1
|
Mahmoud AA, Wang X, Liao X, Zhang S, Ding T, Ahn J. Impact of prophages on gut microbiota and disease associations. Microb Pathog 2025; 204:107642. [PMID: 40300731 DOI: 10.1016/j.micpath.2025.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
The gut microbiota plays an important role in maintaining host health by affecting various physiological functions. Among the diverse microbial communities in the gut, prophages are integral components of bacterial genomes, contributing significantly to bacterial evolution, ecology and pathogenicity. Prophages are capable of switching to lytic cycles in response to various internal and external factors. Factors that induce prophage induction include DNA damage, oxidative stress, nutrient availability, host immune response, quorum sensing, diet, secondary metabolites, antibiotics, and lifestyle changes. Prophage induction could contribute to both gut homeostasis and dysbiosis. Importantly, the connections between prophage induction and disorders such as inflammatory bowel disease, ulcerative colitis, and bacterial vaginosis highlight the dual roles of prophages in both health and disease. Although therapeutic approaches such as phage therapy (PT), fecal microbiota transplants (FMT), and fecal virome transplants (FVT) have gained attention, the concept of dietary prophage induction therapy offers a novel, targeted method to modulate gut microbiota. In spite of recent advances in understanding the role of prophages in gut health, the exact mechanisms by which they influence gut health remain only partially understood. Therefore, further research is needed to elucidate additional molecular mechanisms of prophage induction pathways and to explore their implications for gut microbiota dynamics and disease associations. This review discusses the molecular mechanisms and key factors that trigger prophage induction in the gut. Insights into these processes could lead to innovative therapeutic strategies that utilize prophages to support gut health.
Collapse
Affiliation(s)
- Aminu Abdullahi Mahmoud
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoyu Wang
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Juhee Ahn
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
2
|
Costa P, Pereira C, Oliveira V, Gomes NCM, Romalde JL, Almeida A. Characterising phages for the control of pathogenic bacteria associated with bivalve consumption. Int J Food Microbiol 2025; 432:111096. [PMID: 39946989 DOI: 10.1016/j.ijfoodmicro.2025.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/14/2025] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
In the present study, five new bacteriophages (or phages) were characterized, and their efficacy in controlling pathogenic bacteria-Escherichia coli, Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, Aeromonas hydrophila, and Vibrio parahaemolyticus-associated with bivalve consumption was evaluated. The isolated phages include both siphovirus [vB_EcoS_UALMA_PCEc3 (PCEc3), vB_SeTS_UALMA_PCST1 (PCST1), and vB_VpaS_UALMA_PCVp3 (PCVp3)] and myovirus [vB_SeEM_UALMA_PCSE1 (PCSE1) and vB_AhyM_UALMA_PCAh2 (PCAh2)] morphotypes. Four phages are safe for bacterial control, with only one (PCAh2) showing potential lysogenic characteristics. All phages exhibited a narrow host range, capable of infecting up to six additional bacterial strains besides their original host, and four could infect the host bacteria of other phages. Adsorption rates ranged from 24% and 98% within 1 h. One-step growth assays revealed different latent periods, ranging from 10 to 120 min, and low to average burst sizes, ranging from 7.60 to 83.97 PFU/mL. Generally, increasing the multiplicity of infection (MOI) enhanced phage efficiency significantly. All phages effectively reduced the bacterial load of their respective hosts, achieving maximum reductions between 3.73 and 5.57 log CFU/mL within 10 h of treatment. These results suggest that phage biocontrol can be an effective alternative to combat pathogenic bacteria associated with bivalve consumption.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Lyu S, Xiong F, Qi T, Shen W, Guo Q, Han M, Liu L, Bu W, Yuan J, Lou B. Isolation and characterization of a novel temperate bacteriophage infecting Aeromonas hydrophila isolated from a Macrobrachium rosenbergii larvae pond. Virus Res 2024; 339:199279. [PMID: 37992971 PMCID: PMC10709362 DOI: 10.1016/j.virusres.2023.199279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Aeromonas hydrophila is an opportunistic pathogen that frequently leads to significant mortality in various commercially cultured aquatic species. Bacteriophages offer an alternative strategy for pathogens elimination. In this study, we isolated, identified, and characterized a novel temperate A. hydrophila phage, designated as P05B. The bacteriophage P05B is a myovirus based on its morphological features, and possesses the capability to lyse A. hydrophila strains isolated from shrimp. The optimal multiplicity of infection (MOI), adsorption rate, latent period, and burst size for phage P05B were determined to be 0.001, 91.7 %, 20 min, and 483 PFU/cell, respectively. Phage P05B displayed stability across a range of temperatures (28-50 °C) and pH values (4.0-10.0). Sequence analysis unveiled that the genome of phage P05B comprises 32,302 base pairs with an average G + C content of 59.4 %. A total of 40 open reading frames (ORF) were encoded within the phage P05B genome. The comparative genomic analyses clearly implied that P05B might represent a novel species of the genus Bielevirus under Peduoviridae family. A phylogenetic tree was reconstructed, demonstrating that P05B shares a close evolutionary relationship with other Aeromonas and Aeromonas phages. In conclusion, this study increased our knowledge about a new temperate phage of A. hydrophila with strong lytic ability.
