1
|
Onasanya AE, El-Hage C, Diaz-Méndez A, Vaz PK, Legione AR, Devlin JM, Hartley CA. Genomic diversity and natural recombination of equid gammaherpesvirus 5 isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105517. [PMID: 37879385 DOI: 10.1016/j.meegid.2023.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Equid gammaherpesvirus 5 (EHV5) is closely related to equid gammaherpesvirus 2 (EHV2). Detection of EHV5 is frequent in horse populations worldwide, but it is often without a clear and significant clinical impact. Infection in horses can often present as subclinical disease; however, it has been associated with respiratory disease, including equine multinodular pulmonary fibrosis (EMPF). Genetic heterogeneity within small regions of the EHV5 glycoprotein B (gB) sequences have been reported and multiple genotypes of this virus have been identified within individual horses, but full genome sequence data for these viruses is limited. The primary focus of this study was to assess the genomic diversity and natural recombination among EHV5 isolates. RESULTS The genome size of EHV5 prototype strain and the five EHV5 isolates cultured for this study, including four isolates from the same horse, ranged from 181,929 to 183,428 base pairs (bp), with the sizes of terminal repeat regions varying from 0 to 10 bp. The nucleotide sequence identity between the six EHV5 genomes ranged from 95.5 to 99.1%, and the estimated average nucleotide diversity between isolates was 1%. Individual genes displayed varying levels of nucleotide diversity that ranged from 0 to 19%. The analysis of nonsynonymous substitution (Ka > 0.025) revealed high diversity in eight genes. Genome analysis using RDP4 and SplitsTree programs detected evidence of past recombination events between EHV5 isolates. CONCLUSION Genomic diversity and recombination hotspots were identified among EHV5 strains. Recombination can drive genetic diversity, particularly in viruses that have a low rate of nucleotide substitutions. Therefore, the results from this study suggest that recombination is an important contributing factor to EHV5 genomic diversity. The findings from this study provide additional insights into the genetic heterogeneity of the EHV5 genome.
Collapse
Affiliation(s)
- Adepeju E Onasanya
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles El-Hage
- Centre for Equine Infectious Disease, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrés Diaz-Méndez
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alistair R Legione
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joanne M Devlin
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Centre for Equine Infectious Disease, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Miglinci L, Reicher P, Nell B, Koch M, Jindra C, Brandt S. Detection of Equine Papillomaviruses and Gamma-Herpesviruses in Equine Squamous Cell Carcinoma. Pathogens 2023; 12:179. [PMID: 36839451 PMCID: PMC9958655 DOI: 10.3390/pathogens12020179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Squamous cell carcinoma (SCC) seriously compromises the health and welfare of affected horses. Although robust evidence points to equine papillomavirus type 2 (EcPV2) causing genital lesions, the etiopathogenesis of equine SCC is still poorly understood. We screened a series of SCCs from the head-and-neck (HN), (peri-)ocular and genital region, and site-matched controls for the presence of EcPV2-5 and herpesvirus DNA using type-specific EcPV PCR, and consensus nested herpesvirus PCR followed by sequencing. EcPV2 DNA was detected in 45.5% of HN lesions, 8.3% of (peri-)ocular SCCs, and 100% of genital tumors, whilst control samples from tumor-free horses except one tested EcPV-negative. Two HNSCCs harbored EcPV5, and an ocular lesion EcPV4 DNA. Herpesvirus DNA was detected in 63.6%, 66.6%, 47.2%, and 14.2% of horses with HN, ocular, penile, and vulvar SCCs, respectively, and mainly identified as equine herpesvirus 2 (EHV2), 5 (EHV5) or asinine herpesvirus 5 (AsHV5) DNA. In the tumor-free control group, 9.6% of oral secretions, 46.6% of ocular swabs, 47% of penile samples, and 14.2% of vaginal swabs scored positive for these herpesvirus types. This work further highlights the role of EcPV2 as an oncovirus and is the first to provide information on the prevalence of (gamma-)herpesviruses in equine SCCs.
