1
|
Galès G, Hennart M, Hannoun M, Postec A, Erauso G. Metabolic versatility and nitrate reduction pathways of a new thermophilic bacterium of the Deferrivibrionaceae: Deferrivibrio metallireducens sp. nov isolated from hot sediments of Vulcano Island, Italy. PLoS One 2025; 20:e0315093. [PMID: 40067810 PMCID: PMC11896075 DOI: 10.1371/journal.pone.0315093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/20/2024] [Indexed: 03/15/2025] Open
Abstract
A novel thermophilic (optimum growth temperature ~ 60 °C) anaerobic Gram-negative bacterium, designated strain V6Fe1T, was isolated from sediments heated by the hydrothermal circulation of the Aeolian Islands (Vulcano, Italy) on the seafloor. Strain V6Fe1T belongs to the recently described family Deferrivibrionaceae in the phylum Deferribacterota. It grows chemoorganotrophically by fermentation of proteinaceous substrates and organic acids or by respiration of organic compounds using fumarate, nitrate, Fe(III), S°, and Mn(IV) as electron acceptors. The strain V6Fe1T can also grow chemolithoautotrophically using H2 as an electron donor and nitrate, nitrous oxide, Fe(III), Mn(IV), or sulfur as an electron acceptor. Stable isotope probing showed that V6Fe1T performs denitrification with nitrate reduction to dinitrogen and Dissimilatory Nitrate Reduction to Ammonium (DNRA). Culture experiments with RT-qPCR analysis of target genes revealed that strain V6Fe1T performs DNRA with the nitrite reductase formate-dependent NrfA and denitrification with an Hcp protein and other redox partners yet to be identified. Genomic analysis and experimental data suggest that strain V6Fe1T performs autotrophic carbon fixation via the recently discovered reversed oxidative TCA cycle (roTCA cycle). Based on genomic (ANI) and phenotypic properties, strain V6Fe1T ( = DSM 27501T = JCM 39088T) is proposed to be the type strain of a novel species named Deferrivibrio metallireducens.
Collapse
Affiliation(s)
- Grégoire Galès
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Mélanie Hennart
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Maverick Hannoun
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Anne Postec
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Gaël Erauso
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| |
Collapse
|
2
|
Wang C, He T, Zhang M, Zheng C, Yang L, Yang L. Review of the mechanisms involved in dissimilatory nitrate reduction to ammonium and the efficacies of these mechanisms in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123480. [PMID: 38325507 DOI: 10.1016/j.envpol.2024.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is currently of great interest because it is an important method for recovering nitrogen from wastewater and offers many advantages, over other methods. A full understanding of DNRA requires the mechanisms, pathways, and functional microorganisms involved to be identified. The roles these pathways play and the effectiveness of DNRA in the environment are not well understood. The objectives of this review are to describe our current understanding of the molecular mechanisms and pathways involved in DNRA from the substrate transfer perspective and to summarize the effects of DNRA in the environment. First, the mechanisms and pathways involved in DNRA are described in detail. Second, our understanding of DNRA by actinomycetes is reviewed and gaps in our understanding are identified. Finally, the effects of DNRA in the environment are assessed. This review will help in the development of future research into DNRA to promote the use of DNRA to treat wastewater and recover nitrogen.
