1
|
Kristyanto S, Jung J, Kim JM, Choi BJ, Han DM, Lee SC, Jeon CO. Psychroserpens ponticola sp. nov. and Marinomonas maritima sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2023; 73. [PMID: 37830909 DOI: 10.1099/ijsem.0.006090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Two Gram-stain-negative, catalase- and oxidase-positive, aerobic non-motile and motile rod bacteria, strains MSW6T and RSW2T, were isolated from surface seawater. Strain MSW6T optimally grew at 20 °C, pH 7.0 and 3 % NaCl, while strain RSW2T optimally grew at 25 °C, pH 7.0-8.0 and 2 % NaCl. Strain MSW6T possessed menaquinone-6 as the major respiratory quinone, and its major fatty acids were iso-C15 : 1 G, iso-C15 : 0 and iso-C15 : 0 3-OH. The major polar lipid identified in strain MSW6T was phosphatidylethanolamine (PE). On the other hand, strain RSW2T had ubiquinone-8 as the predominant respiratory quinone, and its major fatty acids consisted of summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The major polar lipids identified in strain RSW2T were PE and phosphatidylglycerol. As the sole respiratory quinone, strain MSW6T possessed menaquinone-6, while strain RSW2T had ubiquinone-8. The DNA G+C contents of strains MSW6T and RSW2T were 31.9 and 43.4 mol%, respectively. Phylogenetic analyses based on 16S rRNA and core gene sequences showed that strain MSW6T formed a phylogenic lineage with Psychroserpens mesophilus KOPRI 13649T, while strain RSW2T formed a phylogenic lineage with Marinomonas primoryensis KMM 3633T. Strain MSW6T shared 97.9 % 16S rRNA gene sequence similarity and 80.7 % average nucleotide identity (ANI) ith P. mesophilus KOPRI 13649T, and strain RSW2T shared 99.1 % 16S rRNA gene sequence similarity and 93.1 % ANI with M. primoryensis KMM 3633T. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strains MSW6T and RSW2T represent novel species of the genera Psychroserpens and Marinomonas, respectively, for which the names Psychroserpens ponticola sp. nov. and Marinomonas maritima sp. nov. are proposed, respectively. The type strain of P. ponticola is MSW6T (=KACC 22338T=JCM 35022T) and the type strain of M. maritima is RSW2T (=KACC 22716T=JCM 35550T).
Collapse
Affiliation(s)
- Sylvia Kristyanto
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Byeong Jun Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Mo K, Wu Q, Hu Y, Huang H. Maribrevibacterium harenarium gen. nov., sp. nov., represented by a marine strain of the family Oceanospirillaceae. Int J Syst Evol Microbiol 2021; 71. [PMID: 34323676 DOI: 10.1099/ijsem.0.004872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile, facultatively anaerobic, short rod-shaped bacterium, designated HB171799T, was isolated from seacoast sandy soil collected at Qishui Bay, Hainan, PR China. The chemotaxonomic analysis revealed that the respiratory quinones were Q-8 and Q-7, and the major cellular fatty acids were summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and C18 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid and an unidentified lipid. The size of the draft genome was 3.68 Mb with a DNA G+C content of 48.0 mol%. Results of phylogenetic analyses based on 16S rRNA gene and genome sequences showed that the novel isolate belonged to the family Oceanospirillaceae and formed a distinct subcluster at the base of the radiation of the genus Marinomonas. The highest sequence similarity (96.0 %) of the novel isolate was found to the type strains of Marinomonas fungiae JCM 18476T and Marinomonas ostreistagni DSM23425T. The whole genome-based phylogeny and differences in cellular fatty acids and polar lipids readily distinguished strain HB171799T from all the closely related validly published type strains. Strain HB171799T is therefore suggested to represent a novel species of a new genus in the family Oceanospirillaceae, for which the name Maribrevibacterium harenarium gen. nov., sp. nov. is proposed. The type strain is HB171799T (=CGMCC 1.16727T=JCM 33332T).
Collapse
Affiliation(s)
- Kunlian Mo
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, PR China
| | - Qingjuan Wu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, PR China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, PR China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resources, CATAS, Haikou 571101, PR China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, PR China
| |
Collapse
|
3
|
Ying JJ, Fang YC, Ye YL, Wu ZC, Xu L, Han BN, Sun C. Marinomonas vulgaris sp. nov., a marine bacterium isolated from seawater in a coastal intertidal zone of Zhoushan island. Arch Microbiol 2021; 203:5133-5139. [PMID: 34319420 DOI: 10.1007/s00203-021-02500-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
A Marinomonas-like, Gram-stain-negative, strictly aerobic and rod to ovoid-shaped bacterium, designated as strain A79T, was isolated from the seawater mixtures of oyster shells and brown algae in a coastal intertidal zone of Zhoushan, China. The strain was positive for oxidase and catalase. Colonies grown on marine agar for 48 h were round, milky white, smooth and moist with the diameter of 2-3 mm. Growth was observed at 15-30 °C (optimum, 25℃), pH 5.5-9.5 (optimum, pH 8.5) and with 0.5-8% (w/v) NaCl (optimum, 2-2.5%). The G + C content based on the genome sequence was 46.0%. The only respiratory quinone was Q-8. The main polar lipids contained phosphatidylglycerol, phosphatidylethanolamine, unidentified glycolipids, unidentified phospholipid and three unidentified lipids. The major fatty acids (> 10%) were C16:0, Summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c) and summed feature 8 (comprising C18:1 ω6c and/or C18:1 ω7c). The 16S rRNA gene sequence similarity between strain A79T and Marinomonas pollencensis IVIA-Po-185T was 97.4%, the similarities with other type strains of the genus Marinomonas were 93.8-96.7%. Based on the results, Marinomonas vulgaris sp. nov. was proposed as a novel species. The type strain is A79T (= MCCC 1K05799T = KCTC 82519T = JCM 34473T).
