1
|
Pereira AR, Assis NVD, Paranhos AGDO, Lima DRS, Baeta BEL, Aquino SFD, Silva SDQ. Effect of inoculum composition on the microbial community involved in the anaerobic digestion of sugarcane bagasse. ENVIRONMENTAL TECHNOLOGY 2024; 45:2205-2217. [PMID: 36632771 DOI: 10.1080/09593330.2023.2166877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In anaerobic digestion (AD), the choice of inoculum type seems to be relevant for methane production for complex substrates, such as lignocellulosic material. Previous work demonstrated that the addition of fresh manure and ruminal fluid to anaerobic sludge improved methane productivity and kinetics of AD of crude sugarcane bagasse (CSB). Considering that the improvement of methane production could be a result of a more adapted microbial community, the present study performed the Next Generation Sequencing analysis to identify changes in the microbiome of anaerobic sludge inoculum, resulting from fresh manure and ruminal fluid addition. In comparison with AD performed only with anaerobic sludge inoculum (50:50, U), accumulated methane production was 15% higher with anaerobic sludge plus ruminal fluid inoculum (50:50, UR) and even higher (68%) with anaerobic sludge with fresh bovine manure inoculum (50:50, UFM), reaching the value of 143 NmLCH4.gVS-1. Clostridium species were highly abundant in all inocula, playing an important role during the hydrolysis and fermentation of CSB, and detoxifying potential inhibitors. Microbial composition also revealed the occurrence of Pseudomonas and Anaerobaculum at UFM inoculum that seem to have contributed to the higher methane production rate, mainly due to their hydrolytic and fermentative ability on lignocellulosic substrates. On the other hand, the presence of Alcaligenes might have had a negative effect on methane production due to their ability to perform methane oxidation.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Brazil
| | - Nathália Vercelli de Assis
- Graduate Program in Biotechnology, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Brazil
| | | | - Diego Roberto Sousa Lima
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Brazil
| | - Bruno Eduardo Lobo Baeta
- Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Brazil
| | | | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Brazil
| |
Collapse
|
2
|
Chen G, He M, Li KJ, Zheng KW, Tang XX, Debnath SC, Wang PM, Guo Z, Hong Y, Zheng DQ. Shinella sedimenti sp. nov., isolated from sediment of Zhairuo Island located in the East China Sea. Int J Syst Evol Microbiol 2023; 73. [PMID: 37589186 DOI: 10.1099/ijsem.0.006000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
A Gram-negative, rod-shaped and aerobic bacterial strain B3.7T, was isolated from the sediment of Zhairuo Island, Zhoushan city, Zhejiang Province, PR China. Maximum growth of strain B3.7T was observed at 30 °C when cultured in a medium containing 0.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain B3.7T belonged to the genus Shinella; it showed the highest sequence similarity of 98.47 % to Shinella kummerowiae CCBAU 25048T. The average nucleotide identity and digital DNA-DNA hybridization values between strain B3.7T and its reference strains were 82.9-84.2 % and 26.1-27.3 %, respectively. Chemotaxonomic analysis indicated that the sole respiratory quinone was Q-10 and the predominant cellular fatty acids were C19 : 0 cyclo ω8c, C16 : 0, C18 : 1 ω7c 11-methyl and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two unidentified aminolipids. Collectively, strain B3.7T can be considered to represent a novel species, for which the name Shinella sedimenti sp. nov. is proposed. The type strain is B3.7T (=MCCC 1K07163T=LMG 32559T).
Collapse
Affiliation(s)
- Gen Chen
- Hainan Institute of Zhejiang University, Sanya, 572000, PR China
- Ocean College, Zhejiang University, Zhoushan, 316021, PR China
| | - Min He
- Hainan Institute of Zhejiang University, Sanya, 572000, PR China
| | - Ke-Jing Li
- Hainan Institute of Zhejiang University, Sanya, 572000, PR China
| | - Kai-Wen Zheng
- Hainan Institute of Zhejiang University, Sanya, 572000, PR China
| | - Xing-Xing Tang
- Hainan Institute of Zhejiang University, Sanya, 572000, PR China
| | | | - Pin-Mei Wang
- Hainan Institute of Zhejiang University, Sanya, 572000, PR China
| | - Zhen Guo
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, PR China
| | - Yi Hong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, PR China
| | - Dao-Qiong Zheng
- Hainan Institute of Zhejiang University, Sanya, 572000, PR China
- Ocean College, Zhejiang University, Zhoushan, 316021, PR China
| |
Collapse
|
3
|
Gong ZL, Deng Y, Jiang ZM, Liu LQ, Yu LY, Su J, Zhang YQ. Shinella lacus sp. nov., a novel microcystin-degrading alphaproteobacterium containing the bla carbapenemase gene. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, microcystin-degrading bacterium, designated as CPCC 100929T, was isolated from a fresh water reservoir in Sichuan Province, PR China. This isolate grew well at 4–37 °C and pH 6.0–8.0, with optimal growth at 28–32 °C and pH 7.0, respectively. The major cellular fatty acids were C18:1 ω7c/C18:1 ω6c, C16:0, C18:1 ω7c 11-methyl and C19:0 cyclo ω8c. The predominant respiratory quinone was Q-10. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine and phosphatidylcholine were detected in the polar lipids extraction. The 16S rRNA gene sequence of strain CPCC 100929T was closely related to those of members of the genus
Shinella
, with the highest similarity of 98.6 % to
Shinella zoogloeoides
DSM 287T and 97.4–98.4 % with other identified
Shinella
members. In the phylogenetic trees based on 16S rRNA gene sequences and the core-genes analysis, strain CPCC 100929T was included within the clade of the genus
Shinella
. The values of average nucleotide identity (81.4–86.7 %) and digital DNA–DNA hybridization (25.4–44.6 %) between strain CPCC 100929T and other
Shinella
species were all below the thresholds for bacterial species delineation, respectively. The genomic DNA G+C content of strain CPCC 100929T was 63.6 %. The genomic sequence analysis indicated that this species contained genes encoding peroxidase, bla carbapenemase and the key enzyme for microcystin bio degradation, as well as rich carbohydrate-active enzyme coding genes, which might endow the micro-organism with properties to adapt to diverse environments. Based on its phenotypic and genetic properties, we propose that strain CPCC 100929T (=T1A350T=KCTC 72957T) is the type strain of a novel species with the name Shinella lacus sp. nov.
