1
|
Klinger-Bowen R, Yamasaki LS, Iwai T, Peppers D, Fowler C, Yacoub J, Weese D, Odani J, Wong M. Francisella orientalis DNA detected in feral tilapia populations in Hawai'i. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:321-329. [PMID: 39639520 DOI: 10.1002/aah.10233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Francisella orientalis is a bacterial pathogen that is responsible for substantial mortalities in warmwater fish, such as tilapia, and has negatively impacted the aquaculture industry globally. Starting in the mid-1990s, periodic F. orientalis outbreaks in Hawai'i led to severe mortalities in cultured and feral tilapia populations on Oahu. In an attempt to limit the outbreak's impact on tilapia aquaculture in Hawai'i, the Hawai'i Department of Agriculture Plant Quarantine Division issued a moratorium on the export of tilapia from Oahu to the other Hawaiian Islands. Despite reported high incidences of F. orientalis from cultured tilapia on Oahu and from around the world, the moratorium continues to remain in effect to this day. METHODS To assess the prevalence of F. orientalis in feral tilapia populations across the Hawaiian Islands, tilapia were collected from streams on Kauai, Oahu, Maui, Moloka'i, and the Big Island (Hawai'i) and were screened using a combination of molecular, bacteriological, and histological techniques. RESULT Although signs of infection (i.e., granulomas) were observed in fish on all five islands, molecular screening using quantitative polymerase chain reaction only detected the presence of F. orientalis on the islands of Oahu, Maui, and Kauai. CONCLUSION These findings suggest that F. orientalis is prevalent in feral tilapia populations across the Hawaiian Islands.
Collapse
Affiliation(s)
- RuthEllen Klinger-Bowen
- Research Corporation of University of Hawai'i, Honolulu, Hawai'i, USA
- University of Hawai'i Sea Grant College Program, Honolulu, Hawai'i, USA
| | - Lei S Yamasaki
- Hawai'i Department of Agriculture, Animal Industry Division, Animal Disease Control Branch, Aiea, Hawai'i, USA
| | - Thomas Iwai
- Island Aquaculture and Aquaponics Company, Kaneohe, Hawai'i, USA
| | - Daquille Peppers
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, USA
| | - Caroline Fowler
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, USA
| | - Jordan Yacoub
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, USA
| | - David Weese
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, USA
| | - Jenee Odani
- College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Michael Wong
- Animal and Veterinary Services Program, Biomedical Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| |
Collapse
|
2
|
Reis FYT, Rocha VP, Janampa-Sarmiento PC, Santos ÁF, Leibowitz MP, Luz RK, Pierezan F, Gallani SU, Tavares GC, Figueiredo HCP. Susceptibility of Tambaqui ( Colossoma macropomum) to Nile Tilapia-Derived Streptococcus agalactiae and Francisella orientalis. Microorganisms 2024; 12:2440. [PMID: 39770643 PMCID: PMC11676801 DOI: 10.3390/microorganisms12122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Nile tilapia (Oreochromis niloticus) and tambaqui (Colossoma macropomum) are the two most produced freshwater fishes in Brazil. This study investigated the potential pathogenicity of Streptococcus agalactiae and Francisella orientalis, previously isolated from diseased Nile tilapia, to tambaqui. Experimental infection trials were conducted in juvenile tambaqui at a dose of approximately 107 CFU fish-1, assessing clinical signs, mortality, bacterial recovery, and histopathological changes. Results demonstrated that S. agalactiae exhibited high pathogenicity to tambaqui, causing rapid disease progression, high mortality (83.33%) within 48 h post-infection, and severe lesions in multiple organs, under the experimental conditions. In contrast, F. orientalis infection did not result in mortality or clinical signs, despite bacterial recovery and granulomatous inflammation observed in the tissues. This study highlights the need to consider the potential impact of these pathogens in tambaqui farming.