Collapse
Affiliation(s)
- Jun-Jie Ying
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yuan-Chun Fang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yong-Lian Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Zhi-Cheng Wu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, People's Republic of China.,Ocean College, Zhejiang University, Zhoushan, 316021, People's Republic of China
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.,Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, People's Republic of China
| | - Bing-Nan Han
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China. .,Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, People's Republic of China.
| |
Collapse
|
4
|
Kristyanto S, Chaudhary DK, Lee SS, Kim J. Characterization of Marinomonas algicida sp. nov., a novel algicidal marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2017; 67:4777-4784. [DOI: 10.1099/ijsem.0.002374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sylvia Kristyanto
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sang-Seob Lee
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
5
|
Ojha AK, Verma A, Pal Y, Bhatt D, Mayilraj S, Krishnamurthi S. Marinomonas epiphytica sp. nov., isolated from a marine intertidal macroalga. Int J Syst Evol Microbiol 2017; 67:2746-2751. [PMID: 28771118 DOI: 10.1099/ijsem.0.002014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, aerobic marine bacterial strain, SAB-3T, was isolated from brown macroalgae (Dictyota sp.) growing in the Arabian sea, Goa, India. The strain grew optimally at 30 °C, with 2.0-4.0 % (w/v) NaCl and at pH 7.0 on marine agar medium. Strain SAB-3T was unable to hydrolyse aesculin and did not grow in the presence of rifamycin but showed resistance to antibiotics such as cefadroxil and co-trimoxazole. The major fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and C16 : 0, and Q-8 was the major ubiquinone. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 41.0 mol%. 16S rRNA gene sequencing and phylogenetic analysis indicated that the strain was a member of the genus Marinomonas with Marinomonas aquiplantarum IVIA-Po-159T (97.6 % similarity), Marinomonas posidonica IVIA-Po-181T (97.5 %) and Marinomonas dokdonensis DSM 17202T (97.4 %) as the closest relatives. Whole genome relatedness determined through DNA-DNA hybridization revealed values of 40-50 % (below the 70 % threshold recommended for species delineation) with the above three species, thus confirming it as representing a distinct and novel species of the genus Marinomonas for which the name Marinomonas epiphytica sp. nov. is proposed. The type strain is SAB-3T (=JCM 31365T=KCTC 52293T=MTCC 12569T).
Collapse
Affiliation(s)
- Anup Kumar Ojha
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Ashish Verma
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Yash Pal
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Deepak Bhatt
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| |
Collapse
|
6
|
Huang XD, Wei GJ, He MX. Cloning and gene expression of signal transducers and activators of transcription (STAT) homologue provide new insights into the immune response and nucleus graft of the pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2015; 47:847-854. [PMID: 26492994 DOI: 10.1016/j.fsi.2015.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
The signal transducers and activators of the transcription (STAT) family play an important role in regulatory and cellular functions by regulating the expression of a variety of genes, including cytokines and growth factors. In the present study, a Pinctada fucata STAT protein, termed PfSTAT, was described. The deduced amino acid sequence of PfSTAT contains the conserved STAT_bind domain and the SH2 domain, and the additional Bin/Amphiphysin/Rvs (BAR) domain, but does not have STAT_alpha and STAT_int domains. Multiple sequence alignments revealed that PfSTAT showed relatively low identity with vertebrate and other invertebrate STATs, and phylogenetic analysis indicated that the evolution of STAT may have been more complex and ancient. Gene expression analysis revealed that PfSTAT is involved in the immune response to polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus insertion operation. This study contributes to a better understanding of PfSTAT in protecting the pearl oyster from disease or injury caused by grafting.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guo-jian Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-xian He
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
7
|
Shahinpei A, Amoozegar MA, Fazeli SAS, Schumann P, Ventosa A. Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family ‘Saccharospirillaceae’. Int J Syst Evol Microbiol 2014; 64:3610-3615. [DOI: 10.1099/ijs.0.065144-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-staining-negative, motile, non-pigmented, facultatively anaerobic, spirillum-shaped, halophilic and alkaliphilic bacterium, designated strain GCWy1T, was isolated from water of the coastal–marine wetland Gomishan in Iran. The strain was able to grow at NaCl concentrations of 1–10 % (w/v) and optimal growth was achieved at 3 % (w/v). The optimum pH and temperature for growth were pH 8.5 and 30 °C, while the strain was able to grow at pH 7.5–10 and 4–40 °C. Phylogenetic analysis based on the comparison of the 16S rRNA gene sequence placed the isolate within the class
Gammaproteobacteria
as a separate deep branch, with 92.1 % or lower sequence similarity to representatives of the genera
Saccharospirillum
and
Reinekea
and less than 91.0 % sequence similarity with other remotely related genera. The major cellular fatty acids of the isolate were C18 : 1ω7c, C16 : 0 and C17 : 0, and the major components of its polar lipid profile were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The cells of strain GCWy1T contained the isoprenoid quinones Q-9 and Q-8 (81 % and 2 %, respectively). The G+C content of the genomic DNA of this strain was 52.3 mol%. On the basis of 16S rRNA gene sequence analysis in combination with chemotaxonomic and phenotypic data, strain GCWy1T represents a novel species in a new genus in the family ‘
Saccharospirillaceae
’, order
Oceanospirillales
, for which the name Salinispirillum marinum gen. nov., sp. nov. is proposed. The type strain of the type species is GCWy1T ( = IBRC-M 10765T = CECT 8342T).