Collapse
Affiliation(s)
- Zhi-Lian Gong
- Department of Environment Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Zhu-Ming Jiang
- State Key Laboratory of Dao-di Herb, Beijing 100700, PR China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Lu-Qing Liu
- Department of Environment Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jing Su
- State Key Laboratory of Dao-di Herb, Beijing 100700, PR China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
- State Key Laboratory of Dao-di Herb, Beijing 100700, PR China
| |
Collapse
|
4
|
Identification of the bacteria associated to the phycosphere of the Chlorella-like strain SEC_LI_ChL_1. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Ferraz Helene LC, Klepa MS, Hungria M. New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. Int J Microbiol 2022; 2022:4623713. [PMID: 35637770 PMCID: PMC9148247 DOI: 10.1155/2022/4623713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Since early studies, the history of prokaryotes taxonomy has dealt with many changes driven by the development of new and more robust technologies. As a result, the number of new taxa descriptions is exponentially increasing, while an increasing number of others has been subject of reclassification, demanding from the taxonomists more effort to maintain an organized hierarchical system. However, expectations are that the taxonomy of prokaryotes will acquire a more stable status with the genomic era. Other analyses may continue to be necessary to determine microbial features, but the use of genomic data might be sufficient to provide reliable taxa delineation, helping taxonomy to reach the goal of correct classification and identification. Here we describe the evolution of prokaryotes' taxonomy until the genomic era, emphasizing bacteria and taking as an example the history of rhizobia taxonomy. This example was chosen because of the importance of the symbiotic nitrogen fixation of legumes with rhizobia to the nitrogen input to both natural ecosystems and agricultural crops. This case study reports the technological advances and the methodologies used to classify and identify bacterial species and indicates the actual rules required for an accurate description of new taxa.
Collapse
Affiliation(s)
- Luisa Caroline Ferraz Helene
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
| | - Milena Serenato Klepa
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70040-020 Brasília, DF, Brazil
| | - Mariangela Hungria
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
6
|
Shinella oryzae sp. nov., a novel zearalenone-resistant bacterium isolated from rice paddy soil. Antonie van Leeuwenhoek 2022; 115:573-587. [DOI: 10.1007/s10482-022-01724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/27/2022] [Indexed: 10/18/2022]
|
7
|
Worsley SF, Macey MC, Prudence SMM, Wilkinson B, Murrell JC, Hutchings MI. Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome. Front Mol Biosci 2021; 8:686110. [PMID: 34222338 PMCID: PMC8241931 DOI: 10.3389/fmolb.2021.686110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
Streptomyces species are saprophytic soil bacteria that produce a diverse array of specialized metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere of the model plant Arabidopsis thaliana. Here, we set out to test the hypothesis that they are attracted to plant roots by root exudates, and specifically by the plant phytohormone salicylate, which they might use as a nutrient source. We confirmed a previously published report that salicylate over-producing cpr5 plants are colonized more readily by streptomycetes but found that salicylate-deficient sid2-2 and pad4 plants had the same levels of root colonization by Streptomyces bacteria as the wild-type plants. We then tested eight genome sequenced Streptomyces endophyte strains in vitro and found that none were attracted to or could grow on salicylate as a sole carbon source. We next used 13CO2 DNA stable isotope probing to test whether Streptomyces species can feed off a wider range of plant metabolites but found that Streptomyces bacteria were outcompeted by faster growing proteobacteria and did not incorporate photosynthetically fixed carbon into their DNA. We conclude that, given their saprotrophic nature and under conditions of high competition, streptomycetes most likely feed on more complex organic material shed by growing plant roots. Understanding the factors that impact the competitiveness of strains in the plant root microbiome could have consequences for the effective application of biocontrol strains.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Michael C Macey
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
8
|
Wang J, Wu H, Wu L, Liu Y, Letuma P, Qin X, Chen T, Rensing C, Lin S, Lin W. Revealing Microbiome Structure and Assembly Process in Three Rhizocompartments of Achyranthes bidentata Under Continuous Monoculture Regimes. Front Microbiol 2021; 12:677654. [PMID: 34194412 PMCID: PMC8236951 DOI: 10.3389/fmicb.2021.677654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The complex composition and interaction of root-associated microbes are critical to plant health and performance. In this study, we presented a detailed characterization of three rhizocompartment (rhizosphere, rhizoplane, and root) microbiomes of Achyranthes bidentata under different years of consecutive monoculture by deep sequencing in order to determine keystone microorganisms via co-occurrence network analysis. The network analysis showed that multiple consecutive monoculture (MCM, represented 5Y and 10Y) soils generated some distinct beneficial bacterial taxa such as Bacillus, Fictibacillus, Bradyrhizobium, Shinella, and Herbaspirillum. For fungi, Mortierella substituted for Fusarium in occupying an important position in different rhizocompartments under A. bidentate monoculture. Quantitative PCR analysis confirmed a significant increase in Bacillus, Pseudomonas, and Burkholderia spp. The results of the inoculation assay showed that addition of beneficial bacteria Bacillus subtilis 74 and Bacillus halodurans 75 significantly increased the root length and fresh weight of A. bidentata. Furthermore, three types of phytosterones, as the main allochemicals, were identified both in the rhizosphere soil and in culture medium under sterile conditions by LC-MS/MS. When looking at in vitro interactions, it was found that phytosterones displayed a positive interaction with dominant beneficial species (Bacillus amyloliquefaciens 4 and B. halodurans 75) and had a negative effect on the presence of the pathogenic fungi Fusarium solani and Fusarium oxysporum. Overall, this study demonstrated that consecutive monoculture of A. bidentata can alter the bacterial and fungal community by secreting root exudates, leading to recruitment of beneficial microbes and replacement of plant-specific pathogenic fungi with plant beneficial fungi.