Collapse
Affiliation(s)
- Francisco Yan Tavares Reis
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Victória Pontes Rocha
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Peter Charrie Janampa-Sarmiento
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Ágna Ferreira Santos
- Department of Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (Á.F.S.); (F.P.)
| | - Márcia Pimenta Leibowitz
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Ronald Kennedy Luz
- Aquaculture Laboratory, Department of Animal Science, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Felipe Pierezan
- Department of Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (Á.F.S.); (F.P.)
| | - Sílvia Umeda Gallani
- Postgraduate Program in Aquaculture, Nilton Lins University, Manaus 69058-030, Amazonas, Brazil;
| | - Guilherme Campos Tavares
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Henrique César Pereira Figueiredo
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| |
Collapse
|
3
|
Candelori A, Di Giuseppe G, Villalobo E, Sjödin A, Vallesi A. Bipolar Biogeographical Distribution of Parafrancisella Bacteria Carried by the Ciliate Euplotes. MICROBIAL ECOLOGY 2023; 86:3128-3132. [PMID: 37433980 DOI: 10.1007/s00248-023-02263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Parafrancisella adeliensis, a Francisella-like endosymbiont, was found to reside in the cytoplasm of an Antarctic strain of the bipolar ciliate species, Euplotes petzi. To inquire whether Euplotes cells collected from distant Arctic and peri-Antarctic sites host Parafrancisella bacteria, wild-type strains of the congeneric bipolar species, E. nobilii, were screened for Parafrancisella by in situ hybridization and 16S gene amplification and sequencing. Results indicate that all Euplotes strains analyzed contained endosymbiotic bacteria with 16S nucleotide sequences closely similar to the P. adeliensis 16S gene sequence. This finding suggests that Parafrancisella/Euplotes associations are not endemic to Antarctica, but are common in both the Antarctic and Arctic regions.
Collapse
Affiliation(s)
- Annalisa Candelori
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | | | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Andreas Sjödin
- Division of CBRN Security and Defense, FOI - Swedish Defense Research Agency, Umeå, Sweden
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| |
Collapse
|
4
|
Thompson KD, Rodkhum C, Bunnoy A, Thangsunan P, Kitiyodom S, Sukkarun P, Yostawornkul J, Yata T, Pirarat N. Addressing Nanovaccine Strategies for Tilapia. Vaccines (Basel) 2023; 11:1356. [PMID: 37631924 PMCID: PMC10459980 DOI: 10.3390/vaccines11081356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023] Open
Abstract
Tilapia is the world's most extensively farmed species after carp. It is an attractive species for aquaculture as it grows quickly, reaching harvest size within six to seven months of production, and provides an important source of food and revenue for many low-income families, especially in low- to middle-income countries. The expansion of tilapia aquaculture has resulted in an intensification of farming systems, and this has been associated with increased disease outbreaks caused by various pathogens, mostly bacterial and viral agents. Vaccination is routinely used to control disease in higher-value finfish species, such as Atlantic salmon. At the same time, many tilapia farmers are often unwilling to vaccinate their fish by injection once the fish have been moved to their grow-out site. Alternative vaccination strategies are needed to help tilapia farmers accept and use vaccines. There is increasing interest in nanoparticle-based vaccines as alternative methods for delivering vaccines to fish, especially for oral and immersion administration. They can potentially improve vaccine efficacy through the controlled release of antigens, protecting antigens from premature proteolytic degradation in the gastric tract, and facilitating antigen uptake and processing by antigen-presenting cells. They can also allow targeted delivery of the vaccine at mucosal sites. This review provides a brief overview of the bacterial and viral diseases affecting tilapia aquaculture and vaccine strategies for farmed tilapia. It focuses on the use of nanovaccines to improve the acceptance and uptake of vaccines by tilapia farmers.