Collapse
Affiliation(s)
- Sunjian Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Fulei Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Tianpeng Qi
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Weifeng Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Qi Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| | - Li Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China.
| | - Weishao Bu
- Yunhe County Qingjiang ecological breeding cooperative, Shipu Village, Jinshuitan Town, Yunhe County, Lishui, Zhejiang, 310018, PR China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, 999 South Hangchangqiao Road, Huzhou, Zhejiang, 313001, PR China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, Zhejiang, 310021, PR China
| |
Collapse
|
4
|
Silpe JE, Duddy OP, Johnson GE, Beggs GA, Hussain FA, Forsberg KJ, Bassler BL. Small protein modules dictate prophage fates during polylysogeny. Nature 2023; 620:625-633. [PMID: 37495698 PMCID: PMC10432266 DOI: 10.1038/s41586-023-06376-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Most bacteria in the biosphere are predicted to be polylysogens harbouring multiple prophages1-5. In studied systems, prophage induction from lysogeny to lysis is near-universally driven by DNA-damaging agents6. Thus, how co-residing prophages compete for cell resources if they respond to an identical trigger is unknown. Here we discover regulatory modules that control prophage induction independently of the DNA-damage cue. The modules bear little resemblance at the sequence level but share a regulatory logic by having a transcription factor that activates the expression of a neighbouring gene that encodes a small protein. The small protein inactivates the master repressor of lysis, which leads to induction. Polylysogens that harbour two prophages exposed to DNA damage release mixed populations of phages. Single-cell analyses reveal that this blend is a consequence of discrete subsets of cells producing one, the other or both phages. By contrast, induction through the DNA-damage-independent module results in cells producing only the phage sensitive to that specific cue. Thus, in the polylysogens tested, the stimulus used to induce lysis determines phage productivity. Considering the lack of potent DNA-damaging agents in natural habitats, additional phage-encoded sensory pathways to lysis likely have fundamental roles in phage-host biology and inter-prophage competition.
Collapse
Affiliation(s)
- Justin E Silpe
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Olivia P Duddy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Grace E Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Grace A Beggs
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Fatima A Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin J Forsberg
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Silpe JE, Duddy OP, Bassler BL. Induction mechanisms and strategies underlying interprophage competition during polylysogeny. PLoS Pathog 2023; 19:e1011363. [PMID: 37200239 PMCID: PMC10194989 DOI: 10.1371/journal.ppat.1011363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Affiliation(s)
- Justin E. Silpe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Olivia P. Duddy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
6
|
Bujak K, Decewicz P, Kaminski J, Radlinska M. Identification, Characterization, and Genomic Analysis of Novel Serratia Temperate Phages from a Gold Mine. Int J Mol Sci 2020; 21:ijms21186709. [PMID: 32933193 PMCID: PMC7556043 DOI: 10.3390/ijms21186709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the genus Serratia inhabit a variety of ecological niches like water, soil, and the bodies of animals, and have a wide range of lifestyles. Currently, the complete genome sequences of 25 Serratia phages are available in the NCBI database. All of them were isolated from nutrient-rich environments like sewage, with the use of clinical Serratia strains as hosts. In this study, we identified a novel Serratia myovirus named vB_SspM_BZS1. Both the phage and its host Serratia sp. OS31 were isolated from the same oligotrophic environment, namely, an abandoned gold mine (Zloty Stok, Poland). The BZS1 phage was thoroughly characterized here in terms of its genomics, morphology, and infection kinetics. We also demonstrated that Serratia sp. OS31 was lysogenized by mitomycin-inducible siphovirus vB_SspS_OS31. Comparative analyses revealed that vB_SspM_BZS1 and vB_SspS_OS31 were remote from the known Serratia phages. Moreover, vB_SspM_BZS1 was only distantly related to other viruses. However, we discovered similar prophage sequences in genomes of various bacteria here. Additionally, a protein-based similarity network showed a high diversity of Serratia phages in general, as they were scattered across nineteen different clusters. In summary, this work broadened our knowledge on the diverse relationships of Serratia phages.