Collapse
Affiliation(s)
- Lea Miglinci
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Paul Reicher
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Barbara Nell
- Clinical Unit of Ophthalmology, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Michelle Koch
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
- Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| |
Collapse
|
3
|
Fürer F, Fraefel C, Lechmann J. Multiplex real-time PCR for the detection and differentiation of equid gammaherpesvirus 2 and 5. J Virol Methods 2022; 310:114615. [PMID: 36087793 DOI: 10.1016/j.jviromet.2022.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
Equid gammaherpesvirus 2 (EHV-2) and 5 (EHV-5) are widely distributed in the equines. Although their pathogenic potential is not yet fully understood, they appear to play a role in disease patterns like equine multinodular pulmonary fibrosis. In this study, a multiplex real-time PCR (rtPCR) was designed to detect DNA of the glycoprotein H (EHV-2) and E11 gene (EHV-5). Analytical specificity was determined by testing DNA of other herpesviruses by SYBR Green rtPCR and melting curve analysis, as well as Sanger sequencing of positive field samples. Analytical sensitivity was assessed by standard curve generation of serial plasmid dilutions containing the respective target gene. Melting curves and BLAST analysis of the sequences indicated specific detection of the viruses. The lower limit of detection of the singleplex rtPCR was 40 and 29 DNA copies per reaction for EHV-2 and EHV-5, respectively. Comparison of the Ct values of a selection of positive field samples showed only minimal differences between the singleplex and the multiplex assay. The here described multiplex rtPCR protocol allows sensitive and specific detection of EHV-2 and EHV-5. It represents a convenient and rapid tool for future studies to investigate the clinical relevance of EHV-2 and EHV-5 in more detail.
Collapse
Affiliation(s)
- Flavia Fürer
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Julia Lechmann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
4
|
Onasanya AE, El-Hage C, Diaz-Méndez A, Vaz PK, Legione AR, Browning GF, Devlin JM, Hartley CA. Whole genome sequence analysis of equid gammaherpesvirus -2 field isolates reveals high levels of genomic diversity and recombination. BMC Genomics 2022; 23:622. [PMID: 36042397 PMCID: PMC9426266 DOI: 10.1186/s12864-022-08789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Equid gammaherpesvirus 2 (EHV2) is a gammaherpesvirus with a widespread distribution in horse populations globally. Although its pathogenic significance can be unclear in most cases of infection, EHV2 infection can cause upper respiratory tract disease in foals. Co-infection of different strains of EHV2 in an individual horse is common. Small regions of the EHV2 genome have shown considerable genetic heterogeneity. This could suggest genomic recombination between different strains of EHV2, similar to the extensive recombination networks that have been demonstrated for some alphaherpesviruses. This study examined natural recombination and genome diversity of EHV2 field isolates. Results Whole genome sequencing analysis of 18 EHV2 isolates, along with analysis of two publicly available EHV2 genomes, revealed variation in genomes sizes (from 173.7 to 184.8 kbp), guanine plus cytosine content (from 56.7 to 57.8%) and the size of the terminal repeat regions (from 17,196 to 17,551 bp). The nucleotide sequence identity between the genomes ranged from 86.2 to 99.7%. The estimated average inter-strain nucleotide diversity between the 20 EHV2 genomes was 2.9%. Individual gene sequences showed varying levels of nucleotide diversity and ranged between 0 and 38.1%. The ratio of nonsynonymous substitutions, Ka, to synonymous substitutions, Ks, (Ka/Ks) suggests that over 50% of EHV2 genes are undergoing diversifying selection. Recombination analyses of the 20 EHV2 genome sequences using the recombination detection program (RDP4) and SplitsTree revealed evidence of viral recombination. Conclusions Analysis of the 18 new EHV2 genomes alongside the 2 previously sequenced genomes revealed a high degree of genetic diversity and extensive recombination networks. Herpesvirus genome diversification and virus evolution can be driven by recombination, and our findings are consistent with recombination being a key mechanism by which EHV2 genomes may vary and evolve.
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08789-x.
