1
|
Tao X, Ouyang H, Zhou A, Wang D, Matlock H, Morgan JS, Ren AT, Mu D, Pan C, Zhu X, Han A, Zhou J. Polyethylene Degradation by a Rhodococcous Strain Isolated from Naturally Weathered Plastic Waste Enrichment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13901-13911. [PMID: 37682848 PMCID: PMC10515485 DOI: 10.1021/acs.est.3c03778] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Polyethylene (PE) is the most widely produced synthetic polymer and the most abundant plastic waste worldwide due to its recalcitrance to biodegradation and low recycle rate. Microbial degradation of PE has been reported, but the underlying mechanisms are poorly understood. Here, we isolated a Rhodococcus strain A34 from 609 day enriched cultures derived from naturally weathered plastic waste and identified the potential key PE degradation enzymes. After 30 days incubation with A34, 1% weight loss was achieved. Decreased PE molecular weight, appearance of C-O and C═O on PE, palmitic acid in the culture supernatant, and pits on the PE surface were observed. Proteomics analysis identified multiple key PE oxidation and depolymerization enzymes including one multicopper oxidase, one lipase, six esterase, and a few lipid transporters. Network analysis of proteomics data demonstrated the close relationships between PE degradation and metabolisms of phenylacetate, amino acids, secondary metabolites, and tricarboxylic acid cycles. The metabolic roadmap generated here provides critical insights for optimization of plastic degradation condition and assembly of artificial microbial communities for efficient plastic degradation.
Collapse
Affiliation(s)
- Xuanyu Tao
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Huanrong Ouyang
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Aifen Zhou
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Dongyu Wang
- Department
of Microbiology and Plant Biology, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Hagan Matlock
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Josiah S. Morgan
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Abigail T. Ren
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Dashuai Mu
- Marine
College, Shandong University, Weihai 264105, China
| | - Chongle Pan
- Department
of Microbiology and Plant Biology, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Xuejun Zhu
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arum Han
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Jizhong Zhou
- Institute
for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
2
|
Ma J, Zhuang Y, Wang Y, Zhu N, Wang T, Xiao H, Chen J. Update on new trend and progress of the mechanism of polycyclic aromatic hydrocarbon biodegradation by Rhodococcus, based on the new understanding of relevant theories: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93345-93362. [PMID: 37548784 DOI: 10.1007/s11356-023-28894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Rapid industrial and societal developments have led to substantial increases in the use and exploitation of petroleum, and petroleum hydrocarbon pollution has become a serious threat to human health and the environment. Polycyclic aromatic hydrocarbons (PAHs) are primary components of petroleum hydrocarbons. In recent years, microbial remediation of PAHs pollution has been regarded as the most promising and cost-effective treatment measure because of its low cost, robust efficacy, and lack of secondary pollution. Rhodococcus bacteria are regarded as one of main microorganisms that can effectively degrade PAHs because of their wide distribution, broad degradation spectrum, and network-like evolution of degradation gene clusters. In this review, we focus on the biological characteristics of Rhodococcus; current trends in PAHs degradation based on knowledge maps; and the cellular structural, biochemical, and enzymatic basis of degradation mechanisms, along with whole genome and transcriptional regulation. These research advances provide clues for the prospects of Rhodococcus-based applications in environmental protection.
Collapse
Affiliation(s)
- Jinglin Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yan Zhuang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ning Zhu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ting Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Hongbin Xiao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
3
|
Borsodi AK, Mucsi M, Krett G, Szabó A, Felföldi T, Szili-Kovács T. Variation in Sodic Soil Bacterial Communities Associated with Different Alkali Vegetation Types. Microorganisms 2021; 9:microorganisms9081673. [PMID: 34442752 PMCID: PMC8402138 DOI: 10.3390/microorganisms9081673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the effect of salinity and alkalinity on the metabolic potential and taxonomic composition of microbiota inhabiting the sodic soils in different plant communities. The soil samples were collected in the Pannonian steppe (Hungary, Central Europe) under extreme dry and wet weather conditions. The metabolic profiles of microorganisms were analyzed using the MicroResp method, the bacterial diversity was assessed by cultivation and next-generation amplicon sequencing based on the 16S rRNA gene. Catabolic profiles of microbial communities varied primarily according to the alkali vegetation types. Most members of the strain collection were identified as plant associated and halophilic/alkaliphilic species of Micrococcus, Nesterenkonia, Nocardiopsis, Streptomyces (Actinobacteria) and Bacillus, Paenibacillus (Firmicutes) genera. Based on the pyrosequencing data, the relative abundance of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes and Bacteroidetes also changed mainly with the sample types, indicating distinctions within the compositions of bacterial communities according to the sodic soil alkalinity-salinity gradient. The effect of weather extremes was the most pronounced in the relative abundance of the phyla Actinobacteria and Acidobacteria. The type of alkali vegetation caused greater shifts in both the diversity and activity of sodic soil microbial communities than the extreme aridity and moisture.