Collapse
|
7
|
Tekedar HC, Arick MA, Hsu CY, Thrash A, Blom J, Lawrence ML, Abdelhamed H. Identification of Antimicrobial Resistance Determinants in Aeromonas veronii Strain MS-17-88 Recovered From Channel Catfish ( Ictalurus punctatus). Front Cell Infect Microbiol 2020; 10:348. [PMID: 32766165 PMCID: PMC7379393 DOI: 10.3389/fcimb.2020.00348] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Aeromonas veronii is a Gram-negative species ubiquitous in different aquatic environments and capable of causing a variety of diseases to a broad host range. Aeromonas species have the capability to carry and acquire antimicrobial resistance (AMR) elements, and currently multi-drug resistant (MDR) Aeromonas isolates are commonly found across the world. A. veronii strain MS-17-88 is a MDR strain isolated from catfish in the southeastern United States. The present study was undertaken to uncover the mechanism of resistance in MDR A. veronii strain MS-17-88 through the detection of genomic features. To achieve this, genomic DNA was extracted, sequenced, and assembled. The A. veronii strain MS-17-88 genome comprised 5,178,226-bp with 58.6% G+C, and it encoded several AMR elements, including imiS, ampS, mcr-7.1, mcr-3, catB2, catB7, catB1, floR, vat(F), tet(34), tet(35), tet(E), dfrA3, and tetR. The phylogeny and resistance profile of a large collection of A. veronii strains, including MS-17-88, were evaluated. Phylogenetic analysis showed a close relationship between MS-17-88 and strain Ae5 isolated from fish in China and ARB3 strain isolated from pond water in Japan, indicating a common ancestor of these strains. Analysis of phage elements revealed 58 intact, 63 incomplete, and 15 questionable phage elements among the 53 A. veronii genomes. The average phage element number is 2.56 per genome, and strain MS-17-88 is one of two strains having the maximum number of identified prophage elements (6 elements each). The profile of resistance against various antibiotics across the 53 A. veronii genomes revealed the presence of tet(34), mcr-7.1, mcr-3, and dfrA3 in all genomes (100%). By comparison, sul1 and sul2 were detected in 7.5% and 1.8% of A. veronii genomes. Nearly 77% of strains carried tet(E), and 7.5% of strains carried floR. This result suggested a low abundance and prevalence of sulfonamide and florfenicol resistance genes compared with tetracycline resistance among A. veronii strains. Overall, the present study provides insights into the resistance patterns among 53 A. veronii genomes, which can inform therapeutic options for fish affected by A. veronii.