Collapse
Affiliation(s)
- Adepeju E Onasanya
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrés Diaz-Méndez
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paola K Vaz
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alistair R Legione
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Glenn F Browning
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanne M Devlin
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Carol A Hartley
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
5
|
Stasiak K, Dunowska M, Rola J. Kinetics of the Equid Herpesvirus 2 and 5 Infections among Mares and Foals from Three Polish National Studs. Viruses 2022; 14:v14040713. [PMID: 35458443 PMCID: PMC9031536 DOI: 10.3390/v14040713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Equid herpesvirus 2 (EHV-2) and 5 (EHV-5) are two γ-herpesviruses that are commonly detected from horses worldwide, based on several cross-sectional molecular surveys. Comparatively few studies examined the dynamics of γ-herpesvirus infection over time in a group of horses. The aim of the current study was to investigate the dynamics of EHV-2/5 infections among mares and their foals at three Polish national studs with different breeds of horses: Arabians, Thoroughbreds and Polish Konik horses. Nasal swabs were collected from each of 38 mare-foal pairs monthly for a period of 6 to 8 months. Virus-specific quantitative PCR assays were used to determine the viral load of EHV-2 and EHV-5 in each sample. All 76 horses sampled were positive for EHV-2 or EHV-5 on at least one sampling occasion. The majority (73/76, 96%) were infected with both EHV-2 and EHV-5. In general, the mean load of viral DNA was higher in samples from foals than from mares, but similar for EHV-2 and EHV-5 at most sampling occasions. There was, however, a considerable variability in the viral DNA load between samples collected at different times from the same foal, as well as between samples from different foals. The latter was more apparent for EHV-2 than for EHV-5. All foals became infected with both viruses early in life, before weaning, and remained positive on all, or most, subsequent samplings. The virus shedding by mares was more intermittent, indicating the existence of age-related differences. Overall, the data presented extend our knowledge of EHV-2/5 epidemiology among mares and foals.
Collapse
Affiliation(s)
- Karol Stasiak
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand;
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland;
- Correspondence: ; Tel.: +48-818-893-069
| |
Collapse
|
6
|
Easton-Jones C. Recent advancements in our understanding of equid gammaherpesvirus infections. Equine Vet J 2021; 54:11-23. [PMID: 34519074 DOI: 10.1111/evj.13512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 06/18/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
Equid gammaherpesviruses are ubiquitous and widespread in the equine population. Despite their frequent detection, their contribution to immune system modulation and the pathogenesis of several diseases remains unclear. Genetic variability and the combination of equid gammaherpesvirus strains a horse is infected with might be clinically significant. Initial gammaherpesvirus infection occurs in foals peripartum with latency then established in peripheral blood mononuclear cells. A novel EHV-5 study suggests that following inhalation equid gammaherpesviruses might obtain direct access to T and B lymphocytes via the tonsillar crypts to establish latency. EHV-5 is associated with equine multinodular pulmonary fibrosis, however, unlike with EHV-2 there is currently minimal evidence for its role in milder cases of respiratory disease and poor performance. Transmission is presumed to be via the upper respiratory tract with periodic reactivation of the latent virus in adult horses. Stress of transport has been identified as a risk factor for reactivation and shedding of equine gammaherpesviruses. There is currently a lack of evidence for the effectiveness of antiviral drugs in the treatment of equine gammaherpesvirus infections.
Collapse
|
7
|
Genetic Variation in the Glycoprotein B Sequence of Equid Herpesvirus 5 among Horses of Various Breeds at Polish National Studs. Pathogens 2021; 10:pathogens10030322. [PMID: 33803246 PMCID: PMC7998979 DOI: 10.3390/pathogens10030322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/16/2022] Open
Abstract
Equid herpesvirus 5 (EHV-5) is one of two γ-herpesviruses that commonly infect horses worldwide. The objective of the study was to estimate the genetic variability within EHV-5 viruses circulating among horses in Poland. Partial glycoprotein B (gB) sequences from 92 Polish horses from 13 studs throughout Poland were compared to each other and to three EHV-5 sequences from other countries. Despite the overall high level of conservation, considerable variability was observed around the putative furin cleavage site. Based on phylogenetic analysis, the viruses clustered within two major lineages (A and B), with further sub-clustering within group A. The clustering of EHV-5 sequences was independent of age or geographical origin of the sampled horses. Recombination was identified as one of the factors contributing to the genomic heterogeneity. Viruses from unweaned foals were more similar to viruses from other foals at the same stud than to viruses form their dams, suggesting the horizontal transfer and/or evolution of EHV-5 within individual hosts. Our data indicate that the gB sequence is not suitable for tracking the source of EHV-5 infection. Further research is needed to elucidate the importance of the sequence variability around the EHV-5 gB furin cleavage site on the biology of the virus.
