1
|
Cui HL, Hou J, Amoozegar MA, Dyall-Smith ML, de la Haba RR, Minegishi H, Montalvo-Rodriguez R, Oren A, Sanchez-Porro C, Ventosa A, Vreeland RH. Proposed minimal standards for description of new taxa of the class Halobacteria. Int J Syst Evol Microbiol 2024; 74:006290. [PMID: 38456846 PMCID: PMC10999741 DOI: 10.1099/ijsem.0.006290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024] Open
Abstract
Halophilic archaea of the class Halobacteria are the most salt-requiring prokaryotes within the domain Archaea. In 1997, minimal standards for the description of new taxa in the order Halobacteriales were proposed. From then on, the taxonomy of the class Halobacteria provides an excellent example of how changing concepts on prokaryote taxonomy and the development of new methods were implemented. The last decades have witnessed a rapid expansion of the number of described taxa within the class Halobacteria coinciding with the era of genome sequencing development. The current members of the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteria propose these revisions to the recommended minimal standards and encourage the use of advanced technologies in the taxonomic description of members of the Halobacteria. Most previously required and some recommended minimal standards for the description of new taxa in the class Halobacteria were retained in the present revision, but changes have been proposed in line with the new methodologies. In addition to the 16S rRNA gene, the rpoB' gene is an important molecular marker for the identification of members of the Halobacteria. Phylogenomic analysis based on concatenated conserved, single-copy marker genes is required to infer the taxonomic status of new taxa. The overall genome relatedness indexes have proven to be determinative in the classification of the taxa within the class Halobacteria. Average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values should be calculated for rigorous comparison among close relatives.
Collapse
Affiliation(s)
- Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mohammad Ali Amoozegar
- Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran
| | - Mike L. Dyall-Smith
- Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, 3010, Australia
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Hiroaki Minegishi
- Department of Applied Chemistry, Faculty of Science and Engineering, Toyo University, Kawagoe, Japan
| | | | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Cristina Sanchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Russell H. Vreeland
- Eastern Shore Microbes, 15397 Merry Cat Lane, Post Office Box 216, Belle Haven, VA 23306, USA
| |
Collapse
|
2
|
Cui C, Han D, Hou J, Cui HL. Genome-based classification of the class Halobacteria and description of Haladaptataceae fam. nov. and Halorubellaceae fam. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37486319 DOI: 10.1099/ijsem.0.005984] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Currently, there are four mainstream taxonomic opinions on the classification of the class Halobacteria at the family and order levels. The International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteria (ICSP), List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Centre for Biotechnology Information (NCBI) adopted taxonomies have three to four orders and up to eight families, while the Genome Taxonomy Database (GTDB) taxonomy proposes only one order with nine families. To resolve the taxonomic inconsistency, phylogenomic analyses based on concatenated single-copy orthologous proteins and 122 concatenated conserved single-copy marker proteins were conducted to infer the taxonomic status of the current representatives of the class Halobacteria at the family and order levels. The current 76 genera with validly published names of the class Halobacteria were able to be assigned into eight families in one order. On the basis of these results, it is proposed that the current species with validly published names of the class Halobacteria should be remerged into the order Halobacteriales, then assigned to eight families, Haladaptataceae, Haloarculaceae, Halobacteriaceae, Halococcaceae, Haloferacaceae, Natronoarchaeaceae, Natrialbaceae and Halorubellaceae. Thus, Haladaptataceae fam. nov. is described based on Haladaptatus, Halomicrococcus and Halorussus and Halorubellaceae fam. nov. is proposed incorporating Haloarchaeobius and Halorubellus, respectively.
Collapse
Affiliation(s)
- Can Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
3
|
Wu ZP, Zheng XW, Sun YP, Wang BB, Hou J, Cui HL. Halocatena salina sp. nov., a filamentous halophilic archaeon isolated from Aiding Salt Lake. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748619 DOI: 10.1099/ijsem.0.005637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A filamentous cell-shaped halophilic archaeon (strain AD-1T) was isolated from Aiding Salt Lake, PR China. Its colonies on HCM7 agar plates were pinkish white, 1-4 mm (diameter), elevated and round. The optimum conditions for growth were observed at 42 °C, 4.3 M NaCl, 0.01 M MgCl2 and pH 7. Strain AD-1T could hydrolyse Tween 60, Tween 80, starch and gelatin. Phylogenetic analysis based on 16S rRNA gene, rpoB' and the concatenated 484 single-copy orthologous proteins revealed that strain AD-1T formed a clade with Halocatena pleomorpha SPP-AMP-1T. The average nucleotide identity and in silico DNA-DNA hybridization values between strain AD-1T and Halocatena pleomorpha SPP-AMP-1T were both below the species delineation thresholds (95~96 and 70 %, respectively). The major phospholipids of strain AD-1T were phosphatidic acid, phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, while the major glycolipids were sulphated galactosyl mannosyl glucosyl diether, galactosyl mannosyl glucosyl diether and glucosyl mannosyl glucosyl diether. The phenotypic, phylogenetic and genome-based analyses suggested that strain AD-1T (=CGMCC 1.13724T=JCM 32960T) represents a novel species, for which the name Halocatena salina sp. nov. is proposed.