Collapse
Affiliation(s)
- Juanying Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongmiao Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linkun Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Puleng Letuma
- Department of Crop Science, National University of Lesotho, Maseru, Lesotho
| | - Xianjin Qin
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Li GX, Bao P. Transcriptomics analysis of the metabolic mechanisms of iron reduction induced by sulfate reduction mediated by sulfate-reducing bacteria. FEMS Microbiol Ecol 2021; 97:6095723. [PMID: 33439980 DOI: 10.1093/femsec/fiab005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/11/2021] [Indexed: 11/12/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) play an important role in sulfur, iron and carbon cycling. The majority of studies have illustrated the role of SRB in biogeochemical cycling in pure cultures. In this study, we established three SRB enrichment cultures (designated HL, NB and WC) from different paddy soils and conducted a transcriptomic analysis of their metabolic characteristics under sulfate and sulfate-free conditions. In the HL cultures, there was no sulfate consumption but ferrihydrite was reduced. This indicated that bacteria in the HL samples can reduce ferrihydrite and preferentially utilize ferrihydrite as the electron acceptor in the absence of both ferrihydrite and sulfate. Sulfate consumption was equal in the NB and the WC cultures, although more ferrihydrite was reduced in the NB cultures. Transcriptomics analysis showed that (i) upregulation of O-acetylserine sulfhydrylase gene expression indicating sulfate assimilation in the WC samples; (ii) the energy conservation trithionate pathway is commonly employed by SRB and (iii) sulfate not only enhanced iron reduction by its conversion to sulfide but also promoted enzymatic electron transfer via c-type cytochromes.
Collapse
Affiliation(s)
- Guo-Xiang Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, P. R. China.,Ningbo Urban Environment Observation and Station, Chinese Academy of Sciences, Zhongke Road 88, Ningbo 315800, P. R. China.,Center for Applied Geosciences (ZAG), Eberhard Karls University Tuebingen, Hölderlinstr. 12, Tuebingen 72076, Germany
| | - Peng Bao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, P. R. China.,Ningbo Urban Environment Observation and Station, Chinese Academy of Sciences, Zhongke Road 88, Ningbo 315800, P. R. China
| |
Collapse
|
10
|
The Class A Carbapenemases BKC-1 and GPC-1 Both Originate from the Bacterial Genus Shinella. Antimicrob Agents Chemother 2020; 64:AAC.01263-20. [PMID: 32958716 PMCID: PMC7674036 DOI: 10.1128/aac.01263-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Comparative genomics identified the environmental bacterial genus Shinella as the most likely origin of the class A carbapenemases BKC-1 and GPC-1. Available sequences and PCR analyses of additional Shinella species revealed homologous β-lactamases showing up to 85.4% and 93.3% amino acid identity to both enzymes, respectively. The genes conferred resistance to β-lactams once expressed in Escherichia coli. blaBKC-1 likely evolved from a putative ancestral Shinella gene with higher homology through duplication of a gene fragment. Comparative genomics identified the environmental bacterial genus Shinella as the most likely origin of the class A carbapenemases BKC-1 and GPC-1. Available sequences and PCR analyses of additional Shinella species revealed homologous β-lactamases showing up to 85.4% and 93.3% amino acid identity to both enzymes, respectively. The genes conferred resistance to β-lactams once expressed in Escherichia coli. blaBKC-1 likely evolved from a putative ancestral Shinella gene with higher homology through duplication of a gene fragment.
Collapse
|
11
|
Alok D, Annapragada H, Singh S, Murugesan S, Singh NP. Symbiotic nitrogen fixation and endophytic bacterial community structure in Bt-transgenic chickpea (Cicer arietinum L). Sci Rep 2020; 10:5453. [PMID: 32214159 PMCID: PMC7096491 DOI: 10.1038/s41598-020-62199-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/10/2020] [Indexed: 01/11/2023] Open
Abstract
Symbiotic nitrogen fixation (SNF) of transgenic grain legumes might be influenced either by the site of transgene integration into the host genome or due to constitutive expression of transgenes and antibiotic-resistant marker genes. The present investigation confirmed proper nodulation of five tested Bt-chickpea events (IPCa2, IPCa4, IPCT3, IPCT10, and IPCT13) by native Mesorhizobium under field environment. Quantitative variations for nodulation traits among Bt-chickpea were determined and IPCT3 was found superior for nodule number and nodule biomass. Diversity, as well as richness indices, confirmed the changes in bacterial community structure of root and root-nodules from Bt-chickpea events IPCa2 and IPCT10. Especially, Gram-positive bacteria belonging to Firmicutes and Actinobacteria were selectively eliminated from root colonization of IPCa2. Richness indices (CHAO1 and ACE) of the root-associated bacterial community of IPCa2 was 13-14 times lesser than that of parent cv DCP92-3. Root nodule associated bacterial community of IPCT10 was unique with high diversity and richness, similar to the roots of non-Bt and Bt-chickpea. It indicated that the root nodules of IPCT10 might have lost their peculiar characteristics and recorded poor colonization of Mesorhizobium with a low relative abundance of 0.27. The impact of Bt-transgene on bacterial community structure and nodulation traits should be analyzed across the years and locations to understand and stabilize symbiotic efficiency for ecosystem sustainability.
Collapse
Affiliation(s)
- Das Alok
- Division of Plant Biotechnology, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| | - Harika Annapragada
- Division of Basic Sciences, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| | - Shilpa Singh
- Division of Basic Sciences, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| | - Senthilkumar Murugesan
- Division of Basic Sciences, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India.
| | - Narendra Pratap Singh
- Division of Plant Biotechnology, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| |
Collapse
|
12
|
Iyer B, Rajkumar S. Genome sequence and comparative genomics of Rhizobium sp. Td3, a novel plant growth promoting phosphate solubilizing Cajanus cajan symbiont. Microbiol Res 2019; 218:32-40. [PMID: 30454656 DOI: 10.1016/j.micres.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/21/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022]
Abstract
Rhizobium sp. Td3 is a Sesbania plant growth promoting, Cajanus cajan nodulating rhizobia. Studying its whole genome was important as it is a potent phosphate solubilizer with constitutive gluconic acid production ability through operation of the periplasmic glucose oxidation pathway even under conditions of catabolite repression. This is in contrast to the other explored phosphate solubilizers. Rhizobial isolates sequenced so far are known to lack components of the direct glucose oxidation pathway and cannot produce gluconic acid on its own. Here, we present the genome sequence of Rhizobium sp. Td3. Genome comprises of a single chromosome of size 5,606,547 bp (5.6 Mb) with no symbiotic plasmid. Rhizobium leguminosarum bv. viciae USDA2370 was the closest whole genome known. 109 genes responsible for diverse plant growth promoting activities like P solubilization, synthesis of acetoin, nitric oxide, indole-3 acetic acid, exopolysaccharide, siderophore and trehalose have been identified. Flagellar proteins, genes encoding antibiotic and metal resistance, enzymes required for combating oxidative stress as well as attachment and colonization in the plant rhizosphere are also present. Availability of genome sequence of such a versatile plant growth promoting agent will help in exploiting all the phyto-beneficial traits of Td3 for its use as a biofertilizer.