Collapse
Affiliation(s)
- Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Anurak Bunnoy
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Patcharapong Thangsunan
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Sirikorn Kitiyodom
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Pimwarang Sukkarun
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 90000, Thailand;
| | - Jakarwan Yostawornkul
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nopadon Pirarat
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| |
Collapse
|
5
|
Bunnoy A, Thompson KD, Thangsunan P, Chokmangmeepisarn P, Yata T, Pirarat N, Kitiyodom S, Thangsunan P, Sukkarun P, Prukbenjakul P, Panthukumphol N, Morishita M, Srisapoome P, Rodkhum C. Development of a bivalent mucoadhesive nanovaccine to prevent francisellosis and columnaris diseases in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108813. [PMID: 37182796 DOI: 10.1016/j.fsi.2023.108813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
The occurrence of francisellosis caused by Francisella orientalis sp. nov. (Fo) and columnaris disease caused by Flavobacterium oreochromis (For) is negatively impacting Nile tilapia (Oreochromis niloticus) production, especially when high stocking densities are used. A new and innovative bivalent mucoadhesive nanovaccine was developed in this study for immersion vaccination of tilapia against francisellosis and columnaris disease. It was shown to have the potential to improve both innate and adaptive immunity in vaccinated Nile tilapia. It increased innate immune parameters, such as lysozyme activity, bactericidal activity, phagocytosis, phagocytic index, and total serum IgM antibody levels. Additionally, the vaccine was effective in elevating specific adaptive immune responses, including IgM antibody levels against Fo and For vaccine antigens and upregulating immune-related genes IgM, IgT, CD4+, MHCIIα, and TCRβ in the head kidney, spleen, peripheral blood leukocytes, and gills of vaccinated fish. Furthermore, fish vaccinated with the mucoadhesive nanovaccine showed higher survival rates and relative percent survival after being challenged with either single or combined infections of Fo and For. This vaccine is anticipated to be beneficial for large-scale immersion vaccination of tilapia and may be a strategy for shortening vaccination times and increasing immune protection against francisellosis and columnaris diseases in tilapia aquaculture.
Collapse
Affiliation(s)
- Anurak Bunnoy
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, United Kingdom.
| | - Patcharapong Thangsunan
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Putita Chokmangmeepisarn
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Nopadon Pirarat
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Sirikorn Kitiyodom
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Pattanapong Thangsunan
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Pimwarang Sukkarun
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Pochara Prukbenjakul
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Naphat Panthukumphol
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Manami Morishita
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Prapansak Srisapoome
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
da Silva VG, Favero LM, Mainardi RM, Ferrari NA, Chideroli RT, Di Santis GW, de Souza FP, da Costa AR, Gonçalves DD, Nuez-Ortin WG, Isern-Subich MM, de Oliveira-Junior AG, Lopera-Barrero NM, Pereira UDP. Effect of an organic acid blend in Nile tilapia growth performance, immunity, gut microbiota, and resistance to challenge against francisellosis. Res Vet Sci 2023; 159:214-224. [PMID: 37167686 DOI: 10.1016/j.rvsc.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Organic acids (OAs) are a class of feed additives that have prophylactic and inhibitory properties against pathogenic bacteria. In this study, we investigated growth performance, innate immune response, gut microbiota, and disease resistance against Francisella orientalis F1 in Nile tilapia (Oreochromis niloticus) fed different doses of Bacti-nil®Aqua, a blend of short- and medium-chain OAs. For 21 days, 680 juvenile tilapias were fed a control diet or diets supplemented with a 0.3% (D3) or 0.5% (D5) OA blend. The feed conversion rate of fish fed the 0.5% enriched diet was considerably lower (p < 0.05) than that of the fish fed the basal diet. Lysozyme and serum bactericidal activities were significantly elevated following OA administration. After infection, no differences in the diversity and composition of gut microbiota were observed between the groups. After the bacterial challenge, the mortality was significantly lower in group D5 (p < 0.01). The diet supplemented with Bacti-nil®Aqua (Adisseo) improved the immune response and resistance of tilapia juveniles against F. orientalis infection. Thus, this OA blend could serve as a feed additive with good activity against F. orientalis.