Collapse
Affiliation(s)
- Cerong Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Manman Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Chunxia Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Lu Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
3
|
Wang XW, Tan X, Dang CC, Lu Y, Xie GJ, Liu BF. Thermophilic microorganisms involved in the nitrogen cycle in thermal environments: Advances and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165259. [PMID: 37400035 DOI: 10.1016/j.scitotenv.2023.165259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Thermophilic microorganisms mediated significant element cycles and material conversion in the early Earth as well as mediating current thermal environments. Over the past few years, versatile microbial communities that drive the nitrogen cycle have been identified in thermal environments. Understanding the microbial-mediated nitrogen cycling processes in these thermal environments has important implications for the cultivation and application of thermal environment microorganisms as well as for exploring the global nitrogen cycle. This work provides a comprehensive review of different thermophilic nitrogen-cycling microorganisms and processes, which are described in detail according to several categories, including nitrogen fixation, nitrification, denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium. In particular, we assess the environmental significance and potential applications of thermophilic nitrogen-cycling microorganisms, and highlight knowledge gaps and future research opportunities.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Aronson HS, Thomas C, Bhattacharyya MK, Eckstein SR, Jensen SR, Barco RA, Macalady JL, Amend JP. Thiovibrio frasassiensis gen. nov., sp. nov., an autotrophic, elemental sulphur disproportionating bacterium isolated from sulphidic karst sediment, and proposal of Thiovibrionaceae fam. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37609857 DOI: 10.1099/ijsem.0.006003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
A novel, autotrophic, mesophilic bacterium, strain RS19-109T, was isolated from sulphidic stream sediments in the Frasassi Caves, Italy. The cells of this strain grew chemolithoautotrophically under anaerobic conditions while disproportionating elemental sulphur (S0) and thiosulphate, but not sulphite with bicarbonate/CO2 as a carbon source. Autotrophic growth was also observed with molecular hydrogen as an electron donor, and S0, sulphate, thiosulphate, nitrate and ferric iron as electron acceptors. Oxygen was not used as an electron acceptor and sulphide was not used as an electron donor. Weak growth was observed with sulphate as an electron acceptor and organic carbon as an electron donor and carbon source. The strain also showed weak growth by fermentation of tryptone. It grew at pH 5.5–7.5 (optimum, pH 7.0), 4–35 °C (optimum, 30 °C) and between 0–1.7 % NaCl. Strain RS19-109T was found to be phylogenetically distinct based on 16S rRNA gene sequence similarity (89.2 %) to its closest relative,
Desulfurivibrio alkaliphilus
AHT2T. The draft genome sequence for strain RS19-109T had average nucleotide identity, average amino acid identity and in silico DNA–DNA hybridization values of 72.2, 63.0 and 18.3 %, respectively, compared with the genome sequence of
D. alkaliphilus
AHT2T. On the basis of its physiological and genomic properties, strain RS19-109T is proposed as the type strain of a novel species of a novel genus, Thiovibrio frasassiensis gen. nov., sp. nov. A novel family, Thiovibrionaceae fam. nov., is proposed to accommodate Thiovibrio within the order
Desulfobulbales
. Strain RS19-109T has been deposited at the DSMZ-German Collection of Microorganisms and Cell Cultures (=DSM 115074T) and the American Type Culture Collection (=ATCC TSD-325T).
Collapse
Affiliation(s)
- Heidi S Aronson
- Department of Biological Sciences, University of Southern California, Allan Hancock Foundation Building, Los Angeles, CA 90089, USA
| | - Cais Thomas
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Maia K Bhattacharyya
- Environmental Studies Program, University of Southern California, College Academic Services Building, Los Angeles, CA 90089, USA
| | - Shaan R Eckstein
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Sophia R Jensen
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Roman A Barco
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Jennifer L Macalady
- Department of Geosciences, Pennsylvania State University, 503 Deike Building University Park, PA 16802, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Allan Hancock Foundation Building, Los Angeles, CA 90089, USA