Collapse
Affiliation(s)
- Azadeh Shahinpei
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | | | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
8
|
Máthé I, Borsodi AK, Tóth EM, Felföldi T, Jurecska L, Krett G, Kelemen Z, Elekes E, Barkács K, Márialigeti K. Vertical physico-chemical gradients with distinct microbial communities in the hypersaline and heliothermal Lake Ursu (Sovata, Romania). Extremophiles 2014; 18:501-14. [DOI: 10.1007/s00792-014-0633-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/25/2014] [Indexed: 11/29/2022]
|
9
|
Kumari P, Poddar A, Das SK. Marinomonas fungiae sp. nov., isolated from the coral Fungia echinata from the Andaman Sea. Int J Syst Evol Microbiol 2014; 64:487-494. [DOI: 10.1099/ijs.0.054809-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel aerobic marine bacterium, strain AN44T, was isolated from the coral Fungia echinata sampled from the Andaman Sea, India. Cells were Gram-negative, motile and rod-shaped. Oxidase and catalase tests were positive. Heterotrophic growth was observed at pH 5.5–10 and at 16–42 °C, with optimum growth at pH 7–8 and 28 °C. Strain AN44T grew in the presence of 0.5–11 % (w/v) NaCl; the optimal NaCl concentration for growth was 3–5 %. The DNA G+C content was 47.8 mol%. Predominant cellular fatty acids of strain AN44T were C18 : 1ω7c, C16 : 1ω7c/C16 : 1ω6c, C16 : 0, C10 : 0 3-OH, C12 : 0, C10 : 0, C14 : 0 and C18 : 0. The sole isoprenoid ubiquinone was Q-8. The polar lipids were an unidentified phospholipid, an unidentified aminophospholipid and two unidentified glycolipids. 16S rRNA gene sequence comparisons revealed that strain AN44T clustered within the radiation of the genus
Marinomonas
and showed similarity of 97.9 % with
Marinomonas ostreistagni
UST010306-043T, 97.8 % with
Marinomonas aquimarina
11SM4T, 97.1 % with
Marinomonas brasilensis
R-40503T and 97.0 % with
Marinomonas communis
8T. However, DNA–DNA relatedness between strain AN44T and closely related type strains was well below 70 %. On the basis of the data from the present polyphasic taxonomic study, strain AN44T is considered to represent a novel species of the genus
Marinomonas
, for which the name
Marinomonas
fungiae sp. nov. is proposed. The type strain is AN44T ( = JCM 18476T = LMG 27065T).
Collapse
Affiliation(s)
- Prabla Kumari
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar – 751 023, India
| | - Abhijit Poddar
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar – 751 023, India
| | - Subrata K. Das
- Institute of Life Sciences, Department of Biotechnology, Nalco Square, Bhubaneswar – 751 023, India
| |
Collapse
|
10
|
Su J, Zhou Y, Lai Q, Li X, Dong P, Yang X, Zhang B, Zhang J, Zheng X, Tian Y, Zheng T. Sinobacterium caligoides gen. nov., sp. nov., a new member of the family
Oceanospirillaceae
isolated from the South China Sea, and emended description of
Amphritea japonica. Int J Syst Evol Microbiol 2013; 63:2095-2100. [DOI: 10.1099/ijs.0.030965-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study was carried out on strain SCSWE24T, isolated from a seawater sample collected from the South China Sea. Cells of strain SCSWE24T were Gram-negative, rod-shaped, non-motile, moderately halophilic and capable of reducing nitrate to nitrite. Growth was observed at salinities from 1.5 to 4.5 % and at 4–37 °C; it was unable to degrade gelatin. The dominant fatty acids (>15 %) were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 50.4 %) and C16 : 0 (21.1 %). The G+C content of the chromosomal DNA was 58.8 mol%. 16S rRNA gene sequence comparisons showed that strain SCSWE24T was most closely related to an uncultured bacterium clone Tun3b.F5 (98 %; GenBank accession no. FJ169216), and showed 92 % similarity to an endosymbiont bacterium from the bone-eating worm Osedax mucofloris (clone Omu 9 c4791; FN773233). Levels of similarity between strain SCSWE24T and type strains of recognized species in the family
Oceanospirillaceae
were less than 93 %; the highest similarity was 92 %, to both
Amphritea japonica
JAMM 1866T and ‘Oceanicoccus sagamiensis’ PZ-5. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SCSWE24T formed a distinct evolutionary lineage within the family
Oceanospirillaceae
. Strain SCSWE24T was distinguishable from members of phylogenetically related genera by differences in several phenotypic properties. On the basis of the phenotypic and phylogenetic data, strain SCSWE24T represents a novel species of a new genus, for which the name Sinobacterium caligoides gen. nov., sp. nov. is proposed. The type strain of Sinobacterium caligoides is SCSWE24T ( = CCTCC AB 209289T = LMG 25705T = MCCC 1F01088T). An emended description of
Amphritea japonica
is also provided.