Collapse
Affiliation(s)
- Vanessa Gomes da Silva
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Leonardo Mantovani Favero
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Raffaella Menegheti Mainardi
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Natália Amoroso Ferrari
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Roberta Torres Chideroli
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Giovana Wingeter Di Santis
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | | | - Arthur Roberto da Costa
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Daniela Dib Gonçalves
- Department of Preventive Veterinary Medicine and Public Health, Paranaense University, Umuarama, PR, Brazil
| | | | | | | | | | - Ulisses de Pádua Pereira
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil.
| |
Collapse
|
7
|
Díaz-Ibarrola D, Martínez D, Vargas-Lagos C, Saravia J, Vargas-Chacoff L. Transcriptional modulation of immune genes in gut of Sub-Antarctic notothenioid fish Eleginops maclovinus challenged with Francisella noatunensis subsp. noatunensis. FISH & SHELLFISH IMMUNOLOGY 2022; 124:56-65. [PMID: 35367625 DOI: 10.1016/j.fsi.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The search for functional foods that improve the immune response has traditionally been focused on lymphoid tissue and the intestinal mucosa. However, it is unknown whether there is a different immune response in different portions of the gut following exposure to a bacterial pathogen. We challenged Eleginops maclovinus intraperitoneally (i.p) with Francisella noatunensis subsp. noatunensis and measured mRNA transcripts related to innate and adaptive immune responses in different parts of the gut (foregut, midgut and hindgut). We used control (i.p only with bacterial culture medium), low dose (i.p of F. noatunensis at 1 × 101 bact/μL), medium dose (i.p of F. noatunensis at 1 × 105 bact/μL) and high dose (i.p of F. noatunensis at 1 × 1010 bact/μL) groups in our experiments. We sampled fish at days 1, 3, 7, 14, 21, and 28 post-injection. We observed tissue-specific expression of TLR1, TLR5, TLR8, MHCI, MHCII and IgM, and transcription of these immune markers was lower in foregut and higher in midgut and hindgut. We detected Francisella genetic material (DNA) in fish stimulated with a high dose from day 1-28 in foregut, midgut, and hindgut. However, we could only detect Francisella DNA in fish stimulated the medium and low dose at later timepoints in the foregut (21-28 days post injection "dpi") and hindgut (low dose from day 7-28 dpi). Our results suggest that the immune responses to bacterial pathogens occur throughout the gut, but certain segments may be more susceptible to infection because of their cellular morphology (anterior, middle and posterior).
Collapse
Affiliation(s)
- Daniela Díaz-Ibarrola
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile.
| | - Danixa Martínez
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Vargas-Lagos
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Julia Saravia
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Luis Vargas-Chacoff
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile.
| |
Collapse
|
8
|
Del Rio-Rodriguez RE, Ramirez-Paredes JG, Soto-Rodriguez SA, Shapira Y, Huchin-Cortes MDJ, Ruiz-Hernandez J, Gomez-Solano MI, Haydon DJ. First evidence of fish nocardiosis in Mexico caused by Nocardia seriolae in farmed red drum (Sciaenops ocellatus, Linnaeus). JOURNAL OF FISH DISEASES 2021; 44:1117-1130. [PMID: 33848372 DOI: 10.1111/jfd.13373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Between August and December 2013, the offshore cages of a commercial marine farm culturing red drum Sciaenops ocellatus in Campeche Bay Mexico were affected by an outbreak of an ulcerative granulomatous disease with up to 70% cumulative mortality. Thirty-one adults displaying open ulcers on the skin were submitted for diagnosis. At necropsy, multiple white-yellowish nodules (0.1-0.5 cm in diameter) were present in all internal organs, where the kidney and the spleen were the most severely affected. Histopathology evinced typical systemic granulomatous formations. Gram and Ziehl-Neelsen stains on tissue imprints, bacterial swabs and tissue sections revealed Gram-positive, acid-fast, branching beaded long rod filamentous bacteria. Tissue samples resulted positive for nocardiosis with a Nocardia genus-specific nested PCR. Definite identification at the species level and taxonomic positioning of the fastidious pathogen were achieved through a specific Nocardia seriolae PCR and by sequencing the gyrB gene of pure isolates. After administration of antibiotics during fry production, a posterior follow-up monitoring (from 2014 to 2017) detected mild but recurrent outbreaks of the bacteria with no seasonality pattern. To the extent of our knowledge, this is the first report of piscine nocardiosis in Mexico and the first time this disease is detected in red drum.
