1
|
Martinez-Sañudo I, Perotti MA, Carofano I, Santoiemma G, Marri L, Mazzon L. The biogeographic patterns of the olive fly and its primary symbiont Candidatus Erwinia dacicola across the distribution area of the olive tree. Sci Rep 2024; 14:22483. [PMID: 39341904 PMCID: PMC11438859 DOI: 10.1038/s41598-024-73055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
The olive fly, Bactrocera oleae (Rossi, 1790), is the major insect pest of olives attacking both cultivated and wild olive. Bactrocera oleae carries a primary and vertically transmitted symbiont, the bacterium Candidatus Erwinia dacicola. As any primary symbiont, it plays an important role in the reproduction and lifespan of the fly. The genetic 16S rRNA diversity of the primary symbiont and the mitochondrial haplotype variation of the insect host were simultaneously examined in 54 olive fly populations. The aim was to unravel the biogeographic patterns of this economically relevant host-bacteria interaction across a wide distribution area. Three symbiont haplotypes were identified. The primary symbiont showed a lower haplotype diversity than that of its host, a characteristic indicative of a long-term interaction. A significant genetic and geographic association between host and primary symbiont was observed, with an East-West genetic differentiation pattern in the Mediterranean basin, coinciding with the historical genetic distribution of the olive tree. The study shows promise, informing and aiding the development of future tools for the control of the olive fly.
Collapse
Affiliation(s)
- Isabel Martinez-Sañudo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy.
| | - M Alejandra Perotti
- Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, GB, Great Britain
| | - Ivana Carofano
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Giacomo Santoiemma
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Laura Marri
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Luca Mazzon
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
2
|
Hanson MA, Grollmus L, Lemaitre B. Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in Drosophila. Science 2023; 381:eadg5725. [PMID: 37471548 DOI: 10.1126/science.adg5725] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.
Collapse
Affiliation(s)
- M A Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Disease Ecology and Evolution, Biosciences, University of Exeter, Penryn, United Kingdom
| | - L Grollmus
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - B Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
3
|
Lixiang C, Zhenya T, Weihua M, Jingjing W, Qiaofen H, Yongping Z, Xuyuan G, Hongsong C, Zhongshi Z. Comparison of bacterial diversity in Bactrocera cucurbitae (Coquillett) ovaries and eggs based on 16S rRNA sequencing. Sci Rep 2023; 13:11793. [PMID: 37479777 PMCID: PMC10362026 DOI: 10.1038/s41598-023-38992-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
Next-generation sequencing allows for fine-scale studies of microbial communities. Herein, 16S ribosomal RNA high-throughput sequencing was used to identify, classify, and predict the functions of the bacterial communities in the eggs and ovaries of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), which is a pest that infests a variety of cucurbit fruits at different developmental stages. Taxonomic analyses indicate that bacteria associated with B. cucurbitae represent 19 phyla, which were spread across different developmental stages. Specifically, the egg microbiota had a higher alpha diversity than those of microbiota in the primary and mature ovaries. Significant differences were not observed between the primary and mature ovaries in terms of their microbiota's alpha diversities. Pseudomonadota, Deinococcota, Bacteroidota, Bacillota, and Actinomycetota were the dominant phyla in all three developmental stages of B. cucurbitae, and Pseudomonadaceae and Enterobacteriaceae were the most abundant families. Owing to the unique physiological environment of the ovaries, the diversity of their bacterial community was significantly lower than that in the eggs. This study provides new insights into the structure and abundance of the microbiota in B. cucurbitae at different developmental stages and contributes to forming management strategies for this pest.
Collapse
Affiliation(s)
- Chen Lixiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Tian Zhenya
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Ma Weihua
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wang Jingjing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
| | - Huang Qiaofen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhou Yongping
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Gao Xuyuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chen Hongsong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhou Zhongshi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China.
| |
Collapse
|
4
|
El Harym Y, Belqat B, Norrbom A. Host plants of fruit flies (Diptera: Tephritidae) in Morocco. Zootaxa 2022; 5196:355-387. [PMID: 37045073 DOI: 10.11646/zootaxa.5196.3.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 11/04/2022]
Abstract
A list of 128 host plant species of Tephritidae from Morocco is provided. Of these plants, 34 are reported for the first time as hosts for Tephritidae in Morocco, while 41 taxa are newly discovered hosts for Tephritidae globally. Six species are confirmed as host plants. A total of 41 species of Tephritidae were reared from flowers, flower heads, galls, or fleshy fruits collected in the field and brought to the laboratory for rearing. For these tephritid species, the host plants in Morocco were studied for the first time. Illustrations of some endemic host plant species are also provided.
Collapse
Affiliation(s)
- Younes El Harym
- LESCB URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Boutana Belqat
- LESCB URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Allen Norrbom
- Systematic Entomology Laboratory, USDA, ARS, c/o Smithsonian Institution, P.O. Box 37012, MRC 168, Washington, DC 20013-7012, USA. .
| |
Collapse
|
5
|
Mazzon L, Whitmore D, Cerretti P, Korneyev VA. New and confirmed records of fruit flies (Diptera, Tephritidae) from Italy. Biodivers Data J 2021; 9:e69351. [PMID: 34552375 PMCID: PMC8423712 DOI: 10.3897/bdj.9.e69351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/21/2021] [Indexed: 11/12/2022] Open
Abstract
Background Prior to this study, 141 species of Tephritidae were known to occur in Italy. New information Italian records of nine species of the family Tephritidae (Diptera) are provided. Five species, Eurasimonastigma (Loew, 1840), Noeetabisetosa Merz, 1992, Campiglossadoronici (Loew, 1856), Xyphosialaticauda (Meigen, 1826) and Rhagoletisberberidis Jermy, 1961 are recorded from Italy for the first time, whereas four species, Inuromaesamaura (Frauenfeld, 1857), Urophoracuspidata (Meigen, 1826), Tephritisconyzifoliae Merz, 1992 and T.mutabilis Merz, 1992, previously recorded in the Fauna Europaea database without reference to collection material, are confirmed and supplemented with host plant data and other collection data.