Collapse
Affiliation(s)
- Bhagya Iyer
- Institute of Science, Nirma University, Ahmedabad, 382 481, Gujarat, India
| | - Shalini Rajkumar
- Institute of Science, Nirma University, Ahmedabad, 382 481, Gujarat, India.
| |
Collapse
|
13
|
Mu Y, Jia WB, Ke Z, Zhuang W, Wang HM, Jiang JD, Chen K, Chen Q. Shinella pollutisoli sp. nov., isolated from tetrabromobisphenol A-contaminated soil. Int J Syst Evol Microbiol 2018; 68:2602-2606. [PMID: 29949500 DOI: 10.1099/ijsem.0.002883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain AH-1T, a Gram-negative, aerobic, non-spore-forming, motile, rod-shaped bacterium, was isolated from tetrabromobisphenol A-contaminated soil in China. The taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AH-1T was a member of the genus Shinella and showed the highest sequence similarity to Shinella fusca DC-196T (97.7 %), Shinella granuli Ch06T (97.3 %), Shinella daejeonensis MJ02T (97.1 %) and Shinella yambaruensis MS4T (96.8 %), and lower (<96.7 %) sequence similarity to other known Shinella species. Chemotaxonomic analysis revealed that strain AH-1T possessed Q-10 as the major isoprenoid quinone; and summed feature 8 (C18 : 1ω6c/C18 : 1ω7c), C16 : 0, C12 : 0 aldehyde, C18 : 0, C19 : 0 cyclo ω8c and C18 : 0 3-OH were the predominant fatty acids. Strain AH-1T showed low DNA-DNA relatedness to S. fusca DC-196T (28.6±5.7 %), S. granuli Ch06T (43.7±3.8 %) and S. daejeonensis MJ02T (48.1±2.6 %). The DNA G+C content was 68.2 mol%. Based on the phylogenetic and phenotypic characteristics, chemotaxonomic data and DNA-DNA hybridization, strain AH-1T is considered a novel species of the genus Shinella, for which the name Shinella pollutisoli sp. nov. (type strain AH-1T=KCTC 52677T=CCTCC AB 2017242T) is proposed.
Collapse
Affiliation(s)
- Yang Mu
- 1Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei-Bin Jia
- 1Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhuang Ke
- 1Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Zhuang
- 2College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, Shandong 277160, PR China
| | - Hong-Mei Wang
- 3College of Life Sciences, Zaozhuang University, Zaozhuang 277160, PR China
| | - Jian-Dong Jiang
- 1Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kai Chen
- 1Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.,4Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qing Chen
- 3College of Life Sciences, Zaozhuang University, Zaozhuang 277160, PR China
| |
Collapse
|
14
|
Mahdhi M, Houidheg N, Mahmoudi N, Msaadek A, Rejili M, Mars M. Characterization of Rhizobial Bacteria Nodulating Astragalus corrugatus and Hippocrepis areolata in Tunisian Arid Soils. Pol J Microbiol 2018; 65:331-339. [PMID: 29334057 DOI: 10.5604/17331331.1215612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fifty seven bacterial isolates from root nodules of two spontaneous legumes (Astragalus corrugatus and Hippocrepis areolata) growing in the arid areas of Tunisia were characterized by phenotypic features, 16S rDNA PCR-RFLP and 16S rRNA gene sequencing. Phenotypically, our results indicate that A. corrugatus and H. areolata isolates showed heterogenic responses to the different phenotypic features. All isolates were acid producers, fast growers and all of them used different compounds as sole carbon and nitrogen source. The majority of isolate grew at pHs between 6 and 9, at temperatures up to 40°C and tolerated 3% NaCl concentrations. Phylogenetically, the new isolates were affiliated to four genera Sinorhizobium, Rhizobium, Mesorhizobium and Agrobacterium. About 73% of the isolates were species within the genera Sinorhizobium and Rhizobium. The isolates which failed to nodulate their host plants of origin were associated to Agrobacterium genus (three isolates).
Collapse
Affiliation(s)
- Mosbah Mahdhi
- Center for Environmental Research and Studies, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Nadia Houidheg
- Research Unit Biodiversity and Valorization of Arid Areas, Bioressources (BVBAA), Faculty of Sciences, Gabès University, Erriadh-Zrig, Gabès, Tunisia
| | - Neji Mahmoudi
- Research Unit Biodiversity and Valorization of Arid Areas, Bioressources (BVBAA), Faculty of Sciences, Gabès University, Erriadh-Zrig, Gabès, Tunisia
| | - Abdelhakim Msaadek
- Research Unit Biodiversity and Valorization of Arid Areas, Bioressources (BVBAA), Faculty of Sciences, Gabès University, Erriadh-Zrig, Gabès, Tunisia
| | - Mokhtar Rejili
- Research Unit Biodiversity and Valorization of Arid Areas, Bioressources (BVBAA), Faculty of Sciences, Gabès University, Erriadh-Zrig, Gabès, Tunisia
| | - Mohamed Mars
- Research Unit Biodiversity and Valorization of Arid Areas, Bioressources (BVBAA), Faculty of Sciences, Gabès University, Erriadh-Zrig, Gabès, Tunisia
| |
Collapse
|
15
|
Tong W, Li X, Huo Y, Zhang L, Cao Y, Wang E, Chen W, Tao S, Wei G. Genomic insight into the taxonomy of Rhizobium genospecies that nodulate Phaseolus vulgaris. Syst Appl Microbiol 2018; 41:300-310. [PMID: 29576402 DOI: 10.1016/j.syapm.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
Due to the wide cultivation of bean (Phaseolus vulgaris L.), rhizobia associated with this plant have been isolated from many different geographical regions. In order to investigate the species diversity of bean rhizobia, comparative genome sequence analysis was performed in the present study for 69 Rhizobium strains mainly isolated from root nodules of bean and clover (Trifolium spp.). Based on genome average nucleotide identity, digital DNA:DNA hybridization, and phylogenetic analysis of 1,458 single-copy core genes, these strains were classified into 28 clusters, consistent with their species definition based on multilocus sequence analysis (MLSA) of atpD, glnII, and recA. The bean rhizobia were found in 16 defined species and nine putative novel species; in addition, 35 strains previously described as Rhizobium etli, Rhizobium phaseoli, Rhizobium vallis, Rhizobium gallicum, Rhizobium leguminosarum and Rhizobium spp. should be renamed. The phylogenetic patterns of symbiotic genes nodC and nifH were highly host-specific and inconsistent with the genomic phylogeny. Multiple symbiovars (sv.) within the Rhizobium species were found as a common feature: sv. phaseoli, sv. trifolii and sv. viciae in Rhizobium anhuiense; sv. phaseoli and sv. mimosae in Rhizobium sophoriradicis/R. etli/Rhizobium sp. III; sv. phaseoli and sv. trifolii in Rhizobium hidalgonense/Rhizobium acidisoli; sv. phaseoli and sv. viciae in R. leguminosarum/Rhizobium sp. IX; sv. trifolii and sv. viciae in Rhizobium laguerreae. Thus, genomic comparison revealed great species diversity in bean rhizobia, corrected the species definition of some previously misnamed strains, and demonstrated the MLSA a valuable and simple method for defining Rhizobium species.