Collapse
Affiliation(s)
- Andrea K. Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary;
- Correspondence: (A.K.B.); (T.S.-K.); Tel.: +36-13812177 (A.K.B.); +36-309617452 (T.S.-K.)
| | - Márton Mucsi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
- Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary;
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary;
| | - Tibor Szili-Kovács
- Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó út 15, H-1022 Budapest, Hungary
- Correspondence: (A.K.B.); (T.S.-K.); Tel.: +36-13812177 (A.K.B.); +36-309617452 (T.S.-K.)
| |
Collapse
|
4
|
Nahar A, Baker AL, Nichols DS, Bowman JP, Britz ML. Benchmarking DNA Extraction Methods for Phylogenomic Analysis of Sub-Antarctic Rhodococcus and Williamsia Species. Microorganisms 2021; 9:microorganisms9061253. [PMID: 34207615 PMCID: PMC8227252 DOI: 10.3390/microorganisms9061253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
Bacteria containing mycolic acids in their cell envelope are often recalcitrant to cell lysis, so extracting DNA of sufficient quality for third-generation sequencing and high-fidelity genome assembly requires optimization, even when using commercial kits with protocols for hard-to-lyse bacteria. We benchmarked three spin-column-based kits against a classical DNA extraction method employing lysozyme, proteinase K and SDS for six lysozyme-resistant, sub-Antarctic strains of Corynebaceriales. Prior cultivation in broths containing glycine at highly growth-inhibitory concentrations (4.0–4.5%) improved cell lysis using both classical and kit methods. The classical method produced DNA with average fragment sizes of 27–59 Kbp and tight fragment size ranges, meeting quality standards for genome sequencing, assembly and phylogenomic analyses. By 16S rRNA gene sequencing, we classified two strains as Williamsia and four strains as Rhodococcus species. Pairwise comparison of average nucleotide identity (ANI) and alignment fraction (AF), plus genome clustering analysis, confirmed Rhodococcus sp. 1163 and 1168 and Williamsia sp. 1135 and 1138 as novel species. Phylogenetic, lipidomic and biochemical analyses classified psychrotrophic strains 1139 and 1159 as R. qingshengii and R. erythropolis, respectively, using ANI similarity of >98% and AF >60% for species delineation. On this basis, some members of the R. erythropolis genome cluster groups, including strains currently named as R. enclensis, R. baikonurensis, R. opacus and R. rhodochrous, would be reclassified either as R. erythropolis or R. qingshengii.
Collapse
Affiliation(s)
- Akhikun Nahar
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (A.L.B.); (J.P.B.)
- Correspondence: (A.N.); (M.L.B.)
| | - Anthony L. Baker
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (A.L.B.); (J.P.B.)
| | - David S. Nichols
- Central Science Laboratory, Division of Research, University of Tasmania, Hobart, TAS 7005, Australia;
| | - John P. Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (A.L.B.); (J.P.B.)
| | - Margaret L. Britz
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (A.L.B.); (J.P.B.)
- Correspondence: (A.N.); (M.L.B.)