Collapse
Affiliation(s)
- Luca Mazzon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua Padua Italy
| | - Daniel Whitmore
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany Staatliches Museum für Naturkunde Stuttgart Stuttgart Germany
| | - Pierfilippo Cerretti
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome Rome Italy
| | - Valery A Korneyev
- I.I.Schmalhausen Institute of Zoology, Kyiv, Ukraine I.I.Schmalhausen Institute of Zoology Kyiv Ukraine
| |
Collapse
|
6
|
Noman MS, Shi G, Liu LJ, Li ZH. Diversity of bacteria in different life stages and their impact on the development and reproduction of Zeugodacus tau (Diptera: Tephritidae). INSECT SCIENCE 2021; 28:363-376. [PMID: 32091660 DOI: 10.1111/1744-7917.12768] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Fruit flies usually harbor diverse communities of bacteria in their digestive systems, which are known to play a significant role in their fitness. However, little information is available on Zeugodacus tau, a polyphagous pest worldwide. This study reports the first extensive analysis of bacterial communities in different life stages and their effect on the development and reproduction of laboratory-reared Z. tau. Cultured bacteria were identified using the conventional method, and all bacteria were identified by high-throughput technologies (16S ribosomal RNA gene sequencing of V3-V4 region). A total of six bacterial phyla were identified in larvae, pupae, and male and female adult flies, which were distributed into 14 classes, 32 orders, 58 families and 96 genera. Proteobacteria was the most represented phylum in all the stages except larvae. Enterobacter, Klebsiella, Providencia, and Pseudomonas were identified by conventional and next-generation sequencing analysis in both male and female adult flies, and Enterobacter was found to be the main genus. After being fed with antibiotics from the first instar larvae, bacterial diversity changed markedly in the adult stage. Untreated flies laid eggs and needed 20 days before oviposition while the treated flies showed ovary development inhibited and were not able to lay eggs, probably due to the alteration of the microbiota. These findings provide the cornerstone for unexplored research on bacterial function in Z. tau, which will help to develop an environmentally friendly management technique for this kind of harmful insect.
Collapse
Affiliation(s)
- Md Shibly Noman
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ge Shi
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li-Jun Liu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhi-Hong Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Raza MF, Yao Z, Bai S, Cai Z, Zhang H. Tephritidae fruit fly gut microbiome diversity, function and potential for applications. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:423-437. [PMID: 32041675 DOI: 10.1017/s0007485319000853] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The family Tephritidae (order: Diptera), commonly known as fruit flies, comprises a widely distributed group of agricultural pests. The tephritid pests infest multiple species of fruits and vegetables, resulting in huge crop losses. Here, we summarize the composition and diversity of tephritid gut-associated bacteria communities and host intrinsic and environmental factors that influence the microbiome structures. Diverse members of Enterobacteriaceae, most commonly Klebsiella and Enterobacter bacteria, are prevalent in fruit flies guts. Roles played by gut bacteria in host nutrition, development, physiology and resistance to insecticides and pathogens are also addressed. This review provides an overview of fruit fly microbiome structure and points to diverse roles that it can play in fly physiology and survival. It also considers potential use of this knowledge for the control of economically important fruit flies, including the sterile insect technique and cue-lure baiting.
Collapse
Affiliation(s)
- Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
9
|
Gallo-Franco JJ, Toro-Perea N. Variations in the Bacterial Communities in Anastrepha obliqua (Diptera: Tephritidae) According to the Insect Life Stage and Host Plant. Curr Microbiol 2020; 77:1283-1291. [PMID: 32130504 DOI: 10.1007/s00284-020-01939-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Insects have established close relationships with a wide variety of microorganisms, which play a key role in insect ecology and evolution. Fruit flies in the Tephritidae family have economic importance at the global level, including species such as Anastrepha obliqua, which is an important pest in the neotropical region. Although several studies have been performed on the microbiota associated with fruit flies, there are still large gaps in our knowledge about the bacterial communities on the genus Anastrepha. During this study, we used high-throughput sequencing to characterize the bacterial communities of the polyphagous fly A. obliqua, and we evaluated the effect of the life stage (larvae and adults) and host plant (three plant species) on the structure of these communities. Our results show that the bacterial communities in A. obliqua appears to be structured according to the insect life stage and the host plant. The predominant genera belonging to the phylum Proteobacteria were Wolbachia and Enterobacter in both larvae and adults, and they displayed differences in abundance between them, with Wolbachia sp. being more abundant in larvae and Enterobacter sp. being more abundant in adults. Differences in the structures of the bacterial communities were also observed according to the host plant with higher abundance of Enterobacter and Acetobacter bacteria in mango and plum fruits. Based on our results, it can be hypothesized that the bacterial communities on A. obliqua reorganize according to the needs of these insects during their different life stages and could also play an important role in the establishment of this fly species on different host plants. This study represents the first approach to understanding microorganism-insect interactions in fruit flies in Colombia.