Collapse
Affiliation(s)
| | | | - Sonia Araceli Soto-Rodriguez
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán Sinaloa, México
| | - Yechiam Shapira
- Phibro Israel - Aquaculture, Phibro Animal Health Corporation, Yoqneam, Israel
| | - Mariana Del Jesus Huchin-Cortes
- Laboratorio de Sanidad Acuícola, Instituto EPOMEX, Campus 6 de Investigaciones, Universidad Autónoma de Campeche, Campeche, México
| | - Judith Ruiz-Hernandez
- Laboratorio de Histología, Facultad de Ciencias Químico-Biológicas, Campus 5, Universidad Autónoma de Campeche, Campeche, México
| | - Monica Isela Gomez-Solano
- Laboratorio de Histología, Facultad de Ciencias Químico-Biológicas, Campus 5, Universidad Autónoma de Campeche, Campeche, México
| | - David J Haydon
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Berkshire, UK
| |
Collapse
|
9
|
Maekawa S, Pulpipat T, Wang PC, Chen SC. Transcriptome analysis of immune- and iron-related genes after Francisella noatunensis subsp. orientalis infection in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 111:36-48. [PMID: 33444737 DOI: 10.1016/j.fsi.2020.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Francisella noatunensis subsp. orientalis (Fno) is a gram-negative intracellular bacterium identified in many fish species worldwide, including cultured Nile tilapia (Oreochromis niloticus) in Taiwan. To investigate the gene expression responses to Fno infection, we performed transcriptome analysis of the head kidney and spleen in Nile tilapia using RNA-seq. Total RNA was extracted from the head kidney and spleen of infected (Fno-injected) and uninfected (control) tilapia at 1-day and 2-days post-infection, and RNA-seq was performed using the Illumina HiSeq™ 4000 platform. After de novo assembly, a total of 106,534 transcripts were detected. These transcripts were annotated and categorized into a total of 7171 genes based on the KEGG pathway database. Differentially expressed genes (DEGs) were significantly (2-fold difference comparing Fno and PBS groups at each time point) enriched in the immune-related pathways, including the following: complement and coagulation cascades, cytokine-cytokine receptor interaction, hematopoietic cell lineage, lysosome, phagosome. We identified the upregulation of inflammatory cytokine-, apoptosis-, and neutrophil-related genes, and downregulation of complement- and lymphocyte-related genes. Additionally, we found the induction of natural resistance-associated macrophage protein 1 (NRAMP1) and heme responsive gene-1 (HRG1). Anemia of inflammation, caused by intracellular iron storage in spleen after Fno infection, was also observed. This study provides natural disease control strategies against Fno infection in tilapia. It is suggested that intercellular iron storage is a host protection strategy.