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Wang S, Jiang L, Xie S, Alain K, Wang Z, Wang J, Liu D, Shao Z. Disproportionation of Inorganic Sulfur Compounds by Mesophilic Chemolithoautotrophic Campylobacterota. mSystems 2023; 8:e0095422. [PMID: 36541763 PMCID: PMC9948710 DOI: 10.1128/msystems.00954-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
The disproportionation of inorganic sulfur compounds could be widespread in natural habitats, and microorganisms could produce energy to support primary productivity through this catabolism. However, the microorganisms that carry this process out and the catabolic pathways at work remain relatively unstudied. Here, we investigated the bacterial diversity involved in sulfur disproportionation in hydrothermal plumes from Carlsberg Ridge in the northwestern Indian Ocean by enrichment cultures. A bacterial community analysis revealed that bacteria of the genera Sulfurimonas and Sulfurovum, belonging to the phylum Campylobacterota and previously having been characterized as chemolithoautotrophic sulfur oxidizers, were the most dominant members in six enrichment cultures. Subsequent bacterial isolation and physiological studies confirmed that five Sulfurimonas and Sulfurovum isolates could disproportionate thiosulfate and elemental sulfur. The ability to disproportionate sulfur was also demonstrated in several strains of Sulfurimonas and Sulfurovum that were isolated from hydrothermal vents or other natural environments. Dialysis membrane experiments showed that S0 disproportionation did not require the direct contact of cells with bulk sulfur. A comparative genomic analysis showed that Campylobacterota strains did not contain some genes of the Dsr and rDSR pathways (aprAB, dsrAB, dsrC, dsrMKJOP, and qmoABC) that are involved in sulfur disproportionation in some other taxa, suggesting the existence of an unrevealed catabolic pathway for sulfur disproportionation. These findings provide evidence for the catabolic versatility of these Campylobacterota genera, which are widely distributed in chemosynthetic environments, and expand our knowledge of the microbial taxa involved in this reaction of the biogeochemical sulfur cycle in hydrothermal vent environments. IMPORTANCE The phylum Campylobacterota, notably represented by the genera Sulfurimonas and Sulfurovum, is ubiquitous and predominant in deep-sea hydrothermal systems. It is well-known to be the major chemolithoautotrophic sulfur-oxidizing group in these habitats. Herein, we show that the mesophilic predominant chemolithoautotrophs of the genera Sulfurimonas and Sulfurovum could grow via sulfur disproportionation to gain energy. This is the first report of the chemolithoautotrophic disproportionation of thiosulfate and elemental sulfur within the genera Sulfurimonas and Sulfurovum, and this comes in addition to their already known role in the chemolithoautotrophic oxidation of sulfur compounds. Sulfur disproportionation via chemolithoautotrophic Campylobacterota may represent a previously unrecognized primary production process in hydrothermal vent ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Shaobin Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Karine Alain
- CNRS, Univ Brest, Ifremer, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Plouzané, France
| | - Zhaodi Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Jun Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Delin Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Fujian Key Laboratory of Marine Genetic Resources, Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
| |
Collapse
|
6
|
Zhang D, Ke T, Xiu W, Ren C, Chen G, Lloyd JR, Bassil NM, Richards LA, Polya DA, Wang G, Guo H. Quantifying sulfidization and non-sulfidization in long-term in-situ microbial colonized As(V)-ferrihydrite coated sand columns: Insights into As mobility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160066. [PMID: 36356776 DOI: 10.1016/j.scitotenv.2022.160066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Sulfide-induced reduction (sulfidization) of arsenic (As)-bearing Fe(III) (oxyhydro)oxides may lead to As mobilization in aquifer systems. However, little is known about the relative contributions of sulfidization and non-sulfidization of Fe(III) (oxyhydro)oxides reduction to As mobilization. To address this issue, high As groundwater with low sulfide (LS) and high sulfide (HS) concentrations were pumped through As(V)-bearing ferrihydrite-coated sand columns (LS-column and HS-column, respectively) being settled within wells in the western Hetao Basin, China. Sulfidization of As(V)-bearing ferrihydrite was evidenced by the