Collapse
Affiliation(s)
- Jenny J Gallo-Franco
- Biology Department (Departamento de Biología), Universidad del Valle, Street 13 No. 100-00, Cali, 760032, Colombia.
| | - Nelson Toro-Perea
- Biology Department (Departamento de Biología), Universidad del Valle, Street 13 No. 100-00, Cali, 760032, Colombia
| |
Collapse
|
10
|
Bai Z, Liu L, Noman MS, Zeng L, Luo M, Li Z. The influence of antibiotics on gut bacteria diversity associated with laboratory-reared Bactrocera dorsalis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:500-509. [PMID: 30394234 DOI: 10.1017/s0007485318000834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive insect pest of a wide range of fruit crops. Commensal bacteria play a very important part in the development, reproduction, and fitness of their host fruit fly. Uncovering the function of gut bacteria has become a worldwide quest. Using antibiotics to remove gut bacteria is a common method to investigate gut bacteria function. In the present study, three types of antibiotics (tetracycline, ampicillin, and streptomycin), each with four different concentrations, were used to test their effect on the gut bacteria diversity of laboratory-reared B. dorsalis. Combined antibiotics can change bacteria diversity, including cultivable and uncultivable bacteria, for both male and female adult flies. Secondary bacteria became the dominant population in female and male adult flies with the decrease in normally predominant bacteria. However, in larvae, only the predominant bacteria decreased, the bacteria diversity did not change a lot, likely because of the short acting time of the antibiotics. The bacteria diversity did not differ among fruit fly treatments with antibiotics of different concentrations. This study showed the dynamic changes of gut bacterial diversity in antibiotics-treated flies, and provides a foundation for research on the function of gut bacteria of the oriental fruit fly.
Collapse
Affiliation(s)
- Z Bai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - L Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - M S Noman
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - L Zeng
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - M Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Z Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Martinez-Sañudo I, Simonato M, Squartini A, Mori N, Marri L, Mazzon L. Metagenomic analysis reveals changes of the Drosophila suzukii microbiota in the newly colonized regions. INSECT SCIENCE 2018; 25:833-846. [PMID: 28323391 DOI: 10.1111/1744-7917.12458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 05/10/2023]
Abstract
The spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a highly polyphagous pest of a wide variety of wild or cultivated berry and stone fruit. Originating from Southeast Asia, it has recently invaded a wide range of regions in Europe and North America. It is well known that insect microbiotas may significantly influence several aspects of the host biology and play an important role in invasive species introduction into new areas. However, in spite of the great economic importance of D. suzukii, a limited attention has been given so far to its microbiota. In this study, we present the first in-depth characterization of gut bacterial diversity from field (native and invasive range) and lab-reared populations of this insect. The gut bacterial communities of field insects were dominated, regardless of their origin, by 2 families of the phylum Proteobacteria: Acetobacteraceae and Enterobacteriaceae, while Firmicutes, mainly represented by the family Staphylococcaceae, prevailed in lab-reared population. Locality was the most significant factor in shaping the microbiota of wild flies. Moreover, a negative correlation between diversity and abundance of Enterobacteriaceae and the time elapsed since the establishment of D. suzukii in a new region was observed. Altogether our results indicate that habitat, food resources as well as the colonization phase of a new region contribute to shape the bacterial communities of the invasive species which, in turn, by evolving more quickly, could influence host adaptation in a new environment.
Collapse
Affiliation(s)
- Isabel Martinez-Sañudo
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, (PD), Italy
| | - Mauro Simonato
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, (PD), Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, (PD), Italy
| | - Nicola Mori
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, (PD), Italy
| | - Laura Marri
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| | - Luca Mazzon
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, (PD), Italy
| |
Collapse
|
12
|
Liu LJ, Martinez-Sañudo I, Mazzon L, Prabhakar CS, Girolami V, Deng YL, Dai Y, Li ZH. Bacterial communities associated with invasive populations of Bactrocera dorsalis (Diptera: Tephritidae) in China. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:718-728. [PMID: 27600786 DOI: 10.1017/s0007485316000390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive insect pest of a wide range of fruits and vegetables. This pest is an invasive species and is currently distributed in some provinces of China. To recover the symbiotic bacteria of B. dorsalis from different invasion regions in China, we researched the bacterial diversity of this fruit fly among one laboratory colony (Guangdong, China) and 15 wild populations (14 sites in China and one site in Thailand) using DNA-based approaches. The construction of 16S rRNA gene libraries allowed the identification of 24 operational taxonomic units of associated bacteria at the 3% distance level, and these were affiliated with 3 phyla, 5 families, and 13 genera. The higher bacterial diversity was recovered in wild populations compared with the laboratory colony and in samples from early term invasion regions compared with samples from late term invasion regions. Moreover, Klebsiella pneumoniae and Providencia sp. were two of the most frequently recovered bacteria, present in flies collected from three different regions in China where B. dorsalis is invasive. This study for the first time provides a systemic investigation of the symbiotic bacteria of B. dorsalis from different invasion regions in China.