Collapse
Affiliation(s)
- Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; General Research Service Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Theeraporn Pulpipat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
10
|
Kawahara M, Yoshitake K, Yoshinaga T, Itoh N. Francisellosis of Yesso scallops Mizuhopecten yessoensis in Japan is caused by a novel type of Francisella halioticida. DISEASES OF AQUATIC ORGANISMS 2021; 144:9-19. [PMID: 33704088 DOI: 10.3354/dao03574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Francisella halioticida, the causative agent of francisellosis of the giant abalone Haliotis gigantea, has also been isolated from Yesso scallops Mizuhopecten yessoensis, which presented with orange/pinkish lesions in the adductor muscle and experienced high mortality. However, it is not clear whether the F. halioticida isolated from the giant abalone and Yesso scallops are phenotypically and genetically identical to each other. The present study revealed that isolates from the giant abalone and Yesso scallops were phenotypically different, with slower growth in modified eugon broth and a lack of prolyl aminopeptidase and phenylalanine aminopeptidase in Yesso scallop isolates. Additionally, we found that 3 of 8 housekeeping genes were different between them. Based on these phenotypic and genetic differences, we propose that F. halioticida isolated from Yesso scallops in Japan be designated as the 'J-scallop type' to distinguish it from strains from abalone ('abalone type'). Whole-genome sequencing analysis of a strain belonging to the J-scallop type showed that the overall similarity between the J-scallop and abalone type strains was estimated to be 99.84%. In accordance with a lack of prolyl aminopeptidase activity, in general, all of the J-scallop type strains examined have a 1 bp deletion in the responsible gene encoding prolyl aminopeptidase. This deletion was confirmed in all F. halioticida in diseased Yesso scallops examined, suggesting that in Japan, francisellosis of Yesso scallops is caused by a novel type of F. halioticida and not by the abalone type.
Collapse
Affiliation(s)
- Miku Kawahara
- Laboratory of Fish Diseases, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
11
|
Miccoli A, Manni M, Picchietti S, Scapigliati G. State-of-the-Art Vaccine Research for Aquaculture Use: The Case of Three Economically Relevant Fish Species. Vaccines (Basel) 2021; 9:140. [PMID: 33578766 PMCID: PMC7916455 DOI: 10.3390/vaccines9020140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
In the last three decades, the aquaculture sector has experienced a 527% growth, producing 82 million tons for a first sale value estimated at 250 billion USD. Infectious diseases caused by bacteria, viruses, or parasites are the major causes of mortality and economic losses in commercial aquaculture. Some pathologies, especially those of bacterial origin, can be treated with commercially available drugs, while others are poorly managed. In fact, despite having been recognized as a useful preventive measure, no effective vaccination against many economically relevant diseases exist yet, such as for viral and parasitic infections. The objective of the present review is to provide the reader with an updated perspective on the most significant and innovative vaccine research on three key aquaculture commodities. European sea bass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), and Atlantic salmon (Salmo salar) were chosen because of their economic relevance, geographical distinctiveness, and representativeness of different culture systems. Scientific papers about vaccines against bacterial, viral, and parasitic diseases will be objectively presented; their results critically discussed and compared; and suggestions for future directions given.
Collapse
|
12
|
Öhrman C, Sahl JW, Sjödin A, Uneklint I, Ballard R, Karlsson L, McDonough RF, Sundell D, Soria K, Bäckman S, Chase K, Brindefalk B, Sozhamannan S, Vallesi A, Hägglund E, Ramirez-Paredes JG, Thelaus J, Colquhoun D, Myrtennäs K, Birdsell D, Johansson A, Wagner DM, Forsman M. Reorganized Genomic Taxonomy of Francisellaceae Enables Design of Robust Environmental PCR Assays for Detection of Francisella tularensis. Microorganisms 2021; 9:146. [PMID: 33440900 PMCID: PMC7826819 DOI: 10.3390/microorganisms9010146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, an increasing diversity of species has been recognized within the family Francisellaceae. Unfortunately, novel isolates are sometimes misnamed in initial publications or multiple sources propose different nomenclature for genetically highly similar isolates. Thus, unstructured and occasionally incorrect information can lead to confusion in the scientific community. Historically, detection of Francisella tularensis in environmental samples has been challenging due to the considerable and unknown genetic diversity within the family, which can result in false positive results. We have assembled a comprehensive collection of genome sequences representing most known Francisellaceae species/strains and restructured them according to a taxonomy that is based on phylogenetic structure. From this structured dataset, we identified a small number of genomic regions unique to F. tularensis that are putatively suitable for specific detection of this pathogen in environmental samples. We designed and validated specific PCR assays based on these genetic regions that can be used for the detection of F. tularensis in environmental samples, such as water and air filters.