Collapse
Affiliation(s)
- Jianqiang Su
- The Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen 361005, PR China
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yanyan Zhou
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Xinyi Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Peiyan Dong
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Xiaoru Yang
- The Institute of Urban Environment (IUE), Chinese Academy of Sciences, Xiamen 361005, PR China
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Bangzhou Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jinlong Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Xiaowei Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yun Tian
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
11
|
Jung YT, Oh TK, Yoon JH. Marinomonas hwangdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:2062-2067. [DOI: 10.1099/ijs.0.036582-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, motile, rod-shaped bacterial strain, designated HDW-15T, was isolated from seawater of the Yellow Sea, Korea, and subjected to a polyphasic taxonomic study. Strain HDW-15T grew optimally at pH 7.0–8.0, at 25 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain HDW-15T fell within the clade comprising
Marinomonas
species, joining the type strain of
Marinomonas arctica
, with which it exhibited highest 16S rRNA gene sequence similarity (97.7 %). The 16S rRNA gene sequence similarity values between strain HDW-15T and the type strains of other
Marinomonas
species were in the range 93.7–97.2 %. Mean DNA–DNA relatedness values between strain HDW-15T and the type strains of
M. arctica
,
Marinomonas polaris
and
Marinomonas pontica
were 5.0–9.9 %. The DNA G+C content of the isolate was 48.7 mol%. Strain HDW-15T contained Q-8 as the predominant ubiquinone and C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C16 : 0 as the major fatty acids. The major polar lipids found in strain HDW-15T were phosphatidylglycerol and phosphatidylethanolamine. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, showed that strain HDW-15T can be differentiated from other
Marinomonas
species. On the basis of the data presented, strain HDW-15T is considered to represent a novel species of the genus
Marinomonas
, for which the name Marinomonas hwangdonensis sp. nov. is proposed. The type strain is HDW-15T ( = KCTC 23661T = CCUG 61321T).
Collapse
Affiliation(s)
- Yong-Taek Jung
- University of Science and Technology (UST), 217 Gajungro, Yuseong, Daejeon 305-350, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), PO Box 115, Yuseong, Daejeon, Republic of Korea
| | - Tae-Kwang Oh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), PO Box 115, Yuseong, Daejeon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
12
|
Zhang DC, Hu YT, Guo HY, Cui SG, Su TF, Jiang SG. cDNA cloning and mRNA expression of a tandem-repeat galectin (PoGal2) from the pearl oyster, Pinctada fucata. GENETICS AND MOLECULAR RESEARCH 2011; 10:1963-74. [PMID: 21948759 DOI: 10.4238/vol10-3gmr1149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Galectins can recognize and specifically bind to β-galactoside residues, playing crucial roles in innate immune responses of vertebrates and invertebrates. We cloned the cDNA of a tandem-repeat galectin from the pearl oyster Pinctada fucata (designated as PoGal2). PoGal2 cDNA is 1347 bp long and consists of a 5'-untranslated region (UTR) of 3 bp, a 3'-UTR of 297 bp with one cytokine RNA instability motif (ATTTA), and an open reading frame of 1047 bp, encoding a polypeptide of 349 amino acids, with an estimated molecular mass of 38.1 kDa and a theoretical isoelectric point of 8.5. PoGal2 contains two carbohydrate recognition domains (CRDs); both have the conserved carbohydrate-binding motifs H-NPR and WG-EE. PoGal2 shares 50.6 and 50.9% identity with those of abalone (Haliotis discus) and the Manila clam (Venerupis philippinarum), respectively. Phylogenetic analysis revealed that the tandem-repeat galectins formed two clades for the different species. Molluscan tandem-repeat galectins were clustered into a single clade, and nematode tandem-repeat galectins were clustered into another single clade. In both clades, CRD-N and CRD-C were divided into different groups. PoGal2 mRNA was constitutively expressed in all tissues analyzed, and the expression level of PoGal2 mRNA was found to be significantly up-regulated in digestive glands, gills and hemocytes after Vibrio alginolyticus stimulation/infection. Expression profile analysis showed that the expression level of PoGal2 mRNA was significantly up-regulated at 8, 12 and 24 h after V. alginolyticus infection. These results suggest that PoGal2 is a constitutive and inducible acute-phase protein involved in the innate immune response of pearl oysters.