Collapse
Affiliation(s)
- L J Liu
- Department of Entomology,College of Plant Protection, China Agricultural University,Beijing,China
| | - I Martinez-Sañudo
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali,Università di Padova - Agripolis, Viale dell'Università,Legnaro,Padova,Italy
| | - L Mazzon
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali,Università di Padova - Agripolis, Viale dell'Università,Legnaro,Padova,Italy
| | - C S Prabhakar
- Department of Entomology,College of Plant Protection, China Agricultural University,Beijing,China
| | - V Girolami
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali,Università di Padova - Agripolis, Viale dell'Università,Legnaro,Padova,Italy
| | - Y L Deng
- Xishuangbanna Entry-Exit Inspection and Quarantine Bureau,Xishuangbanna,Yunnan,China
| | - Y Dai
- Department of Entomology,College of Plant Protection, China Agricultural University,Beijing,China
| | - Z H Li
- Department of Entomology,College of Plant Protection, China Agricultural University,Beijing,China
| |
Collapse
|
13
|
Teh BS, Apel J, Shao Y, Boland W. Colonization of the Intestinal Tract of the Polyphagous Pest Spodoptera littoralis with the GFP-Tagged Indigenous Gut Bacterium Enterococcus mundtii. Front Microbiol 2016; 7:928. [PMID: 27379058 PMCID: PMC4906056 DOI: 10.3389/fmicb.2016.00928] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022] Open
Abstract
The alkaline gut of Lepidopterans plays a crucial role in shaping communities of bacteria. Enterococcus mundtii has emerged as one of the predominant gut microorganisms in the gastrointestinal tract of the major agricultural pest, Spodoptera littoralis. Therefore, it was selected as a model bacterium to study its adaptation to harsh alkaline gut conditions in its host insect throughout different stages of development (larvae, pupae, adults, and eggs). To date, the mechanism of bacterial survival in insects' intestinal tract has been unknown. Therefore, we have engineered a GFP-tagged species of bacteria, E. mundtii, to track how it colonizes the intestine of S. littoralis. Three promoters of different strengths were used to control the expression of GFP in E. mundtii. The promoter ermB was the most effective, exhibiting the highest GFP fluorescence intensity, and hence was chosen as our main construct. Our data show that the engineered fluorescent bacteria survived and proliferated in the intestinal tract of the insect at all life stages for up to the second generation following ingestion.
Collapse
Affiliation(s)
- Beng-Soon Teh
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Johanna Apel
- Clinic for Internal Medicine II, Department of Haematology and Medical Oncology University Hospital Jena, Germany
| | - Yongqi Shao
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
14
|
Morrow JL, Frommer M, Shearman DCA, Riegler M. The Microbiome of Field-Caught and Laboratory-Adapted Australian Tephritid Fruit Fly Species with Different Host Plant Use and Specialisation. MICROBIAL ECOLOGY 2015; 70:498-508. [PMID: 25666536 DOI: 10.1007/s00248-015-0571-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/21/2015] [Indexed: 05/12/2023]
Abstract
Tephritid fruit fly species display a diversity of host plant specialisation on a scale from monophagy to polyphagy. Furthermore, while some species prefer ripening fruit, a few are restricted to damaged or rotting fruit. Such a diversity of host plant use may be reflected in the microbial symbiont diversity of tephritids and their grade of dependency on their microbiomes. Here, we investigated the microbiome of six tephritid species from three genera, including species that are polyphagous pests (Bactrocera tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Ceratitis capitata) and a monophagous specialist (Bactrocera cacuminata). These were compared with the microbiome of a non-pestiferous but polyphagous tephritid species that is restricted to damaged or rotting fruit (Dirioxa pornia). The bacterial community associated with whole fruit flies was analysed by 16S ribosomal DNA (rDNA) amplicon pyrosequencing to detect potential drivers of taxonomic composition. Overall, the dominant bacterial families were Enterobacteriaceae and Acetobacteraceae (both Proteobacteria), and Streptococcaceae and Enterococcaceae (both Firmicutes). Comparisons across species and genera found different microbial composition in the three tephritid genera, but limited consistent differentiation between Bactrocera species. Within Bactrocera species, differentiation of microbial composition seemed to be influenced by the environment, possibly including their diets; beyond this, tephritid species identity or ecology also had an effect. The microbiome of D. pornia was most distinct from the other five species, which may be due to its ecologically different niche of rotting or damaged fruit, as opposed to ripening fruit favoured by the other species. Our study is the first amplicon pyrosequencing study to compare the microbiomes of tephritid species and thus delivers important information about the turnover of microbial diversity within and between fruit fly species and their potential application in pest management strategies.
Collapse
Affiliation(s)
- J L Morrow
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia,
| | | | | | | |
Collapse
|
15
|
Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive fly larvae to overcome host defences. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150170. [PMID: 26587275 PMCID: PMC4632588 DOI: 10.1098/rsos.150170] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/29/2015] [Indexed: 05/13/2023]
Abstract
Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein-the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae.
Collapse
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Boaz Yuval
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
16
|
Viale E, Martinez-Sañudo I, Brown JM, Simonato M, Girolami V, Squartini A, Bressan A, Faccoli M, Mazzon L. Pattern of association between endemic Hawaiian fruit flies (Diptera, Tephritidae) and their symbiotic bacteria: Evidence of cospeciation events and proposal of "Candidatus Stammerula trupaneae". Mol Phylogenet Evol 2015; 90:67-79. [PMID: 25959751 DOI: 10.1016/j.ympev.2015.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 04/18/2015] [Accepted: 04/28/2015] [Indexed: 11/18/2022]
Abstract
Several insect lineages have evolved mutualistic association with symbiotic bacteria. This is the case of some species of mealybugs, whiteflies, weevils, tsetse flies, cockroaches, termites, carpenter ants, aphids and fruit flies. Some species of Tephritinae, the most specialized subfamily of fruit flies (Diptera: Tephritidae), harbour co-evolved vertically transmitted, bacterial symbionts in their midgut, known as "Candidatus Stammerula spp.". The 25 described endemic species of Hawaiian tephritids, plus at least three undescribed species, are taxonomically distributed among three genera: the cosmopolitan genus Trupanea (21 described spp.), the endemic genus Phaeogramma (2 spp.) and the Nearctic genus Neotephritis (2 spp.). We examined the presence of symbiotic bacteria in the endemic tephritids of the Hawaiian Islands, which represent a spectacular example of adaptive radiation, and tested the concordant evolution between host and symbiont phylogenies. We detected through PCR assays the presence of specific symbiotic bacteria, designated as "Candidatus Stammerula trupaneae", from 35 individuals of 15 species. The phylogeny of the insect host was reconstructed based on two regions of the mitochondrial DNA (16S rDNA and COI-tRNALeu-COII), while the bacterial 16S rRNA was used for the symbiont analysis. Host and symbiont phylogenies were then compared and evaluated for patterns of cophylogeny and strict cospeciation. Topological congruence between Hawaiian Tephritinae and their symbiotic bacteria phylogenies suggests a limited, but significant degree of host-symbiont cospeciation. We also explored the character reconstruction of three host traits, as island location, host lineage, and host tissue attacked, based on the symbiont phylogenies under the hypothesis of cospeciation.