Collapse
Affiliation(s)
- Wenjun Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangchen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunyun Huo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., Mexico
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Molecular and phenotypic characterization of endophytic bacteria isolated from sulla nodules. Microb Pathog 2017; 111:225-231. [DOI: 10.1016/j.micpath.2017.08.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/18/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022]
|
17
|
Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea ( Cicer arietinum L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Permanent Draft Genome Sequence of Rhizobium sp. Strain LCM 4573, a Salt-Tolerant, Nitrogen-Fixing Bacterium Isolated from Senegalese Soils. GENOME ANNOUNCEMENTS 2017; 5:5/18/e00285-17. [PMID: 28473386 PMCID: PMC5477193 DOI: 10.1128/genomea.00285-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The genus Rhizobium contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 5.5-Mb draft genome sequence of the salt-tolerant Rhizobium sp. strain LCM 4573, which has a G+C content of 61.2% and 5,356 candidate protein-encoding genes.
Collapse
|
19
|
Shamseldin A, Abdelkhalek A, Sadowsky MJ. Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis 2016. [DOI: 10.1007/s13199-016-0462-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Qiu J, Yang Y, Zhang J, Wang H, Ma Y, He J, Lu Z. The Complete Genome Sequence of the Nicotine-Degrading Bacterium Shinella sp. HZN7. Front Microbiol 2016; 7:1348. [PMID: 27625640 PMCID: PMC5003870 DOI: 10.3389/fmicb.2016.01348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/16/2016] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Youjian Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Junjie Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Haixia Wang
- Department of Microbiology, College of Life Sciences, Zhejiang University Hangzhou, China
| | - Yun Ma
- Department of Environmental Science, College of Environment, Zhejiang University of Technology Hangzhou, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Zhenmei Lu
- Department of Microbiology, College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
21
|
Subhash Y, Lee SS. Shinella curvata sp. nov., isolated from hydrocarbon-contaminated desert sands. Int J Syst Evol Microbiol 2016; 66:3929-3934. [PMID: 27393556 DOI: 10.1099/ijsem.0.001290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of a novel bacterial strain, designated C3T, isolated from hydrocarbon-contaminated desert sands was determined. Strain C3T was a Gram-stain-negative, rod- to curved-rod-shaped and non-motile bacterium. It was able to grow at 4-45 °C (optima, 28- 35 °C) and at pH 6.1-8.8 (optima, 6.9-7.7). No added NaCl was required for growth of strain C3T and it tolerated up to 3.5 % (w/v) NaCl with optimal growth with 0.5-1.5 %. Catalase and oxidase were positive. C18 : 1ω6c/C18 : 1ω7c, C16 : 0, C12 : 0 aldehyde, C14 : 0 3-OH/iso-C16 : 0 I and C18 : 1ω7c 11-methyl were predominant fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine were major polar lipids. The genomic DNA G+C content was 65.4 mol%. 16S rRNA gene sequence comparisons indicated that strain C3T represents a member of the genus Shinella within the family Rhizobiaceae of the class Alphaproteobacteria. Strain C3Tshowed a 16S rRNA gene sequence similarity of 98.39 % with Shinella kummerowiae CCBAU 25048T, 98.37 % with Shinella granuli Ch06T, 98.17 % with Shinella zoogloeoides I-16-MT, 97.74 % with Shinella fusca DC-196T, 97.46 % with Shinella yambaruensis MS4T and <96.68 % with other members of the family Rhizobiaceae. DNA-DNA hybridization values between strain C3T and the type strains of the nearest species were clearly below the 70 % threshold for species delineation. Distinct morphological, physiological and genotypic differences from previously described taxa support the classification of strain C3T as a representative of a novel species in the genus Shinella, for which the name Shinella curvata sp. nov. is proposed. The type strain is C3T (=KEMB 2255-446T=JCM 31239T).
Collapse
Affiliation(s)
- Y Subhash
- Department of Life Science, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-Do 16227, Republic of Korea
| | - Sang-Seob Lee
- Department of Life Science, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-Do 16227, Republic of Korea
| |
Collapse
|
22
|
Dhole A, Shelat H, Vyas R, Jhala Y, Bhange M. Endophytic occupation of legume root nodules by nifH-positive non-rhizobial bacteria, and their efficacy in the groundnut (Arachis hypogaea). ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1227-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Ye J, Zhang R, Nielsen S, Joseph SD, Huang D, Thomas T. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties. Front Microbiol 2016; 7:372. [PMID: 27092104 PMCID: PMC4824760 DOI: 10.3389/fmicb.2016.00372] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Abstract
Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.