increase in dissolved Fe(II) and the presence of solid Fe(II) and elemental sulfur (S0) in both the columns. A conceptual model was built using accumulated S0 and Fe(II) produced in the columns to calculate the proportions of sulfidization-induced Fe(III) (oxyhydro)oxide reduction and non-sulfidization-induced Fe(III) (oxyhydro)oxide reduction. Fe(III) reduction via sulfidization occurred preferentially in the inlet ends (LS-column, 31 %; HS-column, 86 %), while Fe(III) reduction via non-sulfidization processes predominated in the outlet ends (LS-column, 96 %; HS-column, 86 %), and was attributed to the metabolism of genera associated with Fe(III) reduction (including Shewanella, Ferribacterium, and Desulfuromonas). Arsenic was mobilized in the columns via sulfidization and non-sulfidization processes. More As was released from the solid of the HS-column than that of the LS-column due to the higher intensity of sulfidization in the presence of higher concentrations of dissolved S(-II). Overall, this study highlights the sulfidization of As-bearing Fe(III) (oxyhydro)oxides as an important As-mobilizing pathway in complex As-Fe-S bio-hydrogeochemical networks.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Biogeology and Environmental Geology and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Tiantian Ke
- State Key Laboratory of Biogeology and Environmental Geology and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Cui Ren
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Guangyu Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Laura A Richards
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - David A Polya
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
7
|
Hashimoto Y, Shimamura S, Tame A, Sawayama S, Miyazaki J, Takai K, Nakagawa S. Physiological and comparative proteomic characterization of Desulfolithobacter dissulfuricans gen. nov., sp. nov., a novel mesophilic, sulfur-disproportionating chemolithoautotroph from a deep-sea hydrothermal vent. Front Microbiol 2022; 13:1042116. [PMID: 36532468 PMCID: PMC9751629 DOI: 10.3389/fmicb.2022.1042116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 03/19/2024] Open
Abstract
In deep-sea hydrothermal environments, inorganic sulfur compounds are important energy substrates for sulfur-oxidizing, -reducing, and -disproportionating microorganisms. Among these, sulfur-disproportionating bacteria have been poorly understood in terms of ecophysiology and phylogenetic diversity. Here, we isolated and characterized a novel mesophilic, strictly chemolithoautotrophic, diazotrophic sulfur-disproportionating bacterium, designated strain GF1T, from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc, Japan. Strain GF1T disproportionated elemental sulfur, thiosulfate, and tetrathionate in the presence of ferrihydrite. The isolate also grew by respiratory hydrogen oxidation coupled to sulfate reduction. Phylogenetic and physiological analyses support that strain GF1T represents the type strain of a new genus and species in the family Desulfobulbaceae, for which the name Desulfolithobacter dissulfuricans gen. nov. sp. nov. is proposed. Proteomic analysis revealed that proteins related to tetrathionate reductase were specifically and abundantly produced when grown via thiosulfate disproportionation. In addition, several proteins possibly involved in thiosulfate disproportionation, including those encoded by the YTD gene cluster, were also found. The overall findings pointed to a possible diversity of sulfur-disproportionating bacteria in hydrothermal systems and provided a refined picture of microbial sulfur disproportionation.
Collapse
Affiliation(s)
- Yurina Hashimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Akihiro Tame
- General Affairs Department, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Department of Marine and Earth Sciences, Marine Works Japan Ltd., Yokosuka, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Junichi Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Japan
| |
Collapse
|
8
|