Collapse
Affiliation(s)
- Zhang-Ping Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xi-Wen Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ya-Ping Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Bei-Bei Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | |
Collapse
|
4
|
Sorokin DY, Merkel AY, Messina E, Tugui C, Pabst M, Golyshin PN, Yakimov MM. Anaerobic carboxydotrophy in sulfur-respiring haloarchaea from hypersaline lakes. THE ISME JOURNAL 2022; 16:1534-1546. [PMID: 35132120 PMCID: PMC9123189 DOI: 10.1038/s41396-022-01206-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 05/24/2023]
Abstract
Anaerobic carboxydotrophy is a widespread catabolic trait in bacteria, with two dominant pathways: hydrogenogenic and acetogenic. The marginal mode by direct oxidation to CO2 using an external e-acceptor has only a few examples. Use of sulfidic sediments from two types of hypersaline lakes in anaerobic enrichments with CO as an e-donor and elemental sulfur as an e-acceptor led to isolation of two pure cultures of anaerobic carboxydotrophs belonging to two genera of sulfur-reducing haloarchaea: Halanaeroarchaeum sp. HSR-CO from salt lakes and Halalkaliarchaeum sp. AArc-CO from soda lakes. Anaerobic growth of extremely halophilic archaea with CO was obligatory depended on the presence of elemental sulfur as the electron acceptor and yeast extract as the carbon source. CO served as a direct electron donor and H2 was not generated from CO when cells were incubated with or without sulfur. The genomes of the isolates encode a catalytic Ni,Fe-CODH subunit CooS (distantly related to bacterial homologs) and its Ni-incorporating chaperone CooC (related to methanogenic homologs) within a single genomic locus. Similar loci were also present in a genome of the type species of Halalkaliarchaeum closely related to AArc-CO, and the ability for anaerobic sulfur-dependent carboxydotrophy was confirmed for three different strains of this genus. Moreover, similar proteins are encoded in three of the four genomes of recently described carbohydrate-utilizing sulfur-reducing haloarchaea belonging to the genus Halapricum and in two yet undescribed haloarchaeal species. Overall, this work demonstrated for the first time the potential for anaerobic sulfur-dependent carboxydotrophy in extremely halophilic archaea.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Enzo Messina
- IRBIM-CNR, Spianata S.Raineri 86, 98122, Messina, Italy
| | - Claudia Tugui
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Peter N Golyshin
- School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | | |
Collapse
|
5
|
Boya BR, Kumar P, Lee JH, Lee J. Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms 2021; 9:microorganisms9102156. [PMID: 34683477 PMCID: PMC8537960 DOI: 10.3390/microorganisms9102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophanase encoded by the gene tnaA is a pyridoxal phosphate-dependent enzyme that catalyses the conversion of tryptophan to indole, which is commonly used as an intra- and interspecies signalling molecule, particularly by microbes. However, the production of indole is rare in eukaryotic organisms. A nucleotide and protein database search revealed tnaA is commonly reported in various Gram-negative bacteria, but that only a few Gram-positive bacteria and archaea possess the gene. The presence of tnaA in eukaryotes, particularly protozoans and marine organisms, demonstrates the importance of this gene in the animal kingdom. Here, we document the distribution of tnaA and its acquisition and expansion among different taxonomic groups, many of which are usually categorized as non-indole producers. This study provides an opportunity to understand the intriguing role played by tnaA, and its distribution among various types of organisms.
Collapse
|
6
|
Sorokin DY, Yakimov MM, Messina E, Merkel AY, Koenen M, Bale NJ, Sinninghe Damsté JS. Halapricum desulfuricans sp. nov., carbohydrate-utilizing, sulfur-respiring haloarchaea from hypersaline lakes. Syst Appl Microbiol 2021; 44:126249. [PMID: 34547593 DOI: 10.1016/j.syapm.2021.126249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022]
Abstract
Nine pure cultures of neutrophilic haloaloarchaea capable of anaerobic growth by carbohydrate-dependent sulfur respiration were isolated from hypersaline lakes in southwestern Siberia and southern Russia. According to phylogenomic analysis the isolates were closely related to each other and formed a new species within the genus Halapricum (family Haloarculaceae). They have three types of catabolism: fermentative, resulting in H2 formation; anaerobic respiration using sulfur compounds as e-acceptors and aerobic respiration. Apart from elemental sulfur, all isolates can also use three different sulfoxides as acceptors and the type strain also grows with thiosulfate, reducing it partially to sulfide and sulfite. All strains utilized sugars and glycerol as the e-donors and C source for anaerobic growth and some can also grow with alpha-glucans, such as starch and dextrins. The major respiratory menaquinones are MK-8:8 and MK-8:7, but 5-19% consists of "thermoplasmata" quinones (MMK-8:8 and MMK-8:7), whose occurrence in haloarchaea is unprecedented. On the basis of their unique physiological properties and results of phylogenomic analysis, the isolates are suggested to be classified into a novel species Halapricum desulfuricans sp. nov. (type strain HSR12-2T = JCM 34032T = UNIQEM U1001T).
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia; Department of Biotechnology, Section of Environmental Biotechnology, TU Delft, The Netherlands.
| | | | - Enzo Messina
- IAMC-CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Michel Koenen
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Nicole J Bale
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands; Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Li J, Gao Y, Dong H, Sheng GP. Haloarchaea, excellent candidates for removing pollutants from hypersaline wastewater. Trends Biotechnol 2021; 40:226-239. [PMID: 34284891 DOI: 10.1016/j.tibtech.2021.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/25/2022]
Abstract
Hypersaline wastewater is difficult to treat due to the inhibition of salt stress on microbes' viability and metabolic capabilities. Haloarchaea, native microorganisms that thrive in hypersaline habitats, overcome this key obstacle naturally. This review provides a comprehensive overview of the metabolic versatility of Haloarchaea in hypersaline wastewater treatment, including carbon, nitrogen, phosphorus, sulfur, and heavy metal metabolism. It also analyzes factors affecting pollutant removal and addresses metabolic mechanisms. Additionally, haloarchaea microbial characteristics and strategies to cope with salt stress are highlighted. Finally, the biotechnological potential of biomolecules produced from haloarchaea is investigated. To get better insight into the potential of haloarchaea, a deeper investigation of basic metabolism and more in-depth studies of their genomics and applications in actual wastewater are also necessary.