Collapse
Affiliation(s)
- E Viale
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - I Martinez-Sañudo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - J M Brown
- Department of Biology, Grinnell College, Grinnell, IA 50012, USA.
| | - M Simonato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - V Girolami
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy
| | - A Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - A Bressan
- Bayer Crop Science LP, R&D Trait Research, 3500 Paramount Parkway, Morrisville, NC 27560, USA.
| | - M Faccoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| | - L Mazzon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova - Agripolis, Viale dell'Università, 16, 35020 Legnaro, Padova, Italy.
| |
Collapse
|
17
|
Raphael KA, Shearman DCA, Gilchrist AS, Sved JA, Morrow JL, Sherwin WB, Riegler M, Frommer M. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique. BMC Genet 2014; 15 Suppl 2:S9. [PMID: 25470996 PMCID: PMC4255846 DOI: 10.1186/1471-2156-15-s2-s9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies.
Collapse
|
18
|
Paoletti MG, Mazzon L, Martinez-Sañudo I, Simonato M, Beggio M, Dreon AL, Pamio A, Brilli M, Dorigo L, Engel AS, Tondello A, Baldan B, Concheri G, Squartini A. A unique midgut-associated bacterial community hosted by the cave beetle Cansiliella servadeii (Coleoptera: Leptodirini) reveals parallel phylogenetic divergences from universal gut-specific ancestors. BMC Microbiol 2013; 13:129. [PMID: 23758657 PMCID: PMC3695770 DOI: 10.1186/1471-2180-13-129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background Cansiliella servadeii (Coleoptera) is an endemic troglobite living in deep carbonate caves in North-Eastern Italy. The beetle constantly moves and browses in its preferred habitat (consisting in flowing water and moonmilk, a soft speleothem colonized by microorganisms) self-preens to convey material from elytra, legs, and antennae towards the mouth. We investigated its inner and outer microbiota using microscopy and DNA-based approaches. Results Abundant microbial cell masses were observed on the external appendages. Cansiliella’s midgut is fully colonized by live microbes and culture-independent analyses yielded nearly 30 different 16S phylotypes that have no overlap with the community composition of the moonmilk. Many of the lineages, dominated by Gram positive groups, share very low similarity to database sequences. However for most cases, notwithstanding their very limited relatedness with existing records, phylotypes could be assigned to bacterial clades that had been retrieved from insect or other animals’ digestive traits. Conclusions Results suggest a history of remote separation from a common ancestor that harboured a set of gut-specific bacteria whose functions are supposedly critical for host physiology. The phylogenetic and coevolutionary implications of the parallel occurrences of these prokaryotic guilds appear to apply throughout a broad spectrum of animal diversity. Their persistence and conservation underlies a possibly critical role of precise bacterial assemblages in animal-bacteria interactions.
Collapse
Affiliation(s)
- Maurizio G Paoletti
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Martínez H, Toledo J, Liedo P, Mateos M. Survey of heritable endosymbionts in southern Mexico populations of the fruit fly species Anastrepha striata and A. ludens. Curr Microbiol 2012; 65:711-8. [PMID: 22961037 DOI: 10.1007/s00284-012-0223-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/31/2012] [Indexed: 11/24/2022]
Abstract
Heritable endosymbiotic bacteria associated with insects are ubiquitous and taxonomically diverse. Many of these endosymbionts influence the fitness of their hosts and/or manipulate their host reproduction. Exploiting the effects of endosymbionts on hosts for pest control is a growing research area, but requires knowledge of endosymbionts associated with the target pest population. In this study, we used molecular methods to screen southern Mexico populations of two species of tephritid fruit fly pests, Anastrepha ludens and A. striata, for heritable bacteria. The only heritable endosymbiont found was Wolbachia in A. striata. Based on multilocus sequence typing and phylogenetic analyses, this Wolbachia strain is new and belongs to the Wolbachia supergroup B. Wolbachia strains previously reported in members of the genus Anastrepha in South America belong to supergroup A. We discuss the potential implications for pest control of the presence of a different Wolbachia strain in southern Mexico.