Collapse
Affiliation(s)
- Jun Ye
- Centre for Marine Bio-Innovation & School of Biotechnology and Biomolecular Sciences, The University of New South WalesSydney, NSW, Australia
| | - Rui Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation & School of Biotechnology and Biomolecular Sciences, The University of New South WalesSydney, NSW, Australia
| | - Stephen D. Joseph
- School of Materials Science and Engineering, The University of New South WalesSydney, NSW, Australia
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Torsten Thomas
- Centre for Marine Bio-Innovation & School of Biotechnology and Biomolecular Sciences, The University of New South WalesSydney, NSW, Australia
| |
Collapse
|
24
|
Aliliche K, Beghalem H, Landoulsi A, Chriki A. Molecular phylogenetic analysis of Rhizobium sullae isolated from Algerian Hedysarum flexuosum. Antonie van Leeuwenhoek 2016; 109:897-906. [PMID: 27034287 DOI: 10.1007/s10482-016-0688-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/21/2016] [Indexed: 11/28/2022]
Abstract
Isolates from root nodules of Hedysarum flexuosum, sampled from north region of Algeria, were analyzed on the basis of their phenotypic and molecular characteristics. They were tested for their tolerance to NaCl, pH, temperatures, antibiotics and heavy metals resistance. Interestingly, the isolate Hf_04N appeared resistant to ZnCl2 (50 μg/mL) and grew at high saline concentration up to 9 %. The phylogenetic positions of five isolates were studied by comparative sequence analysis of 16S rRNA, recA, nifH and nodD genes. There were grouped close to the Rhizobium sullae type strain in relation to their 16S rRNA, recA and nifH genes-based phylogenies. By contrast, the tree of nodD gene was not congruent with ribosomal, housekeeping and nitrogen fixation genes. We suggest that our strains have a novel nodD gene. The detection of conserved domains of NodD protein and nitrogenase reductase enzyme, confirm their ability to nodulate and fix nitrogen.
Collapse
Affiliation(s)
- Khadidja Aliliche
- Laboratory of Genetics, Faculty of Sciences of Bizerte, 7021, Zarzouna, Tunisia.
| | - Hamida Beghalem
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Carthage University, 7021, Zarzouna, Tunisia
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Carthage University, 7021, Zarzouna, Tunisia
| | - Ali Chriki
- Laboratory of Genetics, Faculty of Sciences of Bizerte, 7021, Zarzouna, Tunisia
| |
Collapse
|
25
|
Poehlein A, Freese H, Daniel R, Simeonova DD. Genome sequence of Shinella sp. strain DD12, isolated from homogenized guts of starved Daphnia magna. Stand Genomic Sci 2016; 11:14. [PMID: 26865909 PMCID: PMC4748535 DOI: 10.1186/s40793-015-0129-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/30/2015] [Indexed: 11/10/2022] Open
Abstract
Shinella sp. strain DD12, a novel phosphite assimilating bacterium, has been isolated from homogenized guts of 4 days starved zooplankton Daphnia magna. Here we report the draft genome of this bacterium, which comprises 7,677,812 bp and 7505 predicted protein-coding genes.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Heike Freese
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 38124 Braunschweig, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Diliana D Simeonova
- Laboratory of Microbial Ecology, University of Konstanz, D-78457 Constance, Germany ; Current Address: Laboratory of Microbial Biochemistry, Department of General Microbiology, Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev str., 1113 Sofia, Bulgaria
| |
Collapse
|
26
|
Graham LE, Knack JJ, Piotrowski MJ, Wilcox LW, Cook ME, Wellman CH, Taylor W, Lewis LA, Arancibia-Avila P. Lacustrine Nostoc (Nostocales) and associated microbiome generate a new type of modern clotted microbialite. JOURNAL OF PHYCOLOGY 2014; 50:280-291. [PMID: 26988185 DOI: 10.1111/jpy.12152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/24/2013] [Indexed: 06/05/2023]
Abstract
Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet & Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy-dispersive X-ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included >50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites.
Collapse
Affiliation(s)
- Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, 53606, USA
| | - Jennifer J Knack
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, 53606, USA
| | - Michael J Piotrowski
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, 53606, USA
| | - Lee W Wilcox
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, 53606, USA
| | - Martha E Cook
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, USA
| | - Charles H Wellman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Wilson Taylor
- Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | | |
Collapse
|
27
|
Degefu T, Wolde-meskel E, Frostegård Å. Phylogenetic diversity of Rhizobium strains nodulating diverse legume species growing in Ethiopia. Syst Appl Microbiol 2013; 36:272-80. [PMID: 23643092 DOI: 10.1016/j.syapm.2013.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/16/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
The taxonomic diversity of thirty-seven Rhizobium strains, isolated from nodules of leguminous trees and herbs growing in Ethiopia, was studied using multilocus sequence analyses (MLSA) of six core and two symbiosis-related genes. Phylogenetic analysis based on the 16S rRNA gene grouped them into five clusters related to nine Rhizobium reference species (99-100% sequence similarity). In addition, two test strains occupied their own independent branches on the phylogenetic tree (AC86a2 along with R. tibeticum; 99.1% similarity and AC100b along with R. multihospitium; 99.5% similarity). One strain from Milletia ferruginea was closely related (>99%) to the genus Shinella, further corroborating earlier findings that nitrogen-fixing bacteria are distributed among phylogenetically unrelated taxa. Sequence analyses of five housekeeping genes also separated the strains into five well-supported clusters, three of which grouped with previously studied Ethiopian common bean rhizobia. Three of the five clusters could potentially be described into new species. Based on the nifH genes, most of the test strains from crop legumes were closely related to several strains of Ethiopian common bean rhizobia and other symbionts of bean plants (R. etli and R. gallicum sv. phaseoli). The grouping of the test strains based on the symbiosis-related genes was not in agreement with the housekeeping genes, signifying differences in their evolutionary history. Our earlier studies revealing a large diversity of Mesorhizobium and Ensifer microsymbionts isolated from Ethiopian legumes, together with the results from the present analysis of Rhizobium strains, suggest that this region might be a potential hotspot for rhizobial biodiversity.