Li S, Jiang Z, Ji G. Effect of sulfur sources on the competition between denitrification and DNRA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119322. [PMID: 35447253 DOI: 10.1016/j.envpol.2022.119322] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The fate of nitrogen is controlled by the competition between nitrate reduction pathways. Denitrification removes nitrogen in the system to the atmosphere, whereas dissimilatory nitrate reduction to ammonia (DNRA) retains nitrate in the form of ammonia. Different microbes specialize in the oxidation of different electron donors, thus electron donors might influence the outcomes of the competition. Here, we investigated the fate of nitrate with five forms of sulfur as electron donors. Chemoautotrophic nitrate reduction did not continue after the passages of the enrichments with sulfide, sulfite and pyrite. Nitrate reduction rate was the highest in the enrichment with thiosulfate. Denitrification was stimulated and no DNRA was observed with thiosulfate, while both denitrification and DNRA were stimulated with elemental sulfur. Metagenomes of the enrichments were assembled and binned into ten genomes. The enriched populations with thiosulfate included Thiobacillus, Lentimicrobium, Sulfurovum and Hydrogenophaga, all of which contained genes involved in sulfur oxidation. Elemental sulfur-based DNRA was performed by Thiobacillus (with NrfA and NirB) and Nocardioides (with only NirB). Our study established a link between sulfur sources, nitrate reduction pathways and microbial populations.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Alain K, Aronson HS, Allioux M, Yvenou S, Amend JP. Sulfur disproportionation is exergonic in the vicinity of marine hydrothermal vents. Environ Microbiol 2022; 24:2210-2219. [PMID: 35315563 DOI: 10.1111/1462-2920.15975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
Sulfur is abundant in different oxidation states in hydrothermal ecosystems, where it plays a central role in microbial energy production. The contribution of microbially catalyzed disproportionation of elemental sulfur (S0 ) to the energy fluxes of this ecosystem is unknown. Indeed, within the current knowledge it is impossible to study this process in a global way due to the lack of specific genetic markers and because of the difficulties in unraveling the isotopic signals from the different reactions of the sulfur cycle. In this context, calculations of the Gibbs energy (∆Gr) of sulfur disproportionation can identify whether this process is thermodynamically favorable and provides sufficient energy yields for growth at the temperatures, pressures, and chemical compositions found in the various niches of the hydrothermal ecosystem. Herein, free energy yield calculations were performed using internally consistent thermodynamic properties and geochemical data from four different hydrothermal systems. These calculations showed that S0 -disproportionation is sufficiently exergonic to allow growth in most niches of the hydrothermal ecosystems, regardless of the geological and geochemical context, and depth; it is most favorable at elevated temperatures and alkaline pH, at low sulfide and sulfate concentrations, and in the presence of sulfide-chelating minerals, which are common in these environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Karine Alain
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280, Plouzané, France
| | - Heidi S Aronson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089
| | - Maxime Allioux
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280, Plouzané, France
| | - Stéven Yvenou
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280, Plouzané, France
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, 90089
| |
Collapse
|
10
|
Metagenomic Insights into the Structure of Microbial Communities Involved in Nitrogen Cycling in Two Integrated Multitrophic Aquaculture (IMTA) Ponds. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The microbial structure and metabolic potential, particularly with regard to nitrogen (N) cycling, in integrated multitrophic aquaculture (IMTA) ponds with shrimp remain unclear. In this study, an analysis of microbial community taxonomic diversity and a metagenomic analysis of N-related genes were performed in a shrimp-crab pond (Penaeus japonicus-Portunus trituberculatus, SC) and a shrimp-crab-clam pond (P. japonicus-P. trituberculatus-Sinonovacula constricta, SCC) to evaluate microbial structure and N transformation capacities in these two shrimp IMTA ponds. The composition of the microbial communities was similar between SC and SCC, but the water and sediments shared few common members in either pond. The relative abundances of N cycling genes were significantly higher in sediment than in water in both SC and SCC, except for assimilatory nitrate reduction genes. The main drivers of the differences in the relative abundances of N cycling genes in SC and SCC were salinity and pH in water and the NO2− and NH4+ contents of pore water in sediment. These results indicate that the coculture of S. constricta in a shrimp-crab pond may result in decreased N cycling in sediment. The reduced N flux in the shrimp IMTA ponds primarily originates within the sediment, except for assimilatory nitrate reduction.