Collapse
Affiliation(s)
- Humberto Martínez
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
20
|
Dhami MK, Turner AP, Deines P, Beggs JR, Taylor MW. Ultrastructural and molecular characterization of a bacterial symbiosis in the ecologically important scale insect family Coelostomidiidae. FEMS Microbiol Ecol 2012; 81:537-46. [PMID: 22468989 DOI: 10.1111/j.1574-6941.2012.01378.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/25/2012] [Accepted: 03/28/2012] [Indexed: 12/01/2022] Open
Abstract
Scale insects are important ecologically and as agricultural pests. The majority of scale insect taxa feed exclusively on plant phloem sap, which is carbon rich but deficient in essential amino acids. This suggests that, as seen in the related aphids and psyllids, scale insect nutrition might also depend upon bacterial symbionts, yet very little is known about scale insect-bacteria symbioses. We report here the first identification and molecular characterization of symbiotic bacteria associated with the New Zealand giant scale Coelostomidia wairoensis, using fluorescence in situ hybridization (FISH), transmission electron microscopy (TEM) and 16S rRNA gene-based analysis. Dissection and FISH confirmed the location of the bacteria in large, paired, multilobate organs in the abdominal region of the insect. TEM indicated that the dominant pleomorphic bacteria were confined to bacteriocytes in the sheath-enclosed bacteriome. Phylogenetic analysis revealed the presence of three distinct bacterial types, the bacteriome-associated B-symbiont (Bacteroidetes), an Erwinia-related symbiont (Gammaproteobacteria) and Wolbachia sp. (Alphaproteobacteria). This study extends the current knowledge of scale insect symbionts and is the first microbiological investigation of the ecologically important coelostomidiid scales.
Collapse
Affiliation(s)
- Manpreet K Dhami
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
21
|
Husník F, Chrudimský T, Hypša V. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol 2011; 9:87. [PMID: 22201529 PMCID: PMC3271043 DOI: 10.1186/1741-7007-9-87] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/28/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The bacterial family Enterobacteriaceae gave rise to a variety of symbiotic forms, from the loosely associated commensals, often designated as secondary (S) symbionts, to obligate mutualists, called primary (P) symbionts. Determination of the evolutionary processes behind this phenomenon has long been hampered by the unreliability of phylogenetic reconstructions within this group of bacteria. The main reasons have been the absence of sufficient data, the highly derived nature of the symbiont genomes and lack of appropriate phylogenetic methods. Due to the extremely aberrant nature of their DNA, the symbiotic lineages within Enterobacteriaceae form long branches and tend to cluster as a monophyletic group. This state of phylogenetic uncertainty is now improving with an increasing number of complete bacterial genomes and development of new methods. In this study, we address the monophyly versus polyphyly of enterobacterial symbionts by exploring a multigene matrix within a complex phylogenetic framework. RESULTS We assembled the richest taxon sampling of Enterobacteriaceae to date (50 taxa, 69 orthologous genes with no missing data) and analyzed both nucleic and amino acid data sets using several probabilistic methods. We particularly focused on the long-branch attraction-reducing methods, such as a nucleotide and amino acid data recoding and exclusion (including our new approach and slow-fast analysis), taxa exclusion and usage of complex evolutionary models, such as nonhomogeneous model and models accounting for site-specific features of protein evolution (CAT and CAT+GTR). Our data strongly suggest independent origins of four symbiotic clusters; the first is formed by Hamiltonella and Regiella (S-symbionts) placed as a sister clade to Yersinia, the second comprises Arsenophonus and Riesia (S- and P-symbionts) as a sister clade to Proteus, the third Sodalis, Baumannia, Blochmannia and Wigglesworthia (S- and P-symbionts) as a sister or paraphyletic clade to the Pectobacterium and Dickeya clade and, finally, Buchnera species and Ishikawaella (P-symbionts) clustering with the Erwinia and Pantoea clade. CONCLUSIONS The results of this study confirm the efficiency of several artifact-reducing methods and strongly point towards the polyphyly of P-symbionts within Enterobacteriaceae. Interestingly, the model species of symbiotic bacteria research, Buchnera and Wigglesworthia, originated from closely related, but different, ancestors. The possible origins of intracellular symbiotic bacteria from gut-associated or pathogenic bacteria are suggested, as well as the role of facultative secondary symbionts as a source of bacteria that can gradually become obligate maternally transferred symbionts.
Collapse
Affiliation(s)
- Filip Husník
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Tomáš Chrudimský
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
- Institute of Parasitology, Biology Centre of ASCR, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
22
|
Martinez-Sañudo I, Savio C, Mazzon L, Girolami V, Ciolfi S, Marri L. Green fluorescent protein (GFP)-labeling of enterobacteria associated with fruit flies (Diptera: Tephritidae) and persistence in their natural hostRhagoletis completaCresson. Can J Microbiol 2011; 57:969-73. [DOI: 10.1139/w11-057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fruit flies (Diptera: Tephritidae) are a highly successful, widespread group of insects that cause economic damage in agriculture. Data available so far on the composition of the bacterial community associated with their digestive tract indicate that members of Enterobacteriaceae are the species most often isolated. Bacteria naturally occurring in insect guts may be engineered and used to study the spatial and functional interactions of microbes within the insect system and offer one route to meet the demand for novel insect pest management strategies. With this aim we introduced by conjugation the gfp gene carried by the suicide plasmid pTn5gfpmut1 into Klebsiella oxytoca and Raoultella (formerly Klebsiella ) spp. strains isolated from the oesophageal bulb of the fruit flies Ceratitis capitata (Wiedemann) and Rhagoletis completa Cresson, respectively. The GFP-encoding gene was stably maintained in two tested transgenic strains, both originally isolated from R. completa. In one case, GFP-labeled bacterial cells were used to feed larvae and adults of the original host. Genetically modified bacteria were able to colonize the gut of larvae and persisted through all larval instars to pupal stage.