Collapse
|
8
|
Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood Mononuclear Cells in Horses during Equine Herpesvirus 1 Infection. Pathogens 2021; 10:pathogens10010043. [PMID: 33430330 PMCID: PMC7825769 DOI: 10.3390/pathogens10010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Equine herpesvirus 1 (EHV-1) affects horses worldwide and causes respiratory disease, abortions, and equine herpesvirus myeloencephalopathy (EHM). Following infection, a cell-associated viremia is established in the peripheral blood mononuclear cells (PBMCs). This viremia is essential for transport of EHV-1 to secondary infection sites where subsequent immunopathology results in diseases such as abortion or EHM. Because of the central role of PBMCs in EHV-1 pathogenesis, our goal was to establish a gene expression analysis of host and equine herpesvirus genes during EHV-1 viremia using RNA sequencing. When comparing transcriptomes of PBMCs during peak viremia to those prior to EHV-1 infection, we found 51 differentially expressed equine genes (48 upregulated and 3 downregulated). After gene ontology analysis, processes such as the interferon defense response, response to chemokines, the complement protein activation cascade, cell adhesion, and coagulation were overrepresented during viremia. Additionally, transcripts for EHV-1, EHV-2, and EHV-5 were identified in pre- and post-EHV-1-infection samples. Looking at micro RNAs (miRNAs), 278 known equine miRNAs and 855 potentially novel equine miRNAs were identified in addition to 57 and 41 potentially novel miRNAs that mapped to the EHV-2 and EHV-5 genomes, respectively. Of those, 1 EHV-5 and 4 equine miRNAs were differentially expressed in PBMCs during viremia. In conclusion, this work expands our current knowledge about the role of PBMCs during EHV-1 viremia and will inform the focus on future experiments to identify host and viral factors that contribute to clinical EHM.
Collapse
|
9
|
Thorsteinsdóttir L, Jónsdóttir S, Stefánsdóttir SB, Andrésdóttir V, Wagner B, Marti E, Torsteinsdóttir S, Svansson V. The effect of maternal immunity on the equine gammaherpesvirus type 2 and 5 viral load and antibody response. PLoS One 2019; 14:e0218576. [PMID: 31226153 PMCID: PMC6588279 DOI: 10.1371/journal.pone.0218576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022] Open
Abstract
Two types of gammaherpesviruses (γEHV) are known to infect horses, EHV-2 and EHV-5. Foals become infected early in life, probably via the upper respiratory tract, despite maternal antibodies. In this study, we analyzed samples from a herd of mares and their foals. The foals were followed from birth to 22 months of age and the dams during the first 6 months postpartum. Blood and nasal swab samples were taken regularly for evaluation of antibody responses, virus isolation and viral load by qPCR. EHV-2 was isolated on day 5, and EHV-5 on day 12, earlier than previously reported. γEHV specific antibodies were not detectable in serum of foals before colostrum intake but peaked a few days after colostrum. Overall, EHV-2 viral load peaked in nasal swab at three to four months of age, paralleled with decline in maternal antibodies, but EHV-5 viral load did not peak until month 12. Maternal antibodies had a notable effect on the viral load and induction of endogenous antibody production. Foals were grouped in two groups depending on the mare's γEHV specific total IgG levels in serum at birth, group-high and group-low. Group-high had higher levels of maternal γEHV specific total IgG and IgG4/7 for the first 3 months, but when the endogenous production had superseded maternal antibodies, group-low was higher. The maternal antibodies had an effect on the γEHV viral load. Group-low peaked in EHV-2 viral load one month earlier than group-high. These effects were more evident for EHV-5, as there were seven months between the viral load peaks for the groups. The study provides information on how maternal antibody transfer affects γEHV shedding and antibody production in offspring. It also extends our knowledge on the occurrence of EHV-2 and EHV-5 infection in foals during the first two years of life.