Collapse
Affiliation(s)
- Hasan C. Tekedar
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Mark A. Arick
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, United States
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, United States
| | - Adam Thrash
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, United States
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Mark L. Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
8
|
Kabwe M, Brown T, Speirs L, Ku H, Leach M, Chan HT, Petrovski S, Lock P, Tucci J. Novel Bacteriophages Capable of Disrupting Biofilms From Clinical Strains of Aeromonas hydrophila. Front Microbiol 2020; 11:194. [PMID: 32117183 PMCID: PMC7033617 DOI: 10.3389/fmicb.2020.00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/28/2020] [Indexed: 12/26/2022] Open
Abstract
The increase in global warming has favored growth of a range of opportunistic environmental bacteria and allowed some of these to become more pathogenic to humans. Aeromonas hydrophila is one such organism. Surviving in moist conditions in temperate climates, these bacteria have been associated with a range of diseases in humans, and in systemic infections can cause mortality in up to 46% of cases. Their capacity to form biofilms, carry antibiotic resistance mechanisms, and survive disinfection, has meant that they are not easily treated with traditional methods. Bacteriophage offer a possible alternative approach for controlling their growth. This study is the first to report the isolation and characterization of bacteriophages lytic against clinical strains of A. hydrophila which carry intrinsic antibiotic resistance genes. Functionally, these novel bacteriophages were shown to be capable of disrupting biofilms caused by clinical isolates of A. hydrophila. The potential exists for these to be tested in clinical and environmental settings.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Teagan Brown
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lachlan Speirs
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Heng Ku
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Michael Leach
- School of Rural Health, Monash University, Bendigo, VIC, Australia
| | - Hiu Tat Chan
- Department of Microbiology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Peter Lock
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Smyrli M, Triga A, Dourala N, Varvarigos P, Pavlidis M, Quoc VH, Katharios P. Comparative Study on A Novel Pathogen of European Seabass. Diversity of Aeromonas veronii in the Aegean Sea. Microorganisms 2019; 7:microorganisms7110504. [PMID: 31671797 PMCID: PMC6921072 DOI: 10.3390/microorganisms7110504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Aeromonas veronii is an emerging pathogen causing severe pathology and mortalities in European seabass aquaculture in the Aegean Sea, Mediterranean. More than 50 strains of the pathogen were characterized biochemically and genetically in order to study the epidemiology of the disease, as well as the phylogeny and virulence of the bacterium. Based on the phenotypic characteristics, the isolates form three groups consisting of: (a) the West Aegean Sea, non-motile, non-pigment-producing strains, (b) the West Aegean Sea, motile, and pigment-producing strains and (c) the East Aegean Sea motile strains that produce minute amounts of pigment. All strains were highly similar at the genomic level; however, the pattern of West/East geographic origin was reflected in biochemical properties, in general genomic level comparison and in the putative virulent factors studied. Type VI secretion system was not detected in the western strains. The outer membrane protein (OMP) profile which contains proteins that are putative antigenic factors, was very similar between strains from the different areas. Although most of the OMPs were detected in all strains with great sequence similarity, diversification according to geographic origin was evident in known antigenic factors such as the maltoporin LamB. A systematic comparative analysis of the strains is presented and discussed in view of the emergence of A. veronii as a significant pathogen for the Mediterranean aquaculture.
Collapse
Affiliation(s)
- Maria Smyrli
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, 71500 Crete, Greece.
- Department of Biology, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, 71500 Crete, Greece.
- Department of Biology, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nancy Dourala
- Fish Pathology Department, Selonda Aquaculture, 15125 Athens, Greece.
| | | | - Michael Pavlidis
- Department of Biology, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Viet Ha Quoc
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, 71500 Crete, Greece.
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, 71500 Crete, Greece.
| |
Collapse
|
10
|
Abstract
Bacteria communicate with chemical signal molecules to regulate group behaviors in a process called quorum sensing (QS). In this report, we find that genes encoding receptors for Gram-negative bacterial QS communication molecules are present on genomes of viruses that infect these bacteria. These viruses are called phages. We show that two phage-encoded receptors, like their bacterial counterparts, bind to the communication molecule produced by the host bacterium, suggesting that phages can “listen in” on their bacterial hosts. Interfering with bacterial QS and using phages to kill pathogenic bacteria represent attractive possibilities for development of new antimicrobials to combat pathogens that are resistant to traditional antibiotics. Our findings of interactions between phages and QS bacteria need consideration as new antimicrobial therapies are developed. Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to orchestrate collective behaviors. QS relies on the cell-density-dependent production, accumulation, and receptor-mediated detection of extracellular signaling molecules called autoinducers (AIs). Gram-negative bacteria commonly use N-acyl homoserine lactones (AHLs) as their AIs, and they are detected by LuxR-type receptors. Often, LuxR-type receptors are insoluble when not bound to a cognate AI. In this report, we show that LuxR-type receptors are encoded on phage genomes, and in the cases we tested, the phage LuxR-type receptors bind to and are solubilized specifically by the AHL AI produced by the host bacterium. We do not yet know the viral activities that are controlled by these phage QS receptors; however, our observations, coupled with recent reports, suggest that their occurrence is more widespread than previously appreciated. Using receptor-mediated detection of QS AIs could enable phages to garner information concerning the population density status of their bacterial hosts. We speculate that such information can be exploited by phages to optimize the timing of execution of particular steps in viral infection.