Collapse
Affiliation(s)
- Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yuanyuan Gao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guo-Ping Sheng
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Font-Verdera F, Liébana R, Aldeguer-Riquelme B, Gangloff V, Santos F, Viver T, Rosselló-Móra R. Inverted microbial community stratification and spatial-temporal stability in hypersaline anaerobic sediments from the S'Avall solar salterns. Syst Appl Microbiol 2021; 44:126231. [PMID: 34332366 DOI: 10.1016/j.syapm.2021.126231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
The anaerobic hypersaline sediments of an ephemeral pond from the S'Avall solar salterns constituted an excellent study system because of their easy accessibility, as well as the analogy of their microbial assemblages with some known deep-sea hypersaline anaerobic brines. By means of shotgun metagenomics and 16S rRNA gene amplicon sequencing, the microbial composition of the sediment was shown to be stable in time and space. The communities were formed by prokaryote representatives with a clear inferred anaerobic metabolism, mainly related to the methane, sulfur and nitrate cycles. The most conspicuous finding was the inverted nature of the vertical stratification. Contrarily to what could be expected, a methanogenic archaeal metabolism was found to dominate in the upper layers, whereas Bacteria with fermentative and anaerobic respiration metabolisms increased with depth. We could demonstrate the methanogenic nature of the members of candidate lineages DHVE2 and MSBL1, which were present in high abundance in this system, and described, for the first time, viruses infecting these lineages. Members of the putatively active aerobic genera Salinibacter and Halorubrum were detected especially in the deepest layers for which we hypothesize that either oxygen could be sporadically available, or they could perform anaerobic metabolisms. We also report a novel repertoire of virus species thriving in these sediments, which had special relevance because of their lysogenic lifestyles.
Collapse
Affiliation(s)
- Francisca Font-Verdera
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain.
| | - Raquel Liébana
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| | - Borja Aldeguer-Riquelme
- Department of Physiology, Genetics and Microbiology, Universidad de Alicante, Alicante, Spain
| | - Valentin Gangloff
- Department of Physiology, Genetics and Microbiology, Universidad de Alicante, Alicante, Spain
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, Universidad de Alicante, Alicante, Spain
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| |
Collapse
|
9
|
Cui HL, Dyall-Smith ML. Cultivation of halophilic archaea (class Halobacteria) from thalassohaline and athalassohaline environments. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:243-251. [PMID: 37073340 PMCID: PMC10077297 DOI: 10.1007/s42995-020-00087-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 05/03/2023]
Abstract
As a group, the halophilic archaea (class Halobacteria) are the most salt-requiring and salt-resistant microorganisms within the domain Archaea. Halophilic archaea flourish in thalassohaline and athalassohaline environments and require over 100-150 g/L NaCl for growth and structural stability. Natural hypersaline environments vary in salt concentration, chemical composition and pH, and occur in climates ranging from tropical to polar and even under-sea. Accordingly, their resident haloarchaeal species vary enormously, as do their individual population compositions and community structures. These diverse halophilic archaeal strains are precious resources for theoretical and applied research but assessing their taxonomic and metabolic novelty and diversity in natural environments has been technically difficult up until recently. Environmental DNA-based high-throughput sequencing technology has now matured sufficiently to allow inexpensive recovery of massive amounts of sequence data, revealing the distribution and community composition of halophilic archaea in different hypersaline environments. While cultivation of haloarchaea is slow and tedious, and only recovers a fraction of the natural diversity, it is the conventional means of describing new species, and provides strains for detailed study. As of the end of May 2020, the class Halobacteria contains 71 genera and 275 species, 49.8% of which were first isolated from the marine salt environment and 50.2% from the inland salt environment, indicating that both thalassohaline and athalassohaline environments contain diverse halophilic archaea. However, there remain taxa that have not yet been isolated in pure culture, such as the nanohaloarchaea, which are widespread in the salt environment and may be one of the hot spots in the field of halophilic archaea research in the future. In this review, we focus on the cultivation strategies that have been used to isolate extremely halophilic archaea and point out some of the pitfalls and challenges. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00087-3.
Collapse
Affiliation(s)
- Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Mike L. Dyall-Smith
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010 Australia
- Computational Biology Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
10
|
Halo(natrono)archaea from hypersaline lakes can utilize sulfoxides other than DMSO as electron acceptors for anaerobic respiration. Extremophiles 2021; 25:173-180. [PMID: 33620581 DOI: 10.1007/s00792-021-01219-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/11/2021] [Indexed: 01/19/2023]
Abstract
Dimethylsulfoxide (DMSO) has long been known to support anaerobic respiration in a few species of basically aerobic extremely halophilic euryarchaea living in hypersaline lakes. Recently, it has also been shown to be utilized as an additional electron acceptor in basically anaerobic sulfur-reducing haloarchaea. Here we investigated whether haloarchaea would be capable of anaerobic respiration with other two sulfoxides, methionine sulfoxide (MSO) and tetramethylene sulfoxide (TMSO). For this, anaerobic enrichment cultures were inoculated with sediments from hypersaline salt and soda lakes in southwestern Siberia and southern Russia. Positive enrichments were obtained for both MSO and TMSO with yeast extract but not with formate or acetate as the electron donor. Two pure cultures obtained from salt lakes, either with MSO or TMSO, were obligate anaerobes closely related to sulfur-reducing Halanaeroarchaeum sulfurireducens, although the type strain of this genus was unable to utilize any sulfoxides. Two pure cultures isolated from soda lakes were facultatively anaerobic alkaliphilic haloarchaea using O2, sulfur and sulfoxides as the electron acceptors. One isolate was identical to the previously described sulfur-reducing Natrarchaeobaculum sulfurireducens, while another one, enriched at lower alkalinity, is forming a new species in the genus Halobiforma. Since all isolates enriched with either MSO or TMSO were able to respire all three sulfoxides including DMSO and the corresponding activities were cross-induced, it suggest that a single enzyme of the DMSO-reductase family with a broad substrate specificity is responsible for various sulfoxide-dependent respiration in haloarchaea.