| |
Collapse
|
5
|
Khilyas IV, Sorokina AV, Markelova MI, Belenikin M, Shafigullina L, Tukhbatova RI, Shagimardanova EI, Blom J, Sharipova MR, Cohen MF. Genomic and phenotypic analysis of siderophore-producing Rhodococcus qingshengii strain S10 isolated from an arid weathered serpentine rock environment. Arch Microbiol 2020; 203:855-860. [PMID: 33025059 DOI: 10.1007/s00203-020-02057-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/08/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
The success of members of the genus Rhodococcus in colonizing arid rocky environments is owed in part to desiccation tolerance and an ability to extract iron through the secretion and uptake of siderophores. Here, we report a comprehensive genomic and taxonomic analysis of Rhodococcus qingshengii strain S10 isolated from eathered serpentine rock at the arid Khalilovsky massif, Russia. Sequence comparisons of whole genomes and of selected marker genes clearly showed strain S10 to belong to the R. qingshengii species. Four prophage sequences within the R. qingshengii S10 genome were identified, one of which encodes for a putative siderophore-interacting protein. Among the ten non-ribosomal peptides synthase (NRPS) clusters identified in the strain S10 genome, two show high homology to those responsible for siderophore synthesis. Phenotypic analyses demonstrated that R. qingshengii S10 secretes siderophores and possesses adaptive features (tolerance of up to 8% NaCl and pH 9) that should enable survival in its native habitat within dry serpentine rock.
Collapse
Affiliation(s)
- Irina V Khilyas
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation.
| | - Alyona V Sorokina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Maria I Markelova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Maksim Belenikin
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Lilia Shafigullina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Rezeda I Tukhbatova
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Elena I Shagimardanova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Margarita R Sharipova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Michael F Cohen
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| |
Collapse
|
6
|
Lee SD, Kim IS, Kim YJ, Joung Y. Rhodococcus cavernicola sp. nov., isolated from a cave, and Rhodococcus degradans is a later heterosynonym of Rhodococcus qingshengii. Int J Syst Evol Microbiol 2020; 70:4409-4415. [PMID: 32538737 DOI: 10.1099/ijsem.0.004126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-reaction-positive, strictly aerobic, catalase-positive, oxidase-negative, non-motile actinobacterium, designated C1-24T, was isolated from a soil sample collected inside a natural cave. The organism exhibited a rod-coccus developmental cycle during its growth phase. Results of 16S rRNA gene-based phylogenetic analysis showed that the novel strain belonged to the genus Rhodococcus and formed a distinct sublineage at the base of the radiation including a Rhodococcus enclensis-Rhodococcus kroppenstedtii-Rhodococcus corynebacterioides-Rhodococcus trifoli cluster. In the results of phylogenomic analysis, the novel strain was loosely associated to Rhodococcus corynebacterioides. The closest relatives were Rhodococcus qingshengii (98.01 % 16S rRNA gene sequence similarity) and Rhodococcus degradans (98.01 %). The genome size was 5.66 Mbp and the DNA G+C content was 64.30 mol%. Whole-cell hydrolysates contained meso-diaminopimelic acid, arabinose and galactose as the diagnostic diamino acid and sugars. MK-8(H2) was the predominant menaquinone. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, an unidentified glycolipid and three unidentified phospholipids. Mycolic acids were present. The major fatty acids were C16 : 0, C18 : 1 ω9c, C16 : 1 ω7c and/or C16 : 1 ω6c and 10-methyl C18 : 0. Digital DNA-DNA hybridization and average nucleotide identity values revealed that the novel strain should be assigned to a different species. Based on the combined data obtained here, strain C1-24T (=KACC 19964T=DSM 109484T) represents a new species of the genus Rhodococcus, for which Rhodococcus cavernicola sp. nov. is proposed. Also, it is proposed that R. degradans is a later heterosynonym of R. qingshengii based on analyses of 16S rRNA gene and whole-genome sequences.
Collapse
Affiliation(s)
- Soon Dong Lee
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju 63243, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea
| | - Young-Ju Kim
- Ilseong Landscaping Co. Ltd., Jeju 63242, Republic of Korea
| | - Yochan Joung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| |
Collapse
|
7
|
Enyedi NT, Makk J, Kótai L, Berényi B, Klébert S, Sebestyén Z, Molnár Z, Borsodi AK, Leél-Őssy S, Demény A, Németh P. Cave bacteria-induced amorphous calcium carbonate formation. Sci Rep 2020; 10:8696. [PMID: 32457467 PMCID: PMC7251137 DOI: 10.1038/s41598-020-65667-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
Amorphous calcium carbonate (ACC) is a precursor of crystalline calcium carbonates that plays a key role in biomineralization and polymorph evolution. Here, we show that several bacterial strains isolated from a Hungarian cave produce ACC and their extracellular polymeric substance (EPS) shields ACC from crystallization. The findings demonstrate that bacteria-produced ACC forms in water-rich environment at room temperature and is stable for at least half year, which is in contrast to laboratory-produced ACC that needs to be stored in a desiccator and kept below 10 °C for avoiding crystallization. The ACC-shielding EPS consists of lipids, proteins, carbohydrates and nucleic acids. In particular, we identified large amount of long-chain fatty acid components. We suggest that ACC could be enclosed in a micella-like formula within the EPS that inhibits water infiltration. As the bacterial cells lyse, the covering protective layer disintegrates, water penetrates and the unprotected ACC grains crystallize to calcite. Our study indicates that bacteria are capable of producing ACC, and we estimate its quantity in comparison to calcite presumably varies up to 20% depending on the age of the colony. Since diverse bacterial communities colonize the surface of cave sediments in temperate zone, we presume that ACC is common in these caves and its occurrence is directly linked to bacterial activity and influences the geochemical signals recorded in speleothems.