Collapse
|
11
|
Yuan Y, Peng Q, Yang S, Zhang S, Fu Y, Wu Y, Gao M. Isolation of A Novel Bacillus thuringiensis Phage Representing A New Phage Lineage and Characterization of Its Endolysin. Viruses 2018; 10:v10110611. [PMID: 30404215 PMCID: PMC6266608 DOI: 10.3390/v10110611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023] Open
Abstract
Phages, the parasites of bacteria, are considered as a new kind of antimicrobial agent due to their ability to lyse pathogenic bacteria. Due to the increase of available phage isolates, the newly isolated phage showed increasing genomic similarities with previously isolated phages. In this study, the novel phage vB_BthS_BMBphi, infecting the Bacillus thuringiensis strain BMB171, is isolated and characterized together with its endolysin. This phage is the first tadpole-like phage infecting the Bacillus strains. Genomic analysis shows that the phage genome is dissimilar to all those of previously characterized phages, only exhibiting low similarities with partial regions of the B. thuringiensis prophages. Phylogenetic analysis revealed that the phage was distant from the other Bacillus phages in terms of evolution. The novel genome sequence, the distant evolutionary relationship, and the special virion morphology together suggest that the phage vB_BthS_BMBphi could be classified as a new phage lineage. The genome of the phage is found to contain a restriction modification system, which might endow the phage with immunity to the restriction modification system of the host bacterium. The function of the endolysin PlyBMB encoded by the phage vB_BthS_BMBphi was analyzed, and the endolysin could lyse all the tested Bacillus cereus group strains, suggesting that the endolysin might be used in controlling pathogenic B. cereus group strains. The findings of this study enrich the understanding of phage diversity and provide a resource for controlling the B. cereus group pathogenic bacteria.
Collapse
Affiliation(s)
- Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Qin Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Shuo Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Shaowen Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Yajuan Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yan Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Meiying Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
12
|
Characterization of Sinorhizobium sp. LM21 Prophages and Virus-Encoded DNA Methyltransferases in the Light of Comparative Genomic Analyses of the Sinorhizobial Virome. Viruses 2017; 9:v9070161. [PMID: 28672885 PMCID: PMC5537653 DOI: 10.3390/v9070161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
The genus Sinorhizobium/Ensifer mostly groups nitrogen-fixing bacteria that create root or stem nodules on leguminous plants and transform atmospheric nitrogen into ammonia, which improves the productivity of the plants. Although these biotechnologically-important bacteria are commonly found in various soil environments, little is known about their phages. In this study, the genome of Sinorhizobium sp. LM21 isolated from a heavy-metal-contaminated copper mine in Poland was investigated for the presence of prophages and DNA methyltransferase-encoding genes. In addition to the previously identified temperate phage, ΦLM21, and the phage-plasmid, pLM21S1, the analysis revealed the presence of three prophage regions. Moreover, four novel phage-encoded DNA methyltransferase (MTase) genes were identified and the enzymes were characterized. It was shown that two of the identified viral MTases methylated the same target sequence (GANTC) as cell cycle-regulated methyltransferase (CcrM) of the bacterial host strain, LM21. This discovery was recognized as an example of the evolutionary convergence between enzymes of sinorhizobial viruses and their host, which may play an important role in virus cycle. In the last part of the study, thorough comparative analyses of 31 sinorhizobial (pro)phages (including active sinorhizobial phages and novel putative prophages retrieved and manually re-annotated from Sinorhizobium spp. genomes) were performed. The networking analysis revealed the presence of highly conserved proteins (e.g., holins and endolysins) and a high diversity of viral integrases. The analysis also revealed a large number of viral DNA MTases, whose genes were frequently located within the predicted replication modules of analyzed prophages, which may suggest their important regulatory role. Summarizing, complex analysis of the phage protein similarity network enabled a new insight into overall sinorhizobial virome diversity.
Collapse
|