Collapse
|
11
|
Sorokin DY, Messina E, Smedile F, La Cono V, Hallsworth JE, Yakimov MM. Carbohydrate‐dependent sulfur respiration in halo(alkali)philic archaea. Environ Microbiol 2021; 23:3789-3808. [DOI: 10.1111/1462-2920.15421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology Russian Academy of Sciences Moscow Russia
- Department of Biotechnology Delft University of Technology Delft The Netherlands
| | - Enzo Messina
- Institute of Biological Resources and Marine Biotechnology, IRBIM‐CNR Messina Italy
| | - Francesco Smedile
- Institute of Biological Resources and Marine Biotechnology, IRBIM‐CNR Messina Italy
| | - Violetta La Cono
- Institute of Biological Resources and Marine Biotechnology, IRBIM‐CNR Messina Italy
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast, Northern Ireland BT9 5DL UK
| | - Michail M. Yakimov
- Institute of Biological Resources and Marine Biotechnology, IRBIM‐CNR Messina Italy
| |
Collapse
|
12
|
Paul V, Banerjee Y, Ghosh P, Busi SB. Depthwise microbiome and isotopic profiling of a moderately saline microbial mat in a solar saltern. Sci Rep 2020; 10:20686. [PMID: 33244085 PMCID: PMC7693307 DOI: 10.1038/s41598-020-77622-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
The solar salterns in Tuticorin, India, are man-made, saline to hypersaline systems hosting some uniquely adapted populations of microorganisms and eukaryotic algae that have not been fully characterized. Two visually different microbial mats (termed 'white' and 'green') developing on the reservoir ponds (53 PSU) were isolated from the salterns. Firstly, archaeal and bacterial diversity in different vertical layers of the mats were analyzed. Culture-independent 16S rRNA gene analysis revealed that both bacteria and archaea were rich in their diversity. The top layers had a higher representation of halophilic archaea Halobacteriaceae, phylum Chloroflexi, and classes Anaerolineae, Delta- and Gamma- Proteobacteria than the deeper sections, indicating that a salinity gradient exists within the mats. Limited presence of Cyanobacteria and detection of algae-associated bacteria, such as Phycisphaerae, Phaeodactylibacter and Oceanicaulis likely implied that eukaryotic algae and other phototrophs could be the primary producers within the mat ecosystem. Secondly, predictive metabolic pathway analysis using the 16S rRNA gene data revealed that in addition to the regulatory microbial functions, methane and nitrogen metabolisms were prevalent. Finally, stable carbon and nitrogen isotopic compositions determined from both mat samples showed that the δ13Corg and δ15Norg values increased slightly with depth, ranging from - 16.42 to - 14.73‰, and 11.17 to 13.55‰, respectively. The isotopic signature along the microbial mat profile followed a pattern that is distinctive to the community composition and net metabolic activities, and comparable to saline mats in other salterns. The results and discussions presented here by merging culture-independent studies, predictive metabolic analyses and isotopic characterization, provide a collective strategy to understand the compositional and functional characteristics of microbial mats in saline environments.
Collapse
Affiliation(s)
- Varun Paul
- Department of Geosciences, Mississippi State University, Starkville, MS, 39762, USA.