Collapse
Affiliation(s)
- Isabel Martinez-Sañudo
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Agripolis, viale dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Claudia Savio
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Agripolis, viale dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Luca Mazzon
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Agripolis, viale dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Vincenzo Girolami
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Agripolis, viale dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Silvia Ciolfi
- Dipartimento di Biologia Evolutiva, Università di Siena, via A. Moro 2, 53100 Siena, Italy
| | - Laura Marri
- Dipartimento di Biologia Evolutiva, Università di Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
23
|
Characterization of an obligate intracellular bacterium in the midgut epithelium of the bulrush bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae). Appl Environ Microbiol 2011; 77:2869-76. [PMID: 21378044 DOI: 10.1128/aem.02983-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many members of the suborder Heteroptera have symbiotic bacteria, which are usually found extracellularly in specific sacs or tubular outgrowths of the midgut or intracellularly in mycetomes. In this study, we describe the second molecular characterization of a symbiotic bacterium in a monophagous, seed-sucking stink bug of the family Lygaeidae (sensu stricto). Chilacis typhae possesses at the end of the first section of the midgut a structure which is composed of circularly arranged, strongly enlarged midgut epithelial cells. It is filled with an intracellular endosymbiont. This "mycetocytic belt" might represent an evolutionarily intermediate stage of the usual symbiotic structures found in stink bugs. Phylogenetic analysis based on the 16S rRNA and the groEL genes showed that the bacterium belongs to the Gammaproteobacteria, and it revealed a phylogenetic relationship with a secondary bacterial endosymbiont of Cimex lectularius and free-living plant pathogens such as Pectobacterium and Dickeya. The distribution and ultrastructure of the rod-shaped Chilacis endosymbiont were studied in adults and nymph stages using fluorescence in situ hybridization (FISH) and electron microscopy. The detection of symbionts at the anterior poles of developing eggs indicates that endosymbionts are transmitted vertically. A new genus and species name, "Candidatus Rohrkolberia cinguli," is proposed for this newly characterized clade of symbiotic bacteria.
Collapse
|
24
|
Savio C, Mazzon L, Martinez-Sañudo I, Simonato M, Squartini A, Girolami V. Evidence of two lineages of the symbiont 'Candidatus Erwinia dacicola' in Italian populations of Bactrocera oleae (Rossi) based on 16S rRNA gene sequences. Int J Syst Evol Microbiol 2011; 62:179-187. [PMID: 21378134 DOI: 10.1099/ijs.0.030668-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The close association between the olive fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) and bacteria has been known for more than a century. Recently, the presence of a host-specific, hereditary, unculturable symbiotic bacterium, designated 'Candidatus Erwinia dacicola', has been described inside the cephalic organ of the fly, called the oesophageal bulb. In the present study, the 16S rRNA gene sequence variability of 'Ca. E. dacicola' was examined within and between 26 Italian olive fly populations sampled across areas where olive trees occur in the wild and areas where cultivated olive trees have been introduced through history. The bacterial contents of the oesophageal bulbs of 314 olive flies were analysed and a minimum of 781 bp of the 16S rRNA gene was sequenced. The corresponding host fly genotype was assessed by sequencing a 776 bp portion of the mitochondrial genome. Two 'Ca. E. dacicola' haplotypes were found (htA and htB), one being slightly more prevalent than the other (57%). The two haplotypes did not co-exist in the same individuals, as confirmed by cloning. Interestingly, the olive fly populations of the two main Italian islands, Sicily and Sardinia, appeared to be represented exclusively by the htB and htA haplotypes, respectively, while peninsular populations showed both bacterial haplotypes in different proportions. No significant correlation emerged between the two symbiont haplotypes and the 16 host fly haplotypes observed, suggesting evidence for a mixed model of vertical and horizontal transmission of the symbiont during the fly life cycle.
Collapse
Affiliation(s)
- Claudia Savio
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Agripolis, viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Luca Mazzon
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Agripolis, viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Isabel Martinez-Sañudo
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Agripolis, viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Mauro Simonato
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Agripolis, viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Andrea Squartini
- Dipartimento di Biotecnologie Agrarie, Università di Padova, Agripolis, viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Vincenzo Girolami
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova, Agripolis, viale dell'Università 16, 35020 Legnaro, Padova, Italy
| |
Collapse
|
25
|
Abstract
Insects form an extremely large group of animals and bear a consequently large variety of associated microbes. This microbiota includes very specific and obligate symbionts that provide essential functions to the host, and facultative partners that are not necessarily required for survival. The Tephritidae is a large family that includes many fruit pests such as the Mediterranean fruit fly (the medfly, Ceratitis capitata) and the Olive fly (Bactrocera oleae). Community and functional analyses showed that the microbiota of both flies contribute to their diet, and affect host fitness parameters. The analysis of the microbiota's community structure of mass-reared, sterilized medfly males used in the sterile insect technique revealed a strong reduction in Klebsiella spp. compared with non-sterile and wild flies. Inoculation of sterile males with this gut population affected female mating behaviour as they preferentially mated with inoculated versus non-inoculated males. These studies suggest that control can be significantly improved by manipulating symbionts in pest animals.