Collapse
Affiliation(s)
- Lilja Thorsteinsdóttir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Reykjavík, Iceland
| | - Sigríður Jónsdóttir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Reykjavík, Iceland
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Sara Björk Stefánsdóttir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Reykjavík, Iceland
| | - Valgerður Andrésdóttir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Reykjavík, Iceland
| | - Bettina Wagner
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Sigurbjörg Torsteinsdóttir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Reykjavík, Iceland
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Reykjavík, Iceland
| |
Collapse
|
10
|
Van Cleemput J, Poelaert KCK, Laval K, Nauwynck HJ. Unravelling the first key steps in equine herpesvirus type 5 (EHV5) pathogenesis using ex vivo and in vitro equine models. Vet Res 2019; 50:13. [PMID: 30777128 PMCID: PMC6380010 DOI: 10.1186/s13567-019-0630-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Equine herpesvirus type 5 (EHV5) is a ubiquitous, yet obscure pathogen in the horse population and is commonly associated with fatal equine multinodular pulmonary fibrosis (EMPF). To date, little is known about the precise pathogenesis of EHV5. Here, we evaluated the dynamics of EHV5 infection in representative ex vivo and in vitro equine models, using immunofluorescence staining and virus titration. EHV5 was unable to infect epithelial cells lining the mucosa of nasal and tracheal explants. Similarly, primary equine respiratory epithelial cells (EREC) were not susceptible to EHV5 following inoculation at the apical or basolateral surfaces. Upon direct delivery of EHV5 particles to lung explants, few EHV5-positive cell clusters were observed at 72 hours post-inoculation (hpi). These EHV5-positive cells were identified as cytokeratin-positive alveolar cells. Next, we examined the potential of EHV5 to infect three distinct equine PBMC populations (CD172a+ monocytes, CD3+ T lymphocytes and Ig light chain+ B lymphocytes). Monocytes did not support EHV5 replication. In contrast, up to 10% of inoculated equine T and B lymphocytes synthetized intracellular viral antigens 24 hpi and 72 hpi, respectively. Still, the production of mature virus particles was hampered, as we did not observe an increase in extracellular virus titer. After reaching a peak, the percentage of infected T and B lymphocytes decayed, which was partly due to the onset of apoptosis, but not necrosis. Based on these findings, we propose a model for EHV5 pathogenesis in the horse. Uncovering EHV5 pathogenesis is the corner step to finally contain or even eradicate the virus.
Collapse
Affiliation(s)
- Jolien Van Cleemput
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Katrien C K Poelaert
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Kathlyn Laval
- Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
11
|
Muscat KE, Padalino B, Hartley CA, Ficorilli N, Celi P, Knight P, Raidal S, Gilkerson JR, Muscatello G. Equine Transport and Changes in Equid Herpesvirus' Status. Front Vet Sci 2018; 5:224. [PMID: 30320126 PMCID: PMC6167981 DOI: 10.3389/fvets.2018.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
The risk of respiratory disease in the transported horse can increase as a consequence of immunosuppression and stress associated primarily with opportunistic bacterial proliferation and viral reactivation. This study examines the ecology of equid herpesviruses (EHV) in these horses, exploring reactivation and changes in infection and shedding associated with transport, and any potential contributions to transport-related respiratory disease. Twelve horses were subjected to an 8-h road-transport event. Antibodies to EHV-1 and EHV-4 were detected by ELISA in serum collected prior to, immediately after and 2 weeks post transport. Respiratory tract endoscopy and tracheal washes were collected prior to and 5 days after transportation. Nasal swabs collected prior to, immediately after, 1 and 5 days following transport were screened for EHV-1,-2,-4,-5 using qPCR. Six horses had persistent neutrophilic airway infiltrates post transportation, indicative of subclinical respiratory disease. No horses were qPCR positive for either of the alphaherpesviruses (i.e., EHV-1/-4) nor did any seroconvert to either virus. Four out of nine horses positive for either EHV-2 or EHV-5 on qPCR prior to transport developed neutrophilic airway inflammation. Five horses showed increasingly positive readings on qPCR (i.e., reduced Cq) for EHV-2 after transportation and seven out of eleven horses positive for EHV-2 after transport shared strains of high sequence similarity with other horses in the study. One EHV-2 virus detected in one horse after transport was genetically different which may be due to reactivation. The clinical significance of EHV-2 and EHV-5 remains in question. However these results indicate that transportation may lead to increased shedding, transmission and reactivation of EHV-2 and EHV-5 but not EHV-1/-4. Unlike previous work focusing on the role of alphaherpesviruses, this research suggests that investigation of the gammaherpesviruses (i.e., EHV-2/-5) in transport-related disease should not be dismissed, particularly given that these viruses can encode suppressive immunomodulators that may affect host health.