| | - Yogaraj Banerjee
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore, 560012, India
| | - Prosenjit Ghosh
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore, 560012, India
- Centre for Earth Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Susheel Bhanu Busi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
13
|
Abstract
The brines of natural salt lakes with total salt concentrations exceeding 30% are often colored red by dense communities of halophilic microorganisms. Such red brines are found in the north arm of Great Salt Lake, Utah, in the alkaline hypersaline lakes of the African Rift Valley, and in the crystallizer ponds of coastal and inland salterns where salt is produced by evaporation of seawater or some other source of saline water. Red blooms were also reported in the Dead Sea in the past. Different types of pigmented microorganisms may contribute to the coloration of the brines. The most important are the halophilic archaea of the class Halobacteria that contain bacterioruberin carotenoids as well as bacteriorhodopsin and other retinal pigments, β-carotene-rich species of the unicellular green algal genus Dunaliella and bacteria of the genus Salinibacter (class Rhodothermia) that contain the carotenoid salinixanthin and the retinal protein xanthorhodopsin. Densities of prokaryotes in red brines often exceed 2-3×107 cells/mL. I here review the information on the biota of the red brines, the interactions between the organisms present, as well as the possible roles of the red halophilic microorganisms in the salt production process and some applied aspects of carotenoids and retinal proteins produced by the different types of halophiles inhabiting the red brines.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Zavarzina DG, Zhilina TN, Kostrikina NA, Toshchakov SV, Kublanov IV. Isachenkonia alkalipeptolytica gen. nov. sp. nov., a new anaerobic, alkaliphilic proteolytic bacterium capable of reducing Fe(III) and sulfur. Int J Syst Evol Microbiol 2020; 70:4730-4738. [PMID: 32697189 DOI: 10.1099/ijsem.0.004341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An obligately alkaliphilic, anaerobic, proteolytic bacterium was isolated from a sample of Tanatar III soda lake sediment (Altai region, Russia) and designated as strain Z-1701T. Cells of strain Z-1701T were short, straight, motile Gram-stain-positive rods. Growth of Z-1701T obligately depended on the presence of sodium carbonate. Strain Z-1701T could utilize various peptides mixtures, such as beef and yeast extracts, peptone, soytone, trypticase and tryptone, as well as such proteins as albumin, gelatin and sodium caseinate. It was able to grow oligotrophically with 0.02 g l-1 yeast extract as the sole energy and carbon source. Carbohydrates did not support the growth of strain Z-1701T. The main products released during the growth of strain Z-1701T on tryptone were formate, acetate and ammonium. Strain Z-1701T was able to reduce ferrihydrite, Fe(III)-EDTA, anthraquinone-2,6-disulfonate and elemental sulfur, using proteinaceous substrates as electron donors. In all cases the presence of the electron acceptor in the medium stimulated growth. The main cellular fatty acids were iso-C15 : 0, iso-C15 : 0 aldehyde, iso-C15 : 1 ω6, C16 : 0, iso-C17 : 0 aldehyde, C16 : 0 aldehyde and C14 : 0. The DNA G+C content of the isolate was 43.9 mol%. Phylogenetic analysis based on the concatenated alignment of 120 protein-marker sequences revealed that strain Z-1701T falls into a cluster with the genus Tindallia, family Clostridiaceae. 16S rRNA gene sequence identity between strain Z-1701T and Tindallia species were 88.3-89.75 %. On the basis of its phenotypic characteristics and phylogenetic position, the novel isolate is considered to be a representative of a novel genus and species for which the name Isachenkonia alkalipeptolytica gen. nov., sp. nov. is proposed, with Z-1701T (=JCM 32929Т=DSM 109060Т=VKM B-3261Т) as its type strain.
Collapse
Affiliation(s)
- Daria G Zavarzina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Tatyana N Zhilina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Nadegda A Kostrikina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| |
Collapse
|
15
|
Methanogenesis in the Lake Elton saline aquatic system. Extremophiles 2020; 24:657-672. [PMID: 32533307 DOI: 10.1007/s00792-020-01185-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022]
Abstract
Cultivation and molecular approaches were used to study methanogenesis in saline aquatic system of the Lake Elton (southern Russia), the largest hypersaline lake in Europe. The potential rates of hydrogenotrophic, acetoclastic, methylotrophic and methyl-reducing methanogenesis and diversity of the growth-enriched for by adding electron donors methanogenic communities were studied in the sediment slurry incubations at salinity range from 7 to 275 g/L. The most active pathway detected at all salinities was methylotrophic with a dominance of Methanohalobium and Methanohalophilus genera, at salt saturation and moderately halophilic Methanolobus and Methanococcoides at lower salinity. The absence of methane production from acetate, formate and H2/CO2 under hypersaline conditions was most probably associated with the energy constraints. The contribution of hydrogenotrophic, acetoclastic, and methyl-reducing methanogens to the community increases with a decrease in salinity. Temperature might play an important regulatory function in hypersaline habitats; i.e. methylotrophic methanogens and hydrogenotrophic sulfate-reducing bacteria (SRB) outcompeting methyl-reducing methanogens under mesophilic conditions, and vice versa under thermophilic conditions. An active methane production together with negligible methane oxidation makes hypersaline environments a potential source of methane emission.
Collapse
|
16
|
Verma A, Pal Y, Kumar P, Krishnamurthi S. Halocatena pleomorpha gen. nov. sp. nov., an extremely halophilic archaeon of family Halobacteriaceae isolated from saltpan soil. Int J Syst Evol Microbiol 2020; 70:3693-3700. [DOI: 10.1099/ijsem.0.004222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A novel archaeal strain designated as SPP-AMP-1T was isolated from saltpan soil, using the serial dilution method on a halophilic archaeal medium supplemented with ampicillin. Cells were both rod-shaped and pleomorphic in nature, non-motile, unable to produce acid from a variety of sugars or grow anaerobically with different substrates (l-arginine) and electron acceptors (DMSO, nitrate). Optimal growth was observed at 42 °C, 3.4–4.2 M NaCl and pH 7.2. Cells did not lyse in distilled water and grew in the absence of Mg2+ ions. Phylogenetic analysis based on the sequences of 16S rRNA gene, amino acid sequence of β′-subunit of RNA polymerase and 400 conserved proteins retrieved from the whole genome assemblies showed that strain SPP-AMP-1T was distantly related to any existing genera within the family
Halobacteriaceae
. MK-8 was the only quinone detected. Polar lipid analysis showed a unique combination of diethyl derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, glycosyl-mannosyl-glucosyl diether and sulphated glycosyl-mannosyl-glucosyl diether as the major lipids. The G+C content of genomic DNA is 57.7 mol%. The phenotypic, phylogenetic and genomic data supported the concept of the novel genus status of strain SPP-AMP-1T in the family
Halobacteriaceae
for which the name Halocatena pleomorpha gen. nov., sp. nov., is proposed; the type strain is SPP-AMP-1T (=JCM 31368T=KCTC 4276T=MTCC 12579T).