Collapse
Affiliation(s)
- Caroline Öhrman
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - Andreas Sjödin
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Ingrid Uneklint
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Rebecca Ballard
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - Linda Karlsson
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Ryelan F. McDonough
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - David Sundell
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Kathleen Soria
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - Stina Bäckman
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Kitty Chase
- US Army Medical Research Institute, Fort Detrick, MD 21702, USA;
| | - Björn Brindefalk
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Shanmuga Sozhamannan
- Logistics Management Institute supporting Defense Biological Product Assurance Office (DBPAO) Joint Project Lead, CBRND Enabling Biotechnologies (JPL CBRND EB), Frederick, MD 21702, USA;
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Emil Hägglund
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Jose Gustavo Ramirez-Paredes
- Ridgeway Biologicals Limited a Ceva Santé Animale Company, Units 1-3 Old Station Business Park, Compton, Berkshire, England RG20 6NE, UK;
| | - Johanna Thelaus
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Duncan Colquhoun
- Fish Health Research Group, Norwegian Veterinary Institute, Oslo, Pb 750 Sentrum, 23 N-0106 Oslo, Norway;
| | - Kerstin Myrtennäs
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| | - Dawn Birdsell
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - Anders Johansson
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden;
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (J.W.S.); (R.B.); (R.F.M.); (K.S.); (D.B.); (D.M.W.)
| | - Mats Forsman
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE 901 82 Umeå, Sweden; (C.Ö.); (A.S.); (I.U.); (L.K.); (D.S.); (S.B.); (B.B.); (E.H.); (J.T.); (K.M.)
| |
Collapse
|
13
|
Pseudonocardia cytotoxica sp. nov., a novel actinomycete isolated from an Arctic fjord with potential to produce cytotoxic compound. Antonie van Leeuwenhoek 2020; 114:23-35. [PMID: 33230720 DOI: 10.1007/s10482-020-01490-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 01/20/2023]
Abstract
Herein we report the isolation of a novel actinomycete, strain MCCB 268T, from the sediment sample collected from a high Arctic fjord Kongsfjorden. MCCB 268T showed greater than 97% 16S rRNA gene sequence similarity with those of Pseudonocardia konjuensis LM 157T (98.06%), Pseudonocardia soli NW8-21 (97.22%) Pseudonocardia endophytica YIM 56035 (97.08%) and Pseudonocardia nantongensis KLBMP 1282 (97.34%) showing that the strain should be assigned to the genus Pseudonocardia. DNA-DNA hybridization with Pseudonocardia konjuensis LM 157T showed only 41.5% relatedness to strain MCCB 268T. The whole genome of the strain MCCB 268T was sequenced. Whole-genome average nucleotide identity, dDDH (%) and genome tree analysis demonstrated that strain significantly differed from other Pseudonocardia species. The G + C content was 70.5 mol%. MCCB 268T exhibited in vitro cytotoxicity and through bioassay guided fractionation followed by HPLC separation a cytotoxic compound (I) was isolated. The compound (I) was identified as 1-acetyl-β-carboline through NMR spectra and high-resolution mass spectrometry. Compound (I) showed cytotoxicity against lung cancer cell line and mode of anticancer activity was found to be through the induction of apoptosis. Based on the genotypic and phenotypic features, MCCB 268T ought to be classified as a novel species under the genus Pseudonocardia for which the name Pseudonocardia cytotoxica sp. nov. is proposed (= CCUG72333T = JCM32718T).
Collapse
|
14
|
Froböse N, Masjosthusmann K, Huss S, Correa-Martinez C, Mellmann A, Schuler F, Kahl B, Wittkowski H, Schaumburg F. A child with soft-tissue infection and lymphadenitis. New Microbes New Infect 2020; 38:100819. [PMID: 33304596 PMCID: PMC7718473 DOI: 10.1016/j.nmni.2020.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
We report a case of a soft-tissue infection with Francisella philomiragia, a rare opportunistic pathogen in individuals with chronic granulomatous disease.