Collapse
|
11
|
Genetic Potential of Dissulfurimicrobium hydrothermale, an Obligate Sulfur-Disproportionating Thermophilic Microorganism. Microorganisms 2021; 10:microorganisms10010060. [PMID: 35056509 PMCID: PMC8780430 DOI: 10.3390/microorganisms10010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022] Open
Abstract
The biochemical pathways of anaerobic sulfur disproportionation are only partially deciphered, and the mechanisms involved in the first step of S0-disproportionation remain unknown. Here, we present the results of sequencing and analysis of the complete genome of Dissulfurimicrobium hydrothermale strain Sh68T, one of two strains isolated to date known to grow exclusively by anaerobic disproportionation of inorganic sulfur compounds. Dissulfurimicrobium hydrothermale Sh68T is a motile, thermophilic, anaerobic, chemolithoautotrophic microorganism isolated from a hydrothermal pond at Uzon caldera, Kamchatka, Russia. It is able to produce energy and grow by disproportionation of elemental sulfur, sulfite and thiosulfate. Its genome consists of a circular chromosome of 2,025,450 base pairs, has a G + C content of 49.66% and a completion of 97.6%. Genomic data suggest that CO2 assimilation is carried out by the Wood–Ljungdhal pathway and that central anabolism involves the gluconeogenesis pathway. The genome of strain Sh68T encodes the complete gene set of the dissimilatory sulfate reduction pathway, some of which are likely to be involved in sulfur disproportionation. A short sequence protein of unknown function present in the genome of strain Sh68T is conserved in the genomes of a large panel of other S0-disproportionating bacteria and was absent from the genomes of microorganisms incapable of elemental sulfur disproportionation. We propose that this protein may be involved in the first step of elemental sulfur disproportionation, as S0 is poorly soluble and unable to cross the cytoplasmic membrane in this form.
Collapse
|
12
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
13
|
Pang Y, Wang J, Li S, Ji G. Long-term sulfide input enhances chemoautotrophic denitrification rather than DNRA in freshwater lake sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116201. [PMID: 33321438 DOI: 10.1016/j.envpol.2020.116201] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Partitioning between nitrate reduction pathways, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) determines the fate of nitrate removal and thus it is of great ecological importance. Sulfide (S2-) is a potentially important factor that influences the role of denitrification and DNRA. However, information on the impact of microbial mechanisms for S2- on the partitioning of nitrate reduction pathways in freshwater environments is still lacking. This study investigated the effects of long-term (108 d) S2- addition on nitrate reduction pathways and microbial communities in the sediments of two different freshwater lakes. The results show that the increasing S2- addition enhanced the coupling of S2- oxidation with denitrification instead of DNRA. The sulfide-oxidizing denitrifier, Thiobacillus, was significantly enriched in the incubations of both lake samples with S2- addition, which indicates that it may be the key genus driving sulfide-oxidizing denitrification in the lake sediments. During S2- incubation of the Hongze Lake sample, which had lower inherent organic carbon (C) and sulfate (SO42-), Thiobacillus was more enriched and played a dominant role in the microbial community; while during that of the Nansi Lake sample, which had higher inherent organic C and SO42-, Thiobacillus was less enriched, but increasing abundances of sulfate reducing bacteria (Desulfomicrobium, Desulfatitalea and Geothermobacter) were observed. Moreover, sulfide-oxidizing denitrifiers and sulfate reducers were enriched in the Nansi Lake control treatment without external S2- input, which suggests that internal sulfate release may promote the cooperation between sulfide-oxidizing denitrifiers and sulfate reducers. This study highlights the importance of sulfide-driven denitrification and the close coupling between the N and S cycles in freshwater environments, which are factors that have often been overlooked.
Collapse
Affiliation(s)
- Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, PR China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
14
|
Slobodkina G, Allioux M, Merkel A, Alain K, Jebbar M, Slobodkin A. Genome analysis of Thermosulfuriphilus ammonigenes ST65 T, an anaerobic thermophilic chemolithoautotrophic bacterium isolated from a deep-sea hydrothermal vent. Mar Genomics 2020; 54:100786. [PMID: 33222892 DOI: 10.1016/j.margen.2020.100786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
Thermosulfuriphilus ammonigenes ST65T is an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent chimney. T. ammonigenes is an obligate chemolithoautotroph utilizing elemental sulfur as an electron donor and nitrate as an electron acceptor with sulfate and ammonium formation. It also is able to grow by disproportionation of elemental sulfur, thiosulfate and sulfite. Here, we present the complete genome sequence of strain ST65T. The genome consists of a single chromosome of 2,287,345 base pairs in size and has a G + C content of 51.9 mol%. The genome encodes 2172 proteins, 48 tRNA genes, and 3 rRNA genes. Genome analysis revealed a complete set of genes essential to CO2 fixation and gluconeogenesis. Homologs of genes encoding known enzyme systems for nitrate ammonification are absent in the genome of T. ammonigenes assuming unique mechanism for this pathway. The genome of strain ST65T encodes a complete set of genes necessary for dissimilatory sulfate reduction, which are probably involved in sulfur disproportionation and anaerobic oxidation. This is the first reported genome of a bacterium from the genus Thermosulfuriphilus, providing insights into the microbial contribution into carbon, sulfur and nitrogen cycles in the deep-sea hydrothermal vent environment.