Collapse
Affiliation(s)
- Ashish Verma
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Yash Pal
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Pravin Kumar
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| |
Collapse
|
17
|
Sorokin DY, Yakimov M, Messina E, Merkel AY, Bale NJ, Sinninghe Damsté JS. Natronolimnobius sulfurireducens sp. nov. and Halalkaliarchaeum desulfuricum gen. nov., sp. nov., the first sulfur-respiring alkaliphilic haloarchaea from hypersaline alkaline lakes. Int J Syst Evol Microbiol 2019; 69:2662-2673. [DOI: 10.1099/ijsem.0.003506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, TU Delft, CD Delft, The Netherlands
| | | | - Enzo Messina
- IAMC-CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nicole J. Bale
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Jaap S. Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| |
Collapse
|
18
|
Bale NJ, Sorokin DY, Hopmans EC, Koenen M, Rijpstra WIC, Villanueva L, Wienk H, Sinninghe Damsté JS. New Insights Into the Polar Lipid Composition of Extremely Halo(alkali)philic Euryarchaea From Hypersaline Lakes. Front Microbiol 2019; 10:377. [PMID: 30930858 PMCID: PMC6423904 DOI: 10.3389/fmicb.2019.00377] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
We analyzed the polar membrane lipids of 13 strains of halo(alkali)philic euryarchaea from hypersaline lakes. Nine belong to the class Halobacteria, representing two functional groups: aerobic polysaccharide utilizers and sulfur-respiring anaerobes. The other four strains represent halo(alkali)philic methanogens from the class Methanomicrobia and a recently discovered class Methanonatronarchaeia. A wide range of polar lipids were detected across the 13 strains including dialkyl glycerol diethers (archaeols), membrane-spanning glycerol tetraethers and diether-based cardiolipins. The archaeols contained a range of core lipid structures, including combinations of C20 and C25 isoprenoidal alkyl chains, unsaturations, and hydroxy moieties. Several diether lipids were novel, including: (a) a phosphatidylglycerolhexose (PG-Gly) headgroup, (b) a N,N,N-trimethyl aminopentanetetrol (APT)-like lipid with a methoxy group in place of a hydroxy group on the pentanetetrol, (c) a series of polar lipids with a headgroup with elemental composition of either C12H25NO13S or C12H25NO16S2, and (d) novel cardiolipins containing a putative phosphatidylglycerolphosphate glycerophosphate (PGPGP) polar moiety. We found that the lipid distribution of the 13 strains could be generally separated into two groups, the methanogens (group) and the Halobacteria (class) based on the presence of specific core lipids. Within the methanogens, adaption to a high or more moderate salt concentration resulted in different ratios of glycerol dialkyl glycerol tetraethers (GDGTs) to archaeol. The methanogen Methanosalsum natronophilum AME2T had the most complex diether lipid composition of any of the 13 strains, including hydroxy archaeol and macrocyclic archaeol which we surmise is an order-specific membrane adaption. The zwitterionic headgroups APT and APT-Me were detected only in the Methanomicrobiales member Methanocalculus alkaliphilus AMF2T which also contained the highest level of unsaturated lipids. Only alkaliphilic members of the Natrialbales order contained PGPGP cardiolipins and the PG-Gly headgroup. The four analyzed neutrophilic members of the Halobacteria were characterized by the presence of sulfur-containing headgroups and glycolipids. The presence of cardiolipins with one or more i-C25 alkyl chains, generally termed extended archaeol (EXT-AR), in one of the Methanonatronarchaeia strains was unexpected as only one other order of methanogenic archaea has been reported to produce EXT-AR. We examined this further by looking into the genomic potential of various archaea to produce EXT-AR.
Collapse
Affiliation(s)
- Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Dimitry Y. Sorokin
- Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - W. Irene C. Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Hans Wienk
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Sucrose Metabolism in Haloarchaea: Reassessment Using Genomics, Proteomics, and Metagenomics. Appl Environ Microbiol 2019; 85:AEM.02935-18. [PMID: 30658981 DOI: 10.1128/aem.02935-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
The canonical pathway for sucrose metabolism in haloarchaea utilizes a modified Embden-Meyerhof-Parnas pathway (EMP), in which ketohexokinase and 1-phosphofructokinase phosphorylate fructose released from sucrose hydrolysis. However, our survey of haloarchaeal genomes determined that ketohexokinase and 1-phosphofructokinase genes were not present in all species known to utilize fructose and sucrose, thereby indicating that alternative mechanisms exist for fructose metabolism. A fructokinase gene was identified in the majority of fructose- and sucrose-utilizing species, whereas only a small number possessed a ketohexokinase gene. Analysis of a range of hypersaline metagenomes revealed that haloarchaeal fructokinase genes were far more abundant (37 times) than haloarchaeal ketohexokinase genes. We used proteomic analysis of Halohasta litchfieldiae (which encodes fructokinase) and identified changes in protein abundance that relate to growth on sucrose. Proteins inferred to be involved in sucrose metabolism included fructokinase, a carbohydrate primary transporter, a putative sucrose hydrolase, and two uncharacterized carbohydrate-related proteins encoded in the same gene cluster as fructokinase and the transporter. Homologs of these proteins were present in the genomes of all haloarchaea that use sugars for growth. Enzymes involved in the semiphosphorylative Entner-Doudoroff pathway also had higher abundances in sucrose-grown H. litchfieldiae cells, consistent with this pathway functioning in the catabolism of the glucose moiety of sucrose. The study revises the current understanding of fundamental pathways for sugar utilization in haloarchaea and proposes alternatives to the modified EMP pathway used by haloarchaea for sucrose and fructose utilization.IMPORTANCE Our ability to infer the function that microorganisms perform in the environment is predicated on assumptions about metabolic capacity. When genomic or metagenomic data are used, metabolic capacity is inferred from genetic potential. Here, we investigate the pathways by which haloarchaea utilize sucrose. The canonical haloarchaeal pathway for fructose metabolism involving ketohexokinase occurs only in a small proportion of haloarchaeal genomes and is underrepresented in metagenomes. Instead, fructokinase genes are present in the majority of genomes/metagenomes. In addition to genomic and metagenomic analyses, we used proteomic analysis of Halohasta litchfieldiae (which encodes fructokinase but lacks ketohexokinase) and identified changes in protein abundance that related to growth on sucrose. In this way, we identified novel proteins implicated in sucrose metabolism in haloarchaea, comprising a transporter and various catabolic enzymes (including proteins that are annotated as hypothetical).