Collapse
Affiliation(s)
- D C Zhang
- Division of Aquaculture and Biotechnology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
13
|
Lucas-Elío P, Marco-Noales E, Espinosa E, Ordax M, López MM, Garcías-Bonet N, Marbà N, Duarte CM, Sanchez-Amat A. Marinomonas alcarazii sp. nov., M. rhizomae sp. nov., M. foliarum sp. nov., M. posidonica sp. nov. and M. aquiplantarum sp. nov., isolated from the microbiota of the seagrass Posidonia oceanica. Int J Syst Evol Microbiol 2011; 61:2191-2196. [DOI: 10.1099/ijs.0.027227-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five novel Gram-reaction-negative aerobic marine bacterial strains with DNA G+C contents <50 mol% were isolated from the seagrass Posidonia oceanica. 16S rRNA sequence analysis indicated that they belonged to the genus Marinomonas. Major fatty acid compositions, comprising C10 : 0 3-OH, C16 : 0, C16 : 1ω7c and C18 : 1ω7c, supported the affiliation of these strains to the genus Marinomonas. Strains IVIA-Po-14bT, IVIA-Po-145T and IVIA-Po-155T were closely related to Marinomonas pontica 46-16T, according to phylogenetic analysis. However, DNA–DNA hybridization values <35 % among these strains revealed that they represented different species. Further differences in the phenotypes and minor fatty acid compositions were also found among the strains. Another two strains, designated IVIA-Po-181T and IVIA-Po-159T, were found to be closely related to M. dokdonensis DSW10-10T but DNA–DNA relatedness levels <40 % in pairwise comparisons, as well as some additional differences in phenotypes and fatty acid compositions supported the creation of two novel species. Accordingly, strains IVIA-Po-14bT ( = CECT 7730T = NCIMB 14671T), IVIA-Po-145T ( = CECT 7377T = NCIMB 14431T), IVIA-Po-155T ( = CECT 7731T = NCIMB 14672T), IVIA-Po-181T ( = CECT 7376T = NCIMB 14433T) and IVIA-Po-159T ( = CECT 7732T = NCIMB 14673T) represent novel species, for which the names Marinomonas alcarazii sp. nov., Marinomonas rhizomae sp. nov., Marinomonas foliarum sp. nov., Marinomonas posidonica sp. nov. and Marinomonas aquiplantarum sp. nov. are proposed, respectively.
Collapse
Affiliation(s)
- Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, Murcia 30100, Spain
| | - Ester Marco-Noales
- Centro de Protección Vegetal y Biotecnología, IVIA, 46113 Moncada (Valencia), Spain
| | - Elena Espinosa
- Department of Genetics and Microbiology, University of Murcia, Murcia 30100, Spain
| | - Mónica Ordax
- Centro de Protección Vegetal y Biotecnología, IVIA, 46113 Moncada (Valencia), Spain
| | - María M. López
- Centro de Protección Vegetal y Biotecnología, IVIA, 46113 Moncada (Valencia), Spain
| | - Neus Garcías-Bonet
- Department of Global Change Research, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), 07190 Esporles, Mallorca, Spain
| | - Nuria Marbà
- Department of Global Change Research, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), 07190 Esporles, Mallorca, Spain
| | - Carlos M. Duarte
- Department of Global Change Research, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), 07190 Esporles, Mallorca, Spain
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, University of Murcia, Murcia 30100, Spain
| |
Collapse
|
14
|
Guo H, Zhang D, Cui S, Chen M, Wu K, Li Y, Su T, Jiang S. Molecular characterization and mRNA expression of catalase from pearl oyster Pinctada fucata. Mar Genomics 2011; 4:245-51. [PMID: 22118636 DOI: 10.1016/j.margen.2011.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/20/2011] [Accepted: 05/28/2011] [Indexed: 01/19/2023]
Abstract
Catalase (EC 1.11.1.6) is an important antioxidant enzyme that protects aerobic organisms against oxidative damage by degrading hydrogen peroxide to water and oxygen. In the present study, a catalase cDNA of peal oyster Pincatada fucata (designated as PoCAT) is cloned and characterized by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) methods. PoCAT is 2428 bp long and consists of a 5'-UTR of 140 bp, an unusually long 3'-UTR of 749 bp, and an open reading frame (ORF) of 1539 bp. The ORF of PoCAT encodes a polypeptide of 512 amino acids with molecular weight of 58.1 kDa and the theoretical isoelectric point of 8.4. PoCAT shares 62.3-82.2% identity and 73.0-92.0% similarity to other catalase amino acid sequences. Sequence alignment indicates that PoCAT contains the proximal heme-ligand signature sequence (R³⁵¹LFSYSDT³⁵⁸), the proximal active site signature (F⁶¹NRERIPERVVHAKGGGA⁷⁸), and the three catalytic amino acid residues (His⁷², Asn¹⁴⁵, and Tyr³⁵⁵). PoCAT has two potential glycosylation sites (N⁴³⁶YS⁴³⁸ and N⁴⁷⁸FS⁴⁸⁰) and a peroxisome targeting signal (ASL). PoCAT mRNA was ubiquitously expressed in all detected tissues, and the expression level of PoCAT mRNA was higher in intestine and mantle. The expression profile analysis showed that the expression level of PoCAT mRNA in intestine was significantly up-regulated at 2, 4 and 12 h after Vibrio alginolyticus stimulation. These results demonstrated that PoCAT is a typical member of catalase family and might be involved in innate immune responses of pearl oyster.