Collapse
Affiliation(s)
- Galina Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia.
| | - Maxime Allioux
- Univ Brest, CNRS, Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, LIA1211, MicrobSea, F-29280, Plouzané, France
| | - Alexander Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, LIA1211, MicrobSea, F-29280, Plouzané, France
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, LIA1211, MicrobSea, F-29280, Plouzané, France
| | - Alexander Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| |
Collapse
|
15
|
Allioux M, Yvenou S, Slobodkina G, Slobodkin A, Shao Z, Jebbar M, Alain K. Genomic Characterization and Environmental Distribution of a Thermophilic Anaerobe Dissulfurirhabdus thermomarina SH388 T Involved in Disproportionation of Sulfur Compounds in Shallow Sea Hydrothermal Vents. Microorganisms 2020; 8:microorganisms8081132. [PMID: 32727039 PMCID: PMC7463578 DOI: 10.3390/microorganisms8081132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
Marine hydrothermal systems are characterized by a pronounced biogeochemical sulfur cycle with the participation of sulfur-oxidizing, sulfate-reducing and sulfur-disproportionating microorganisms. The diversity and metabolism of sulfur disproportionators are studied to a much lesser extent compared with other microbial groups. Dissulfurirhabdus thermomarina SH388T is an anaerobic thermophilic bacterium isolated from a shallow sea hydrothermal vent. D. thermomarina is an obligate chemolithoautotroph able to grow by the disproportionation of sulfite and elemental sulfur. Here, we present the results of the sequencing and analysis of the high-quality draft genome of strain SH388T. The genome consists of a one circular chromosome of 2,461,642 base pairs, has a G + C content of 71.1 mol% and 2267 protein-coding sequences. The genome analysis revealed a complete set of genes essential to CO2 fixation via the reductive acetyl-CoA (Wood-Ljungdahl) pathway and gluconeogenesis. The genome of D. thermomarina encodes a complete set of genes necessary for the dissimilatory reduction of sulfates, which are probably involved in the disproportionation of sulfur. Data on the occurrences of Dissulfurirhabdus 16S rRNA gene sequences in gene libraries and metagenome datasets showed the worldwide distribution of the members of this genus. This study expands our knowledge of the microbial contribution into carbon and sulfur cycles in the marine hydrothermal environments.
Collapse
Affiliation(s)
- Maxime Allioux
- Univ Brest, CNRS, IFREMER, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.A.); (S.Y.); (M.J.)
| | - Stéven Yvenou
- Univ Brest, CNRS, IFREMER, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.A.); (S.Y.); (M.J.)
| | - Galina Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (G.S.); (A.S.)
| | - Alexander Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (G.S.); (A.S.)
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
| | - Mohamed Jebbar
- Univ Brest, CNRS, IFREMER, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.A.); (S.Y.); (M.J.)
| | - Karine Alain
- Univ Brest, CNRS, IFREMER, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.A.); (S.Y.); (M.J.)