Collapse
Affiliation(s)
- Tulu Degefu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | | | | |
Collapse
|
28
|
Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World J Microbiol Biotechnol 2013; 29:1099-106. [PMID: 23397108 DOI: 10.1007/s11274-013-1278-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
A collection of 104 isolates from root-nodules of Vicia faba was submitted to 16S rRNA PCR-RFLP typing. A representative sample was further submitted to sequence analysis of 16S rRNA. Isolates were assigned to 12 genera. All the nodulating isolates (45 %) were closely related to Rhizobium leguminosarum USDA2370(T) (99.34 %). The remaining isolates, including potential human pathogens, failed to nodulate their original host. They were checked for presence of symbiotic genes, P-solubilization, phytohormone and siderophore production, and then tested for their growth promoting abilities. Results indicated that 9 strains could induce significant increase (41-71 %) in shoot dry yield of faba bean. A Pseudomonas strain was further assessed in on-farm trial in combination with a selected rhizobial strain. This work indicated that nodule-associated bacteria could be a valuable pool for selection of effective plant growth promoting isolates. Nevertheless, the possible involvement of nodules in increasing risks related to pathogenic bacteria should not be neglected and needs to be investigated further.
Collapse
|
29
|
Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012; 62:2579-2588. [DOI: 10.1099/ijs.0.035097-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from nitrogen-fixing nodules of the native legumes Listia angolensis (from Zambia) and Lupinus texensis (from Texas, USA). Phylogenetic analysis of the 16S rRNA gene showed that the novel strains belong to the genus
Microvirga
, with ≥96.1 % sequence similarity with type strains of this genus. The closest relative of the representative strains Lut6T and WSM3557T was
Microvirga flocculans
TFBT, with 97.6–98.0 % similarity, while WSM3693T was most closely related to
Microvirga aerilata
5420S-16T, with 98.8 % similarity. Analysis of the concatenated sequences of four housekeeping gene loci (dnaK, gyrB, recA and rpoB) and cellular fatty acid profiles confirmed the placement of Lut6T, WSM3557T and WSM3693T within the genus
Microvirga
. DNA–DNA relatedness values, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of Lut6T, WSM3557T and WSM3693T from each other and from other
Microvirga
species with validly published names. The nodA sequence of Lut6T was placed in a clade that contained strains of
Rhizobium
,
Mesorhizobium
and
Sinorhizobium
, while the 100 % identical nodA sequences of WSM3557T and WSM3693T clustered with
Bradyrhizobium
,
Burkholderia
and
Methylobacterium
strains. Concatenated sequences for nifD and nifH show that the sequences of Lut6T, WSM3557T and WSM3693T were most closely related to that of
Rhizobium etli
CFN42T
nifDH. On the basis of genotypic, phenotypic and DNA relatedness data, three novel species of
Microvirga
are proposed: Microvirga lupini sp. nov. (type strain Lut6T = LMG 26460T = HAMBI 3236T), Microvirga lotononidis sp. nov. (type strain WSM3557T = LMG 26455T = HAMBI 3237T) and Microvirga zambiensis sp. nov. (type strain WSM3693T = LMG 26454T = HAMBI 3238T).
Collapse
Affiliation(s)
- Julie K. Ardley
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Matthew A. Parker
- Department of Biological Sciences, State University of New York, Binghamton, 4400 Vestal Parkway, Vestal, NY 13850, USA
| | - Sofie E. De Meyer
- Microbiology Laboratory, University of Gent, Sint-Pietersnieuwstraat 25, B-9000 Ghent, Belgium
| | - Robert D. Trengove
- Separation Science and Metabolomics Laboratory, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Graham W. O’Hara
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Wayne G. Reeve
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Ron J. Yates
- Department of Agriculture Western Australia, 3 Baron Hay Court, South Perth, WA 6151, Australia
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Michael J. Dilworth
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Anne Willems
- Microbiology Laboratory, University of Gent, Sint-Pietersnieuwstraat 25, B-9000 Ghent, Belgium
| | - John G. Howieson
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
30
|
Rhizobium cauense sp. nov., isolated from root nodules of the herbaceous legume Kummerowia stipulacea grown in campus lawn soil. Syst Appl Microbiol 2012; 35:415-20. [DOI: 10.1016/j.syapm.2012.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/28/2012] [Accepted: 08/10/2012] [Indexed: 11/19/2022]
|
31
|
Saïdi S, Mnasri B, Mhamdi R. Diversity of nodule-endophytic agrobacteria-like strains associated with different grain legumes in Tunisia. Syst Appl Microbiol 2011; 34:524-30. [DOI: 10.1016/j.syapm.2011.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/03/2010] [Accepted: 01/03/2011] [Indexed: 11/30/2022]
|
32
|
Lee M, Woo SG, Ten LN. Shinella daejeonensis sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. Int J Syst Evol Microbiol 2011; 61:2123-2128. [DOI: 10.1099/ijs.0.026435-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative-staining, motile, rod-shaped, aerobic bacterial strain, designated MJ02T, was isolated from sludge of a leachate treatment plant in Daejeon (South Korea) and was characterized to determine its taxonomic position by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ02T belonged to the family Rhizobiaceae, class Alphaproteobacteria, and was most closely related to Shinella yambaruensis MS4T (97.6 % sequence similarity) and Shinella fusca DC-196T (97.5 %). The G+C content of the genomic DNA of strain MJ02T was 64.3 mol%. The detection of a quinone system with ubiquinone Q-10 as the predominant respiratory lipoquinone and a fatty acid profile with C18 : 1ω7c (45.8 %) and C16 : 0 (21.8 %) as the major components supported the affiliation of strain MJ02T to the genus Shinella. However, strain MJ02T exhibited relatively low levels of DNA–DNA relatedness with respect to S. fusca DSM 21319T (17±7 %) and S. yambaruensis KACC 14483T (12±6 %), showing clearly that the isolate constituted a new genospecies. Strain MJ02T could be clearly differentiated from its phylogenetic neighbours on the basis of several phenotypic, genotypic and chemotaxonomic features. Therefore, strain MJ02T is considered to represent a novel species of the genus Shinella, for which the name Shinella daejeonensis sp. nov. is proposed. The type strain is MJ02T ( = KCTC 22450T = JCM 16236T).