Collapse
Affiliation(s)
- Nóra Tünde Enyedi
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Judit Makk
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - László Kótai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Deuton-X Ltd., Selmeci u. 89, H-2030, Érd, Hungary
| | - Bernadett Berényi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Szilvia Klébert
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Zoltán Sebestyén
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Zsombor Molnár
- Department of Earth and Environmental Sciences, University of Pannonia, Egyetem út 10, H-8200, Veszprém, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Szabolcs Leél-Őssy
- Department of Physical and Applied Geology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Attila Demény
- Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112, Budapest, Hungary
| | - Péter Németh
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
- Department of Earth and Environmental Sciences, University of Pannonia, Egyetem út 10, H-8200, Veszprém, Hungary.
| |
Collapse
|
8
|
|
9
|
Current taxonomy of Rhodococcus species and their role in infections. Eur J Clin Microbiol Infect Dis 2018; 37:2045-2062. [PMID: 30159693 DOI: 10.1007/s10096-018-3364-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Rhodococcus is a genus of obligate aerobic, Gram-positive, partially acid-fast, catalase-positive, non-motile, and none-endospore bacteria. The genus Rhodococcus was first introduced by Zopf. This bacterium can be isolated from various sources of the environment and can grow well in non-selective medium. A large number of phenotypic characterizations are used to compare different species of the genus Rhodococcus, and these tests are not suitable for accurate identification at the genus and species level. Among nucleic acid-based methods, the most powerful target gene for revealing reliable phylogenetic relationships is 16S ribosomal RNA gene (16S rRNA gene) sequence analysis, but this gene is unable to differentiation some of Rhodococcus species. To date, whole genome sequencing analysis has solved taxonomic complexities in this genus. Rhodococcus equi is the major cause of foal pneumonia, and its implication in human health is related to cases in immunocompromised patients. Macrolide family together with rifampicin is one of the most effective antibiotic agents for treatment rhodococcal infections.
Collapse
|
10
|
Mašlaňová I, Wertheimer Z, Sedláček I, Švec P, Indráková A, Kovařovic V, Schumann P, Spröer C, Králová S, Šedo O, Krištofová L, Vrbovská V, Füzik T, Petráš P, Zdráhal Z, Ružičková V, Doškař J, Pantuček R. Description and Comparative Genomics of Macrococcus caseolyticus subsp. hominis subsp. nov., Macrococcus goetzii sp. nov., Macrococcus epidermidis sp. nov., and Macrococcus bohemicus sp. nov., Novel Macrococci From Human Clinical Material With Virulence Potential and Suspected Uptake of Foreign DNA by Natural Transformation. Front Microbiol 2018; 9:1178. [PMID: 29951040 PMCID: PMC6008420 DOI: 10.3389/fmicb.2018.01178] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022] Open
Abstract
The genus Macrococcus is a close relative of the genus Staphylococcus. Whilst staphylococci are widespread as human pathogens, macrococci have not yet been reported from human clinical specimens. Here we investigated Gram-positive and catalase-positive cocci recovered from human clinical material and identified as Macrococcus sp. by a polyphasic taxonomic approach and by comparative genomics. Relevant phenotypic, genotypic and chemotaxonomic methods divided the analyzed strains into two separate clusters within the genus Macrococcus. Comparative genomics of four representative strains revealed enormous genome structural plasticity among the studied isolates. We hypothesize that high genomic variability is due to the presence of a com operon, which plays a key role in the natural transformation of bacilli and streptococci. The possible uptake of exogenous DNA by macrococci can contribute to a different mechanism of evolution from staphylococci, where phage-mediated horizontal gene transfer predominates. The described macrococcal genomes harbor novel plasmids, genomic islands and islets, as well as prophages. Capsule gene clusters, intracellular protease, and a fibronectin-binding protein enabling opportunistic pathogenesis were found in all four strains. Furthermore, the presence of a CRISPR-Cas system with 90 spacers in one of the sequenced genomes corresponds with the need to limit the burden of foreign DNA. The highly dynamic genomes could serve as a platform for the exchange of virulence and resistance factors, as was described for the methicillin resistance gene, which was found on the novel composite SCCmec-like