- Correspondence:
| |
Collapse
|
16
|
Slobodkin AI, Slobodkina GB. Diversity of Sulfur-Disproportionating Microorganisms. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050138] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Sun QL, Sun YY, Zhang J, Luan ZD, Lian C, Liu SQ, Yu C. High temperature-induced proteomic and metabolomic profiles of a thermophilic Bacillus manusensis isolated from the deep-sea hydrothermal field of Manus Basin. J Proteomics 2019; 203:103380. [PMID: 31102757 DOI: 10.1016/j.jprot.2019.103380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
Abstract
Thermophiles are organisms that grow optimally at 50 °C-80 °C and studies on the survival mechanisms of thermophiles have drawn great attention. Bacillus manusensis S50-6 is the type strain of a new thermophilic species isolated from hydrothermal vent in Manus Basin. In this study, we examined the growth and global responses of S50-6 to high temperature on molecular level using multi-omics method (genomics, proteomics, and metabolomics). S50-6 grew optimally at 50 °C (Favorable, F) and poorly at 65 °C (Non-Favorable, NF); it formed spores at F but not at NF condition. At NF condition, S50-6 formed long filaments containing undivided cells. A total of 1621 proteins were identified at F and NF conditions, and 613 proteins were differentially expressed between F and NF. At NF condition, proteins of glycolysis, rRNA mature and modification, and DNA/protein repair were up-regulated, whereas proteins of sporulation and amino acid/nucleotide metabolism were down-regulated. Consistently, many metabolites associated with amino acid and nucleotide metabolic processes were down-regulated at NF condition. Our results revealed molecular strategies of deep-sea B. manusensis to survive at unfavorable high temperature and provided new insights into the thermotolerant mechanisms of thermophiles. SIGNIFICANCE: In this study, we systematically characterized the genomic, proteomic and metabolomic profiles of a thermophilic deep-sea Bacillus manusensis under different temperatures. Based on these analysis, we propose a model delineating the global responses of B. manusensis to unfavorable high temperature. Under unfavorable high temperature, glycolysis is a more important energy supply pathway; protein synthesis is subjected to more stringent regulation by increased tRNA modification; protein and DNA repair associated proteins are enhanced in production to promote heat survival. In contrast, energy-costing pathways, such as sporulation, are repressed, and basic metabolic pathways, such as amino acid and nucleotide metabolisms, are slowed down. Our results provide new insights into the thermotolerant mechanisms of thermophilic Bacillus.
Collapse
Affiliation(s)
- Qing-Lei Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhen-Dong Luan
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chao Lian
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shi-Qi Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Multidisciplinary involvement and potential of thermophiles. Folia Microbiol (Praha) 2018; 64:389-406. [PMID: 30386965 DOI: 10.1007/s12223-018-0662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The full biotechnological exploitation of thermostable enzymes in industrial processes is necessary for their commercial interest and industrious value. The heat-tolerant and heat-resistant enzymes are a key for efficient and cost-effective translation of substrates into useful products for commercial applications. The thermophilic, hyperthermophilic, and microorganisms adapted to extreme temperatures (i.e., low-temperature lovers or psychrophiles) are a rich source of thermostable enzymes with broad-ranging thermal properties, which have structural and functional stability to underpin a variety of technologies. These enzymes are under scrutiny for their great biotechnological potential. Temperature is one of the most critical parameters that shape microorganisms and their biomolecules for stability under harsh environmental conditions. This review describes in detail the sources of thermophiles and thermostable enzymes from prokaryotes and eukaryotes (microbial cell factories). Furthermore, the review critically examines perspectives to improve modern biocatalysts, its production and performance aiming to increase their value for biotechnology through higher standards, specificity, resistance, lowing costs, etc. These thermostable and thermally adapted extremophilic enzymes have been used in a wide range of industries that span all six enzyme classes. Thus, in particular, target of this review paper is to show the possibility of both high-value-low-volume (e.g., fine-chemical synthesis) and low-value-high-volume by-products (e.g., fuels) by minimizing changes to current industrial processes.
Collapse
|
19
|
Frolova AA, Slobodkina GB, Baslerov RV, Novikov AA, Bonch-Osmolovskaya EA, Slobodkin AI. Thermosulfurimonas marina sp. nov., an Autotrophic Sulfur-Disproportionating and Nitrate-Reducing Bacterium Isolated from a Shallow-Sea Hydrothermal Vent. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|