Collapse
Affiliation(s)
- Huayang Guo
- Division of Aquaculture and Biotechnology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Marinomonas brasilensis sp. nov., isolated from the coral Mussismilia hispida, and reclassification of Marinomonas basaltis as a later heterotypic synonym of Marinomonas communis. Int J Syst Evol Microbiol 2011; 61:1170-1175. [DOI: 10.1099/ijs.0.024661-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic bacterium, designated strain R-40503T, was isolated from mucus of the reef-builder coral Mussismilia hispida, located in the São Sebastião Channel, São Paulo, Brazil. Phylogenetic analyses revealed that strain R-40503T belongs to the genus Marinomonas. The 16S rRNA gene sequence similarity of R-40503T was above 97 % with the type strains of Marinomonas vaga, M. basaltis, M. communis and M. pontica, and below 97 % with type strains of the other Marinomonas species. Strain R-40503T showed less than 35 % DNA–DNA hybridization (DDH) with the type strains of the phylogenetically closest Marinomonas species, demonstrating that it should be classified into a novel species. Amplified fragment length polymorphism (AFLP), chemotaxonomic and phenotypic analyses provided further evidence for the proposal of a novel species. Concurrently, a close genomic relationship between M. basaltis and M. communis was observed. The type strains of these two species showed 78 % DDH and 63 % AFLP pattern similarity. Their phenotypic features were very similar, and their DNA G+C contents were identical (46.3 mol%). Collectively, these data demonstrate unambiguously that Marinomonas basaltis is a later heterotypic synonym of Marinomonas communis. Several phenotypic features can be used to discriminate between Marinomonas species. The novel strain R-40503T is clearly distinguishable from its neighbours. For instance, it shows oxidase and urease activity, utilizes l-asparagine and has the fatty acid C12 : 1 3-OH but lacks C10 : 0 and C12 : 0. The name Marinomonas brasilensis sp. nov. is proposed, with the type strain R-40503T ( = R-278T = LMG 25434T = CAIM 1459T). The DNA G+C content of strain R-40503T is 46.5 mol%.
Collapse
|
16
|
Zhang D, Pan D, Cui S, Su T, Qiu L, Zhu C, Jiang S. Molecular characterization and expression analysis of interferon-gamma-inducible lysosomal thiol reductase (GILT) gene from pearl oyster Pinctada fucata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:969-976. [PMID: 20444427 DOI: 10.1016/j.dci.2010.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 05/29/2023]
Abstract
Interferon-gamma-inducible lysosomal thiol reductase (GILT) is an important thiol reductase, involved in class, MHC-restricted antigen processing by catalyzing disulfide bond reduction in mammals. Herein, we describe the identification and characterization of pearl oyster Pinctada fucata GILT (designated as poGILT). The poGILT cDNA was 1273bp long and consisted of a 5'-untranslated region (UTR) of 24bp, a 3'-UTR of 484bp with two cytokine RNA instability motifs (ATTTA), and an open reading frame (ORF) of 765bp encoding a polypeptide of 254 amino acids with an estimated molecular mass of 28.9kDa and a theoretical isoelectric point of 7.4. The N-terminus of the poGILT was found to have a putative signal peptide with a cleavage site amino acid position at 19-20. SMART analysis showed that the poGILT contained a GILT active-site C(69)PDC(72) motif and a GILT signature motif C(115)QHGKEECIGNLIETC(130). Homology analysis of the deduced amino acid sequence of the poGILT with other known GILT sequences by MatGAT software revealed that the poGILT shared 42.9-67.3% similarity and 22.9-49.8% identity to the other known GILT sequences. The expression level of poGILT mRNA was higher in digestive gland, moderate in adductor muscle, gills, gonad, intestine and mantle, and lower in hemocytes. The poGILT mRNA expression was significantly up-regulated in gill and digestive gland after LPS or V. alginolyticus stimulation, respectively. These results suggested that the poGILT was a constitutively expressed acute-phase protein, the expression of which can be enhanced after LPS or V. algrinolyticus stimulation, perhaps involved in the innate immune response of pearl oyster.
Collapse
Affiliation(s)
- Dianchang Zhang
- Division of Aquaculture and Biotechnology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhang D, Ma J, Jiang J, Qiu L, Zhu C, Su T, Li Y, Wu K, Jiang S. Molecular characterization and expression analysis of lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) from pearl oyster Pinctada fucata. Mol Biol Rep 2009; 37:3335-43. [DOI: 10.1007/s11033-009-9920-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/22/2009] [Indexed: 11/25/2022]
|
18
|
Zhang D, Jiang J, Jiang S, Ma J, Su T, Qiu L, Zhu C, Xu X. Molecular characterization and expression analysis of a putative LPS-induced TNF-alpha factor (LITAF) from pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2009; 27:391-396. [PMID: 19426809 DOI: 10.1016/j.fsi.2009.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 03/31/2009] [Accepted: 04/26/2009] [Indexed: 05/27/2023]
Abstract
The lipopolysaccharide-induced TNF-alpha factor (LITAF) is a novel transcription factor, which plays an important role in regulating the expression of TNF-alpha and various inflammatory cytokines in response to LPS stimulation and forms a dependent signaling pathway separated from NF-kappaB. Herein, we described the identification and characterization of pearl oyster Pinctada fucata LPS-induced TNF-alpha factor gene (designated as poLITAF). The poLITAF cDNA was 932 bp long and consisted of a 5'-untranslated region (UTR) of 45 bp, a 3'-UTR of 497 bp with two cytokine RNA instability motifs (ATTTA), and an open reading frame (ORF) of 390 bp encoding a polypeptide of 129 amino acids with an estimated molecular mass of 13.5 kDa and a theoretical isoelectric point of 8.36. A LITAF domain at C-terminal was identified in the poLITAF using SMART analysis, which contained two conserved CXXC motifs. Homology analysis of the deduced amino acid sequence of the poLITAF with other known LITAF sequences by MatGAT software revealed that the poLITAF shared 44.2-67.4% similarity and 35.4-50.0% identity to the other known LITAF sequences. The expression level of poLITAF mRNA was the highest in digestive gland and gill, moderate in adductor muscle, gonad, intestine and mantle, the lowest in haemocytes. The poLITAF mRNA expression was significantly up-regulated at 24 h in gill and at 12 h in digestive gland after LPS stimulation respectively. These results suggested that the poLITAF was a constitutive and inducible acute-phase protein that perhaps involved in the innate immune response of pearl oyster.
