed) and reached 76% of total PCBs. The selection of some representatives of the Thermotogaceae family, Sedimentibacter and Pseudomonas at 101 days of operation in the methanogenic reactor was correlated with PCB degradation. In addition, the various removal rates for each PCB congener indicate that the removal depends on bioavailability. The selection of the former non-adapted microbiota in the methanogenic reactor combined with PCB degradation occurred at 101 days. These results allow to assert that it is possible to simultaneously couple PCB degradation and community selection, without the previous adaptation step, which is a time-consuming stage.
Collapse
Affiliation(s)
- Mara Rúbia de Lima E Silva
- Department of Hydraulic and Sanitation, School of Engineering of São Carlos, USP-EESC, Sao Carlos, Brazil
| | | | | | - Isabel Kimiko Sakamoto
- Department of Hydraulic and Sanitation, School of Engineering of São Carlos, USP-EESC, Sao Carlos, Brazil
| | | |
Collapse
|