Collapse
|
20
|
Lee CJD, McMullan PE, O'Kane CJ, Stevenson A, Santos IC, Roy C, Ghosh W, Mancinelli RL, Mormile MR, McMullan G, Banciu HL, Fares MA, Benison KC, Oren A, Dyall-Smith ML, Hallsworth JE. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol Rev 2018; 42:672-693. [PMID: 29893835 DOI: 10.1093/femsre/fuy026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, ∼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, ∼0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of >121°C; pH > 12; and high chaotropicity; e.g. ethanol at >18.9% w/v (24% v/v) and MgCl2 at >3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology.
Collapse
Affiliation(s)
- Callum J D Lee
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Callum J O'Kane
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Rocco L Mancinelli
- BAER Institute, Mail Stop 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Melanie R Mormile
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Geoffrey McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de Valencia (CSIC-UV), Valencia, 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300, USA
| | - Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 9190401, Israel
| | - Mike L Dyall-Smith
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
21
|
Sorokin DY, Messina E, La Cono V, Ferrer M, Ciordia S, Mena MC, Toshchakov SV, Golyshin PN, Yakimov MM. Sulfur Respiration in a Group of Facultatively Anaerobic Natronoarchaea Ubiquitous in Hypersaline Soda Lakes. Front Microbiol 2018; 9:2359. [PMID: 30333814 PMCID: PMC6176080 DOI: 10.3389/fmicb.2018.02359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022] Open
Abstract
The ubiquity of strictly anaerobic sulfur-respiring haloarchaea in hypersaline systems with circumneutral pH has shaken a traditional concept of this group as predominantly aerobic heterotrophs. Here, we demonstrated that this functional group of haloarchaea also has its representatives in hypersaline alkaline lakes. Sediments from various hypersaline soda lakes showed high activity of sulfur reduction only partially inhibited by antibiotics. Eight pure cultures of sulfur-reducing natronoarchaea were isolated from such sediments using formate and butyrate as electron donors and sulfur as an electron acceptor. Unlike strict anaerobic haloarchaea, these novel sulfur-reducing natronoarchaea are facultative anaerobes, whose metabolic capabilities were inferred from cultivation experiments and genomic/proteomic reconstruction. While sharing many physiological traits with strict anaerobic haloarchaea, following metabolic distinctions make these new organisms be successful in both anoxic and aerobic habitats: the recruiting of heme-copper quinol oxidases as terminal electron sink in aerobic respiratory chain and the utilization of formate, hydrogen or short-chain fatty acids as electron donors during anaerobic growth with elemental sulfur. Obtained results significantly advance the emerging concept of halo(natrono)archaea as important players in the anaerobic sulfur and carbon cycling in various salt-saturated habitats.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Enzo Messina
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Violetta La Cono
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Manuel Ferrer
- Institute of Catalysis, Spanish National Research Council, Madrid, Spain
| | - Sergio Ciordia
- Proteomics Unit, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Maria C Mena
- Proteomics Unit, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Peter N Golyshin
- School of Biological Sciences and The Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| | - Michail M Yakimov
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy.,Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
22
|
Sorokin DY, Merkel AY, Abbas B, Makarova KS, Rijpstra WIC, Koenen M, Sinninghe Damsté JS, Galinski EA, Koonin EV, van Loosdrecht MCM. Methanonatronarchaeum thermophilum gen. nov., sp. nov. and 'Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov. Int J Syst Evol Microbiol 2018; 68:2199-2208. [PMID: 29781801 DOI: 10.1099/ijsem.0.002810] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Methanogenic enrichments from hypersaline lakes at moderate thermophilic conditions have resulted in the cultivation of an unknown deep lineage of euryarchaeota related to the class Halobacteria. Eleven soda lake isolates and three salt lake enrichment cultures were methyl-reducing methanogens that utilize C1 methylated compounds as electron acceptors and H2 or formate as electron donors, but they were unable to grow on either substrates alone or to form methane from acetate. They are extreme halophiles, growing optimally at 4 M total Na+ and the first representatives of methanogens employing the 'salt-in' osmoprotective mechanism. The salt lake subgroup is neutrophilic, whereas the soda lake isolates are obligate alkaliphiles, with an optimum around pH 9.5. Both grow optimally at 50 °C. The genetic diversity inside the two subgroups is very low, indicating that the soda and salt lake clusters consist of a single genetic species each. The phylogenetic distance between the two subgroups is in the range of distant genera, whereas the distance to other euryarchaea is below 83 % identity of the 16S rRNA gene. These isolates and enriched methanogens, together with closely related environmental clones from hypersaline habitats (the SA1 group), form a novel class-level clade in the phylum Euryarchaeota. On the basis of distinct phenotypic and genetic properties, the soda lake isolates are classified into a new genus and species, Methanonatronarchaeum thermophilum, with the type strain AMET1T (DSM 28684T=NBRC 110805T=UNIQEM U982T), and the salt lake methanogens into a candidate genus and species 'Candidatus Methanohalarchaeum thermophilum'. These organisms are proposed to form novel family, order and class Methanonatronarchaeaceae fam. nov., Methanonatronarchaeales ord. nov. and Methanonatronarchaeia classis nov., within the phylum Euryarchaeota.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, TU Delft, The Netherlands