Collapse
Affiliation(s)
- Dianchang Zhang
- Division of Aquaculture and Biotechnology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Espinosa E, Marco-Noales E, Gómez D, Lucas-Elío P, Ordax M, Garcías-Bonet N, Duarte CM, Sanchez-Amat A. Taxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov. Int J Syst Evol Microbiol 2009; 60:93-98. [PMID: 19648336 DOI: 10.1099/ijs.0.008607-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel aerobic, Gram-negative bacteria with DNA G+C contents below 50 mol% were isolated from the culturable microbiota associated with the Mediterranean seagrass Posidonia oceanica. 16S rRNA gene sequence analyses revealed that they belong to the genus Marinomonas. Strain IVIA-Po-186 is a strain of the species Marinomonas mediterranea, showing 99.77 % 16S rRNA gene sequence similarity with the type strain, MMB-1(T), and sharing all phenotypic characteristics studied. This is the first description of this species forming part of the microbiota of a marine plant. A second strain, designated IVIA-Po-101(T), was closely related to M. mediterranea based on phylogenetic studies. However, it differed in characteristics such as melanin synthesis and tyrosinase, laccase and antimicrobial activities. In addition, strain IVIA-Po-101(T) was auxotrophic and unable to use acetate. IVIA-Po-101(T) shared 97.86 % 16S rRNA gene sequence similarity with M. mediterranea MMB-1(T), but the level of DNA-DNA relatedness between the two strains was only 10.3 %. On the basis of these data, strain IVIA-Po-101(T) is considered to represent a novel species of the genus Marinomonas, for which the name Marinomonas balearica sp. nov. is proposed. The type strain is IVIA-Po-101(T) (=CECT 7378(T) =NCIMB 14432(T)). A third novel strain, IVIA-Po-185(T), was phylogenetically distant from all recognized Marinomonas species. It shared the highest 16S rRNA gene sequence similarity (97.4 %) with the type strain of Marinomonas pontica, but the level of DNA-DNA relatedness between the two strains was only 14.5 %. A differential chemotaxonomic marker of this strain in the genus Marinomonas is the presence of the fatty acid C(17 : 0) cyclo. Strain IVIA-Po-185(T) is thus considered to represent a second novel species of the genus, for which the name Marinomonas pollencensis sp. nov. is proposed. The type strain is IVIA-Po-185(T) (=CECT 7375(T) =NCIMB 14435(T)). An emended description of the genus Marinomonas is given based on the description of these two novel species, as well as other Marinomonas species described after the original description of the genus.
Collapse
Affiliation(s)
- Elena Espinosa
- Department of Genetics and Microbiology, University of Murcia, 30100 Murcia, Spain
| | - Ester Marco-Noales
- Centro de Protección Vegetal y Biotecnología, IVIA, 46113 Moncada (Valencia), Spain
| | - Daniel Gómez
- Department of Genetics and Microbiology, University of Murcia, 30100 Murcia, Spain
| | - Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, 30100 Murcia, Spain
| | - Mónica Ordax
- Centro de Protección Vegetal y Biotecnología, IVIA, 46113 Moncada (Valencia), Spain
| | - Neus Garcías-Bonet
- Department of Global Change Research, IMEDEA (CSIC-UIB) Instituto Mediterráneo de Estudios Avanzados, 07190 Esporles, Mallorca, Spain
| | - Carlos M Duarte
- Department of Global Change Research, IMEDEA (CSIC-UIB) Instituto Mediterráneo de Estudios Avanzados, 07190 Esporles, Mallorca, Spain
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
20
|
Romanenko LA, Tanaka N, Frolova GM. Marinomonas arenicola sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2009; 59:2834-8. [DOI: 10.1099/ijs.0.011304-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Zhang D, Jiang S, Ma J, Jiang J, Pan D, Xu X. Molecular cloning, characterization and expression analysis of a clip-domain serine protease from pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2009; 26:662-668. [PMID: 19254766 DOI: 10.1016/j.fsi.2009.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/07/2009] [Accepted: 02/07/2009] [Indexed: 05/27/2023]
Abstract
The clip-domain serine proteases (SPs) are the essential components of extracellular signaling cascade in various biological processes, especially in embryonic development and the innate immune responses of invertebrate. Herein, we described the isolation and characterization of pearl oyster Pinctada fucata clip-domain SP gene (designated as poSP). The poSP cDNA was 1080 bp long and consisted of a 5'-untranslated region (UTR) of 13 bp, a 3'-UTR of 68 bp with a polyadenylation signal (AATAAA) at 22 nucleotides upstream of the poly(A) tail, and an open reading frame (ORF) of 999 bp encoding a polypeptide of 332 amino acids with an estimated molecular mass of 36.5 kDa and a theoretical isoelectric point of 7.3. A clip-domain and a trypsin-like serine protease domain were identified in the poSP using SMART analysis. Homology analysis of the deduced amino acid sequence of the poSP with other known SP sequences by MatGAT software revealed that the poSP shared 47.0-68.4% similarity to the other known SP sequences. The poSP mRNA was expressed in haemocytes, gonad, digestive gland and mantle, but not expressed in adductor muscle and gill. The poSP mRNA was up-regulated and increased nearly double-fold after LPS or Vibrio alginolyticus stimulation, respectively. These results suggested that the poSP was an inducible acute-phase protein that perhaps involved in the innate immune response of pearl oyster.