element containing a unique mec gene complex that is considered to be one of the missing links in SCC evolution. The phenotypic, genotypic, chemotaxonomic and genomic results demonstrated that the analyzed strains represent one novel subspecies and three novel species of the genus Macrococcus, for which the names Macrococcus caseolyticus subsp. hominis subsp. nov. (type strain CCM 7927T = DSM 103682T), Macrococcus goetzii sp. nov. (type strain CCM 4927T = DSM 103683T), Macrococcus epidermidis sp. nov. (type strain CCM 7099T = DSM 103681T), and Macrococcus bohemicus sp. nov. (type strain CCM 7100T = DSM 103680T) are proposed. Moreover, a formal description of Macrococcus caseolyticus subsp. caseolyticus subsp. nov. and an emended description of the genus Macrococcus are provided.
Collapse
Affiliation(s)
- Ivana Mašlaňová
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Zuzana Wertheimer
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Ivo Sedláček
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Švec
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Adéla Indráková
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtěch Kovařovic
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Peter Schumann
- Leibniz Institute Deutsche Sammlung von Mikroorganismen und Zellkulturen—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute Deutsche Sammlung von Mikroorganismen und Zellkulturen—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stanislava Králová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lucie Krištofová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Veronika Vrbovská
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Prague, Czechia
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vladislava Ružičková
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jiří Doškař
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Roman Pantuček
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
11
|
Grillová L, Sedláček I, Páchníková G, Staňková E, Švec P, Holochová P, Micenková L, Bosák J, Slaninová I, Šmajs D. Characterization of four Escherichia albertii isolates collected from animals living in Antarctica and Patagonia. J Vet Med Sci 2017; 80:138-146. [PMID: 29249728 PMCID: PMC5797873 DOI: 10.1292/jvms.17-0492] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Escherichia albertii is a recently discovered species with a limited number of well characterized strains. The aim of this study was to characterize four of the E. albertii strains, which were among 41 identified Escherichia strains isolated from the feces of living animals on James Ross Island, Antarctica, and Isla Magdalena, Patagonia. Sequencing of 16S rDNA, automated ribotyping, and rep-PCR were used to identify the four E. albertii isolates. Phylogenetic analyses based on multi-locus sequence typing showed these isolates to be genetically most similar to the members of E. albertii phylogroup G3. These isolates encoded several virulence factors including those, which are characteristic of E. albertii (cytolethal distending toxin and intimin) as well as bacteriocin determinants that typically have a very low prevalence in E. coli strains (D, E7). Moreover, E. albertii protein extracts caused cell cycle arrest in human cell line A375, probably because of cytolethal distending toxin activity.
Collapse
Affiliation(s)
- Linda Grillová
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Ivo Sedláček
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Gabriela Páchníková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Staňková
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Pavel Švec
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Pavla Holochová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| |
Collapse
|
12
|
Táncsics A, Máthé I, Benedek T, Tóth EM, Atasayar E, Spröer C, Márialigeti K, Felföldi T, Kriszt B. Rhodococcus sovatensis sp. nov., an actinomycete isolated from the hypersaline and heliothermal Lake Ursu. Int J Syst Evol Microbiol 2017; 67:190-196. [DOI: 10.1099/ijsem.0.001514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, H-2100 Gödöllő, Hungary
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, R-530104, Miercurea Ciuc, Romania
| | - Tibor Benedek
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, H-2100 Gödöllő, Hungary
| | - Erika M. Tóth
- Department of Microbiology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Ewelina Atasayar
- DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Cathrin Spröer
- DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, R-530104, Miercurea Ciuc, Romania
| | - Balázs Kriszt
- Department of Environmental Protection and Environmental Safety, Szent István University, Páter K. u. 1, H-2100 Gödöllő, Hungary
| |
Collapse
|