Collapse
Affiliation(s)
- Myungjin Lee
- Research and Development Division, H-Plus Eco Ltd, BVC 301, KRIBB, Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Sung-Geun Woo
- School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea
- Research and Development Division, H-Plus Eco Ltd, BVC 301, KRIBB, Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Leonid N. Ten
- Research and Development Division, H-Plus Eco Ltd, BVC 301, KRIBB, Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
| |
Collapse
|
33
|
Genetic diversity of root nodule bacteria nodulating Lotus corniculatus and Anthyllis vulneraria in Sweden. Syst Appl Microbiol 2011; 34:267-75. [DOI: 10.1016/j.syapm.2011.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 11/24/2022]
|
34
|
Ferreira L, Sánchez-Juanes F, García-Fraile P, Rivas R, Mateos PF, Martínez-Molina E, González-Buitrago JM, Velázquez E. MALDI-TOF mass spectrometry is a fast and reliable platform for identification and ecological studies of species from family Rhizobiaceae. PLoS One 2011; 6:e20223. [PMID: 21655291 PMCID: PMC3105015 DOI: 10.1371/journal.pone.0020223] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/21/2011] [Indexed: 11/19/2022] Open
Abstract
Family Rhizobiaceae includes fast growing bacteria currently arranged into three genera, Rhizobium, Ensifer and Shinella, that contain pathogenic, symbiotic and saprophytic species. The identification of these species is not possible on the basis of physiological or biochemical traits and should be based on sequencing of several genes. Therefore alternative methods are necessary for rapid and reliable identification of members from family Rhizobiaceae. In this work we evaluated the suitability of Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for this purpose. Firstly, we evaluated the capability of this methodology to differentiate among species of family Rhizobiaceae including those closely related and then we extended the database of MALDI Biotyper 2.0 including the type strains of 56 species from genera Rhizobium, Ensifer and Shinella. Secondly, we evaluated the identification potential of this methodology by using several strains isolated from different sources previously identified on the basis of their rrs, recA and atpD gene sequences. The 100% of these strains were correctly identified showing that MALDI-TOF MS is an excellent tool for identification of fast growing rhizobia applicable to large populations of isolates in ecological and taxonomic studies.
Collapse
Affiliation(s)
- Laura Ferreira
- Unidad de Investigación, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Pedro F. Mateos
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | - José Manuel González-Buitrago
- Unidad de Investigación, Hospital Universitario de Salamanca, Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
35
|
Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA. A holistic view of nitrogen acquisition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1455-66. [PMID: 21239377 PMCID: PMC3137434 DOI: 10.1093/jxb/erq425] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) is the mineral nutrient required in the greatest amount and its availability is a major factor limiting growth and development of plants. As sessile organisms, plants have evolved different strategies to adapt to changes in the availability and distribution of N in soils. These strategies include mechanisms that act at different levels of biological organization from the molecular to the ecosystem level. At the molecular level, plants can adjust their capacity to acquire different forms of N in a range of concentrations by modulating the expression and function of genes in different N uptake systems. Modulation of plant growth and development, most notably changes in the root system architecture, can also greatly impact plant N acquisition in the soil. At the organism and ecosystem levels, plants establish associations with diverse microorganisms to ensure adequate nutrition and N supply. These different adaptive mechanisms have been traditionally discussed separately in the literature. To understand plant N nutrition in the environment, an integrated view of all pathways contributing to plant N acquisition is required. Towards this goal, in this review the different mechanisms that plants utilize to maintain an adequate N supply are summarized and integrated.
Collapse
Affiliation(s)
- Tatiana Kraiser
- Center for Genome Regulation, Millennium Nucleus for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Diana E. Gras
- Center for Genome Regulation, Millennium Nucleus for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Alvaro G. Gutiérrez
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research – UFZ Permoser str. 15, 04318 Leipzig, Germany
| | - Bernardo González
- Facultad de Ingeniería y Ciencia, Universidad Adolfo Ibáñez, Santiago 7941169, Chile
| | - Rodrigo A. Gutiérrez
- Center for Genome Regulation, Millennium Nucleus for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|
36
|
López-López A, Rosenblueth M, Martínez J, Martínez-Romero E. Rhizobial Symbioses in Tropical Legumes and Non-Legumes. SOIL BIOLOGY 2010. [DOI: 10.1007/978-3-642-05076-3_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Vaz-Moreira I, Faria C, Lopes AR, Svensson LA, Moore ERB, Nunes OC, Manaia CM. Shinella fusca sp. nov., isolated from domestic waste compost. Int J Syst Evol Microbiol 2009; 60:144-148. [PMID: 19648331 DOI: 10.1099/ijs.0.009498-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterium, designated strain DC-196(T), isolated from kitchen refuse compost was analysed by using a polyphasic approach. Strain DC-196(T) was characterized as a Gram-negative short rod that was catalase- and oxidase-positive, and able to grow at 10-40 degrees C, pH 6-9 and in NaCl concentrations as high as 3 %. Chemotaxonomically, C(18 : 1) was observed to be the predominant cellular fatty acid and ubiquinone 10 (Q10) was the predominant respiratory quinone. The G+C content of the genomic DNA was determined to be 66 mol%. On the basis of the genotypic, phenotypic and chemotaxonomic characteristics, strain DC-196(T) was assigned to the genus Shinella, although with distinctive features. At the time of writing, 16S rRNA gene sequence similarities of 97.6-96.8 % and the low DNA-DNA hybridization values of 38.2-32.2 % with the type strains of the three recognized Shinella species confirmed that strain DC-196(T) represents a novel species of the genus, for which the name Shinella fusca sp. nov. is proposed (type strain DC-196(T)=CCUG 55808(T)=LMG 24714(T)).
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- LEPAE - Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal.,Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-072 Porto, Portugal
| | - Cátia Faria
- LEPAE - Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Ana R Lopes
- LEPAE - Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Liselott A Svensson
- CCUG-Culture Collection University Göteborg, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, S-41346 Göteborg, Sweden
| | - Edward R B Moore
- CCUG-Culture Collection University Göteborg, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, S-41346 Göteborg, Sweden
| | - Olga C Nunes
- LEPAE - Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Célia M Manaia
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-072 Porto, Portugal
| |
Collapse
|
38
|
Lin DX, Chen WF, Wang FQ, Hu D, Wang ET, Sui XH, Chen WX. Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol 2009; 59:1919-23. [DOI: 10.1099/ijs.0.006387-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Lei X, Wang ET, Chen WF, Sui XH, Chen WX. Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol 2008; 190:657-71. [DOI: 10.1007/s00203-008-0418-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 11/24/2022]
|