Collapse
Affiliation(s)
- Dianchang Zhang
- Division of Aquaculture and Biotechnology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | | | | | | | | | | |
Collapse
|
22
|
Chang HW, Roh SW, Kim KH, Nam YD, Yoon JH, Oh HM, Bae JW. Marinomonas basaltis sp. nov., a marine bacterium isolated from black sand. Int J Syst Evol Microbiol 2008; 58:2743-7. [DOI: 10.1099/ijs.0.65724-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Zhang DC, Li HR, Xin YH, Liu HC, Chen B, Chi ZM, Zhou PJ, Yu Y. Marinomonas arctica sp. nov., a psychrotolerant bacterium isolated from the Arctic. Int J Syst Evol Microbiol 2008; 58:1715-8. [DOI: 10.1099/ijs.0.65737-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Arahal DR, Lekunberri I, González JM, Pascual J, Pujalte MJ, Pedrós-Alió C, Pinhassi J. Neptuniibacter caesariensis gen. nov., sp. nov., a novel marine genome-sequenced gammaproteobacterium. Int J Syst Evol Microbiol 2007; 57:1000-1006. [PMID: 17473248 DOI: 10.1099/ijs.0.64524-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, slightly halophilic, strictly aerobic, motile chemoorganotrophic bacterium, strain MED92T, was isolated from a surface water sample from the eastern Mediterranean Sea. Phylogenetic analysis based on its 16S rRNA gene sequence, retrieved from the whole-genome sequence, demonstrated that this isolate is unique, showing <93 % sequence similarity to species of the families Oceanospirillaceae and Alteromonadaceae. The polar lipid profile of the novel strain consisted of phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophospholipid and diphosphatidylglycerol. Major fatty acids are 16 : 1ω7c/15 iso 2-OH (41.2 % relative amount), 18 : 1ω7c (35.9 %), 16 : 0 (16.1 %), 10 : 0 3-OH (5.0 %) and 18 : 0 (1.0 %). Preferred carbon sources are organic acids and amino acids. The DNA G+C content is 46.6 mol%. Based on a phenotypic, chemotaxonomic and phylogenetic analyses, it is proposed that this marine bacterium represents a novel genus and species, for which the name Neptuniibacter caesariensis gen. nov., sp. nov. is proposed. The type strain is MED92T (=CECT 7075T=CCUG 52065T).
Collapse
MESH Headings
- Alteromonadaceae/genetics
- Amino Acids/metabolism
- Bacterial Typing Techniques
- Base Composition
- Carboxylic Acids/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Gammaproteobacteria/chemistry
- Gammaproteobacteria/classification
- Gammaproteobacteria/cytology
- Gammaproteobacteria/genetics
- Gammaproteobacteria/metabolism
- Gammaproteobacteria/physiology
- Genes, rRNA/genetics
- Genome, Bacterial
- Mediterranean Sea
- Membrane Lipids/analysis
- Molecular Sequence Data
- Movement
- Oceanospirillaceae/genetics
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- David R Arahal
- Departamento de Microbiología y Ecología, Universitat de València, Campus de Burjassot, 46100 València, Spain
- Colección Española de Cultivos Tipo (CECT), Universitat de València, Campus de Burjassot, 46100 València, Spain
| | - Itziar Lekunberri
- Institut de Ciències del Mar-CMIMA (CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - José M González
- Departamento de Microbiología y Biología Celular, Facultad de Farmacia, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Javier Pascual
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Campus de Burjassot, 46100 València, Spain
- Departamento de Microbiología y Ecología, Universitat de València, Campus de Burjassot, 46100 València, Spain
| | - María J Pujalte
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Campus de Burjassot, 46100 València, Spain
- Departamento de Microbiología y Ecología, Universitat de València, Campus de Burjassot, 46100 València, Spain
| | - Carlos Pedrós-Alió
- Institut de Ciències del Mar-CMIMA (CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Jarone Pinhassi
- Marine Microbiology, Department of Biology and Environmental Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| |
Collapse
|