Collapse
Affiliation(s)
- Edouard Jurkevitch
- The Hebrew University of Jerusalem, Plant Pathology and Microbiology, Food and Environment, Rehovot, Israel 76100.
| |
Collapse
|
26
|
Abstract
Recent research in microbe-insect symbiosis has shown that acetic acid bacteria (AAB) establish symbiotic relationships with several insects of the orders Diptera, Hymenoptera, Hemiptera, and Homoptera, all relying on sugar-based diets, such as nectars, fruit sugars, or phloem sap. To date, the fruit flies Drosophila melanogaster and Bactrocera oleae, mosquitoes of the genera Anopheles and Aedes, the honey bee Apis mellifera, the leafhopper Scaphoideus titanus, and the mealybug Saccharicoccus sacchari have been found to be associated with the bacterial genera Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, and Saccharibacter and the novel genus Commensalibacter. AAB establish symbiotic associations with the insect midgut, a niche characterized by the availability of diet-derived carbohydrates and oxygen and by an acidic pH, selective factors that support AAB growth. AAB have been shown to actively colonize different insect tissues and organs, such as the epithelia of male and female reproductive organs, the Malpighian tubules, and the salivary glands. This complex topology of the symbiosis indicates that AAB possess the keys for passing through body barriers, allowing them to migrate to different organs of the host. Recently, AAB involvement in the regulation of innate immune system homeostasis of Drosophila has been shown, indicating a functional role in host survival. All of these lines of evidence indicate that AAB can play different roles in insect biology, not being restricted to the feeding habit of the host. The close association of AAB and their insect hosts has been confirmed by the demonstration of multiple modes of transmission between individuals and to their progeny that include vertical and horizontal transmission routes, comprising a venereal one. Taken together, the data indicate that AAB represent novel secondary symbionts of insects.
Collapse
|
27
|
Mazzon L, Martinez-Sañudo I, Simonato M, Squartini A, Savio C, Girolami V. Phylogenetic relationships between flies of the Tephritinae subfamily (Diptera, Tephritidae) and their symbiotic bacteria. Mol Phylogenet Evol 2010; 56:312-26. [PMID: 20171292 DOI: 10.1016/j.ympev.2010.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/02/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
The Tephritinae is considered the most specialized subfamily of fruit flies, predominantly infesting flowerheads of Asteraceae. Some species are known to host specific non-culturable symbiont bacteria ("Candidatus Stammerula spp.") in the midgut. In this work we (i) examined the phylogenetic relationships among the insect hosts, (ii) investigated the presence of bacteria in other hitherto unexamined species, and (iii) evaluated the phylogenetic congruence between insects and symbionts. A total of 33 Tephritinae species in 17 different genera were analyzed. Two regions of the mitochondrial DNA (16S rDNA and COI-tRNALeu-COII) were examined in the insect host, while the 16S was analyzed in the bacteria. From the phylogenetic trees, four of the five tribes considered were statistically supported by each of the clustering methods used. Species belonging to the tribe Noeetini never clustered at significant levels. The phylogenetic COI-tRNALeu-COII tree showed internal nodes more highly supported than the 16S phylogeny. The analysis of the distribution of symbiosis across the subfamily has highlighted the presence of bacteria only in the tribe Tephritini and in the genus Noeeta from the tribe Noeetini. A cophylogenetic analysis revealed a substantial congruence between hosts and symbionts. The interesting exceptions can be justified by events like losses, duplications and hosts switching opportunities, which are likely to arise during the biological cycle of the fly in consideration of the extracellular status of these symbionts.
Collapse
Affiliation(s)
- Luca Mazzon
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Università di Padova-Agripolis, Padova, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Ben-Yosef M, Aharon Y, Jurkevitch E, Yuval B. Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proc Biol Sci 2010; 277:1545-52. [PMID: 20071385 DOI: 10.1098/rspb.2009.2102] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Olive flies (Bactrocera oleae) are intimately associated with bacteria throughout their life cycle, and both larvae and adults are morphologically adapted for housing bacteria in the digestive tract. We tested the hypothesis that these bacteria contribute to the adult fly's fitness in a diet-dependent fashion. We predicted that when dietary protein is superabundant, bacterial contribution will be minimal. Conversely, in the absence of protein, or when only non-essential amino acids are present (as in the fly's natural diet), we predicted that bacterial contribution to fitness will be significant. Accordingly, we manipulated diet and the presence of bacteria in female olive flies, and monitored fecundity--an indirect measure of fitness. Bacteria did not affect fecundity when females were fed a nutritionally poor diet of sucrose, or a protein-rich, nutritionally complete diet. However, when females were fed a diet containing non-essential amino acids as the sole source of amino nitrogen, egg production was significantly enhanced in the presence of bacteria. These results suggest that bacteria were able to compensate for the skewed amino acid composition of the diet and may be indispensable for wild adult olive flies that subsist mainly on nitrogen-poor resources such as honeydew.
Collapse
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | | | |
Collapse
|
29
|
Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl Environ Microbiol 2009; 75:3281-8. [PMID: 19304818 DOI: 10.1128/aem.02933-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Following cultivation-dependent and -independent techniques, we investigated the microbiota associated with Bactrocera oleae, one of the major agricultural pests in olive-producing countries. Bacterial 16S rRNA gene libraries and ultrastructural analyses revealed the presence of several bacterial taxa associated with this insect, among which Acetobacter tropicalis was predominant. The recent increased detection of acetic acid bacteria as symbionts of other insect model organisms, such as Anopheles stephensi (G. Favia et al., Proc. Natl. Acad. Sci. USA 104:9047-9051, 2007) or Drosophila melanogaster (C. R. Cox and M. S. Gilmore, Infect. Immun. 75:1565-1576, 2007), prompted us to investigate the association established between A. tropicalis and B. oleae. Using an A. tropicalis-specific PCR assay, the symbiont was detected in all insects tested originating from laboratory stocks or field-collected from different locations in Greece. This acetic acid bacterium was successfully established in cell-free medium, and typing analyses, carried out on a collection of isolates, revealed that different A. tropicalis strains are present in fly populations. The capability to colonize and lodge in the digestive system of both larvae and adults and in Malpighian tubules of adults was demonstrated by using a strain labeled with a green fluorescent protein.
Collapse
|