Collapse
Affiliation(s)
- N.J. Froböse
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - K. Masjosthusmann
- General Paediatrics, University Children's Hospital Münster, Münster, Germany
| | - S. Huss
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | | | - A. Mellmann
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - F. Schuler
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - B.C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - H. Wittkowski
- Department of Paediatric Rheumatology and Immunology, University Children´s Hospital Münster, Münster, Germany
| | - F. Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
15
|
Poudyal S, Pulpipat T, Wang PC, Chen SC. Comparison of the pathogenicity of Francisella orientalis in Nile tilapia (Oreochromis niloticus), Asian seabass (Lates calcarifer) and largemouth bass (Micropterus salmoides) through experimental intraperitoneal infection. JOURNAL OF FISH DISEASES 2020; 43:1097-1106. [PMID: 32700447 DOI: 10.1111/jfd.13217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Francisella orientalis is a highly virulent, emerging bacterium that causes mass mortalities in tilapia. This pathogen also affects numerous other warm-water fish species, including three-line grunt, hybrid striped bass and various ornamental fish. This study sheds light on two new species of fish that are susceptible to F. orientalis. Asian seabass and largemouth bass showed variable levels of susceptibility in a bacterial challenge experiment. After intraperitoneally injected with a dose of 106 CFU/fish, a total of 64.28% and 21.42% mortalities were obtained in Asian seabass and largemouth bass, respectively. Meanwhile, Nile tilapia showed acute mortality of 100%. All fish showed typical lesions of francisellosis, including multifocal granulomas in the spleen and head kidney. Immunohistochemical analysis revealed strong positive signals inside the granulomas of all fish. The bacterial recovery in solid media from infected fish was highest in Nile tilapia (85.71%), followed by Asian seabass (35.71%) and largemouth bass (21.42%). PCR results tested 100% positive for Nile tilapia, and 78.57% and 21.42% for Asian seabass and largemouth bass, respectively. In conclusion, Asian seabass and largemouth bass are susceptible to this pathogen, which warrants new management strategies when employing predation polyculture systems of these species with tilapia.
Collapse
Affiliation(s)
- Sayuj Poudyal
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Theeraporn Pulpipat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
16
|
Kumar R, Bröms JE, Sjöstedt A. Exploring the Diversity Within the Genus Francisella - An Integrated Pan-Genome and Genome-Mining Approach. Front Microbiol 2020; 11:1928. [PMID: 32849479 PMCID: PMC7431613 DOI: 10.3389/fmicb.2020.01928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 01/13/2023] Open
Abstract
Pan-genome analysis is a powerful method to explore genomic heterogeneity and diversity of bacterial species. Here we present a pan-genome analysis of the genus Francisella, comprising a dataset of 63 genomes and encompassing clinical as well as environmental isolates from distinct geographic locations. To determine the evolutionary relationship within the genus, we performed phylogenetic whole-genome studies utilizing the average nucleotide identity, average amino acid identity, core genes and non-recombinant loci markers. Based on the analyses, the phylogenetic trees obtained identified two distinct clades, A and B and a diverse cluster designated C. The sizes of the pan-, core-, cloud-, and shell-genomes of Francisella were estimated and compared to those of two other facultative intracellular pathogens, Legionella and Piscirickettsia. Francisella had the smallest core-genome, 692 genes, compared to 886 and 1,732 genes for Legionella and Piscirickettsia respectively, while the pan-genome of Legionella was more than twice the size of that of the other two genera. Also, the composition of the Francisella Type VI secretion system (T6SS) was analyzed. Distinct differences in the gene content of the T6SS were identified. In silico approaches performed to identify putative substrates of these systems revealed potential effectors targeting the cell wall, inner membrane, cellular nucleic acids as well as proteins, thus constituting attractive targets for site-directed mutagenesis. The comparative analysis performed here provides a comprehensive basis for the assessment of the phylogenomic relationship of members of the genus Francisella and for the identification of putative T6SS virulence traits.
Collapse
Affiliation(s)
- Rajender Kumar
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jeanette E Bröms
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|