Collapse
Affiliation(s)
- Katharine E Muscat
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Barbara Padalino
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong.,HKSAR- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Carol A Hartley
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Nino Ficorilli
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia.,DSM, Parsippany, NJ, United States
| | - Peter Knight
- Discipline of Biomedical Science, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sharanne Raidal
- School of Animal and Veterinary Sciences, Charles Stuart University, Wagga Wagga, NSW, Australia
| | - James R Gilkerson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Gary Muscatello
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Benhaiem S, Marescot L, Hofer H, East ML, Lebreton JD, Kramer-Schadt S, Gimenez O. Robustness of Eco-Epidemiological Capture-Recapture Parameter Estimates to Variation in Infection State Uncertainty. Front Vet Sci 2018; 5:197. [PMID: 30211175 PMCID: PMC6121098 DOI: 10.3389/fvets.2018.00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/27/2018] [Indexed: 12/02/2022] Open
Abstract
Estimating eco-epidemiological parameters in free-ranging populations can be challenging. As known individuals may be undetected during a field session, or their health status uncertain, the collected data are typically "imperfect". Multi-event capture-mark-recapture (MECMR) models constitute a substantial methodological advance by accounting for such imperfect data. In these models, animals can be "undetected" or "detected" at each time step. Detected animals can be assigned an infection state, such as "susceptible" (S), "infected" (I), or "recovered" (R), or an "unknown" (U) state, when for instance no biological sample could be collected. There may be heterogeneity in the assignment of infection states, depending on the manifestation of the disease in the host or the diagnostic method. For example, if obtaining the samples needed to prove viral infection in a detected animal is difficult, this can result in a low chance of assigning the I state. Currently, it is unknown how much uncertainty MECMR models can tolerate to provide reliable estimates of eco-epidemiological parameters and whether these parameters are sensitive to heterogeneity in the assignment of infection states. We used simulations to assess how estimates of the survival probability of individuals in different infection states and the probabilities of infection and recovery responded to (1) increasing infection state uncertainty (i.e., the proportion of U) from 20 to 90%, and (2) heterogeneity in the probability of assigning infection states. We simulated data, mimicking a highly virulent disease, and used SIR-MECMR models to quantify bias and precision. For most parameter estimates, bias increased and precision decreased gradually with state uncertainty. The probabilities of survival of I and R individuals and of detection of R individuals were very robust to increasing state uncertainty. In contrast, the probabilities of survival and detection of S individuals, and the infection and recovery probabilities showed high biases and low precisions when state uncertainty was >50%, particularly when the assignment of the S state was reduced. Considering this specific disease scenario, SIR-MECMR models are globally robust to state uncertainty and heterogeneity in state assignment, but the previously mentioned parameter estimates should be carefully interpreted if the proportion of U is high.
Collapse
Affiliation(s)
- Sarah Benhaiem
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lucile Marescot
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- CEFE, CNRS, University Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Heribert Hofer
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Berlin, Germany
| | - Marion L. East
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Jean-Dominique Lebreton
- CEFE, CNRS, University Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Department of Ecology, Technische Universität Berlin, Berlin, Germany
| | - Olivier Gimenez
- CEFE, CNRS, University Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| |
Collapse
|
13
|
Pennington MR, Cossic BGA, Perkins GA, Duffy C, Duhamel GE, Van de Walle GR. First demonstration of equid gammaherpesviruses within the gastric mucosal epithelium of horses. Virus Res 2017; 242:30-36. [PMID: 28870469 DOI: 10.1016/j.virusres.2017.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022]
Abstract
Horses commonly develop gastric mucosal ulcers, similar to humans, a condition known as equine gastric ulcer syndrome (EGUS) that can lead to poor performance and lost training time and care expenses. Unlike humans, however, an infectious bacterial cause of ulcers has not been conclusively identified. Herpesviruses, while well-established causative agents of diseases such as cold sores, genital lesions, and certain types of cancer, have also been implicated in the development of a subset of gastric ulcers in humans. The presence of equid herpesviruses in the gastrointestinal tract and their potential contribution to EGUS has not been evaluated. Here, we provide the first evidence of equid gammaherpesviruses 2 and 5 (EHV-2 and -5) within the epithelium of the gastric mucosa of horses. These viruses were initially detected by a nested PCR screen of gastric tissue samples obtained from client- and university-owned horses with and without ulcers; however, no association with EGUS was found in this limited sample set. We then validated a highly sensitive in situ hybridization (ISH) assay and used this assay to characterize the distribution of these viruses in necropsy gastric tissue samples from five racehorses. Analyses revealed frequent EHV-2 and EHV-5 co-infections within the gastric mucosal epithelium, regardless of the ulcer status. These results are the first to demonstrate the presence of equid gammaherpesviruses in the gastric mucosa of horses and warrants further investigation to determine the contribution of these viruses to the development of EGUS and/or other gastrointestinal diseases.
Collapse
Affiliation(s)
- Matthew R Pennington
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brieuc G A Cossic
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gillian A Perkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Carol Duffy
- Department of Biological Sciences, College of Arts and Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Gerald E Duhamel
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|