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ben Abbas
- Department of Biotechnology, TU Delft, The Netherlands
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, and Utrecht University, The Netherlands
| | - M Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, and Utrecht University, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, and Utrecht University, The Netherlands.,Department of Earth Sciences - Geochemistry, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Erwin A Galinski
- Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
23
|
Shrestha N, Chilkoor G, Vemuri B, Rathinam N, Sani RK, Gadhamshetty V. Extremophiles for microbial-electrochemistry applications: A critical review. BIORESOURCE TECHNOLOGY 2018; 255:318-330. [PMID: 29433771 DOI: 10.1016/j.biortech.2018.01.151] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Extremophiles, notably archaea and bacteria, offer a good platform for treating industrial waste streams that were previously perceived as hostile to the model organisms in microbial electrochemical systems (MESs). Here we present a critical overview of the fundamental and applied biology aspects of halophiles and thermophiles in MESs. The current study suggests that extremophiles enable the MES operations under a seemingly harsh conditions imposed by the physical (pressure, radiation, and temperature) and geochemical extremes (oxygen levels, pH, and salinity). We highlight a need to identify the underpinning mechanisms that define the exceptional electrocatalytic performance of extremophiles in MESs.
Collapse
Affiliation(s)
- Namita Shrestha
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Bhuvan Vemuri
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Navanietha Rathinam
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Rajesh K Sani
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States; Surface Engineering Research Center, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States.
| |
Collapse
|
24
|
Paul VG, Mormile MR. A case for the protection of saline and hypersaline environments: a microbiological perspective. FEMS Microbiol Ecol 2017; 93:3950317. [DOI: 10.1093/femsec/fix091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/09/2017] [Indexed: 11/12/2022] Open
|
25
|
Sorokin DY, Messina E, Smedile F, Roman P, Damsté JSS, Ciordia S, Mena MC, Ferrer M, Golyshin PN, Kublanov IV, Samarov NI, Toshchakov SV, La Cono V, Yakimov MM. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats. ISME JOURNAL 2017; 11:1245-1260. [PMID: 28106880 PMCID: PMC5437934 DOI: 10.1038/ismej.2016.203] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs. Here we report on isolation and characterization of a novel group of strictly anaerobic lithoheterotrophic haloarchaea, which we propose to classify as a new genus Halodesulfurarchaeum. Members of this previously unknown physiological group are capable of utilising formate or hydrogen as electron donors and elemental sulfur, thiosulfate or dimethylsulfoxide as electron acceptors. Using genome-wide proteomic analysis we have detected the full set of enzymes required for anaerobic respiration and analysed their substrate-specific expression. Such advanced metabolic plasticity and type of respiration, never seen before in haloarchaea, empower the wide distribution of Halodesulfurarchaeum in hypersaline inland lakes, solar salterns, lagoons and deep submarine anoxic brines. The discovery of this novel functional group of sulfur-respiring haloarchaea strengthens the evidence of their possible role in biogeochemical sulfur cycling linked to the terminal anaerobic carbon mineralisation in so far overlooked hypersaline anoxic habitats.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Enzo Messina
- Institute for Coastal Marine Environment, CNR, Messina, Italy
| | | | - Pawel Roman
- Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands.,Wetsus, Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Sergio Ciordia
- Proteomics Unit, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Maria Carmen Mena
- Proteomics Unit, National Center for Biotechnology, CSIC, Madrid, Spain
| | | | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Bangor, UK.,Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nazar I Samarov
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | | | | - Michail M Yakimov
- Institute for Coastal Marine Environment, CNR, Messina, Italy.,Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
26
|
Williams TJ, Allen M, Tschitschko B, Cavicchioli R. Glycerol metabolism of haloarchaea. Environ Microbiol 2016; 19:864-877. [PMID: 27768817 DOI: 10.1111/1462-2920.13580] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Haloarchaea are heterotrophic members of the Archaea that thrive in hypersaline environments, often feeding off the glycerol that is produced as an osmolyte by eucaryotic Dunaliella during primary production. In this study we analyzed glycerol metabolism genes in closed genomes of haloarchaea and examined published data describing the growth properties of haloarchaea and experimental data for the enzymes involved. By integrating the genomic data with knowledge from the literature, we derived an understanding of the ecophysiology and evolutionary properties of glycerol catabolic pathways in haloarchaea.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Michelle Allen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Bernhard Tschitschko
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
27
|
Draft Genome Sequence of the Type Strain Desulfuribacillus alkaliarsenatis AHT28, an Obligately Anaerobic, Sulfidogenic Bacterium Isolated from Russian Soda Lake Sediments. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01244-16. [PMID: 27834702 PMCID: PMC5105095 DOI: 10.1128/genomea.01244-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Desulfuribacillus alkaliarsenatis AHT28T is an obligately anaerobic, sulfur- and arsenate-reducing haloalkaliphile that was isolated from Russian soda lake sediments. Here, we present the 3.1-Mb draft genome sequence for this strain, consisting of 36 contigs with a G+C content of 37.5% and 2,978 protein-coding sequences.
Collapse
|