1
|
Kwon T, Trujillo JD, Carossino M, Lyoo EL, McDowell CD, Cool K, Matias-Ferreyra FS, Jeevan T, Morozov I, Gaudreault NN, Balasuriya UB, Webby RJ, Osterrieder N, Richt JA. Pigs are highly susceptible to but do not transmit mink-derived highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b. Emerg Microbes Infect 2024; 13:2353292. [PMID: 38712345 PMCID: PMC11132737 DOI: 10.1080/22221751.2024.2353292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
ABSTRACTRapid evolution of highly pathogenic avian influenza viruses (HPAIVs) is driven by antigenic drift but also by reassortment, which might result in robust replication in and transmission to mammals. Recently, spillover of clade 2.3.4.4b HPAIV to mammals including humans, and their transmission between mammalian species has been reported. This study aimed to evaluate the pathogenicity and transmissibility of a mink-derived clade 2.3.4.4b H5N1 HPAIV isolate from Spain in pigs. Experimental infection caused interstitial pneumonia with necrotizing bronchiolitis with high titers of virus present in the lower respiratory tract and 100% seroconversion. Infected pigs shed limited amount of virus, and importantly, there was no transmission to contact pigs. Notably, critical mammalian-like adaptations such as PB2-E627 K and HA-Q222L emerged at low frequencies in principal-infected pigs. It is concluded that pigs are highly susceptible to infection with the mink-derived clade 2.3.4.4b H5N1 HPAIV and provide a favorable environment for HPAIV to acquire mammalian-like adaptations.
Collapse
Affiliation(s)
- Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Eu Lim Lyoo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Franco S. Matias-Ferreyra
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Udeni B.R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nikolaus Osterrieder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Saad N, Esaki M, Kojima I, Khalil AM, Osuga S, Shahein MA, Okuya K, Ozawa M, Alhatlani BY. Phylogenetic Characterization of Novel Reassortant 2.3.4.4b H5N8 Highly Pathogenic Avian Influenza Viruses Isolated from Domestic Ducks in Egypt During the Winter Season 2021-2022. Viruses 2024; 16:1655. [PMID: 39599770 PMCID: PMC11599000 DOI: 10.3390/v16111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024] Open
Abstract
Avian influenza (AI) is an extremely contagious viral disease of domestic and wild birds that can spread rapidly among bird populations, inducing serious economic losses in the poultry industry. During the winter season 2021-2022, we isolated seventeen highly pathogenic avian influenza (HPAI) H5N8 viruses from outbreaks involving ducks in Egypt, occurring in both backyard and farm settings. The aim of this study was to pinpoint genetic key substitutions (KSs) that could heighten the risk of a human pandemic by influencing the virus's virulence, replication ability, host specificity, susceptibility to drugs, or transmissibility. To understand their evolution, origin, and potential risks for a human pandemic, whole-genome sequencing and phylogenetic analysis were conducted. Our analysis identified numerous distinctive mutations in the Egyptian H5N8 viruses, suggesting potential enhancements in virulence, resistance to antiviral drugs, and facilitation of transmission in mammals. In this study, at least five genotypes within one genome constellation of H5N8 viruses were identified, raising concerns about the potential emergence of novel viruses with altered characteristics through reassortment between different genotypes and distinct groups. These findings underscore the role of ducks in the virus's evolutionary process and emphasize the urgent need for enhanced biosecurity measures in domestic duck farms to mitigate pandemic risk.
Collapse
Affiliation(s)
- Noha Saad
- Animal Health Research Institute, Agricultural Research Center, Giza 12618, Egypt;
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Ministry of Agriculture, Giza 12618, Egypt
| | - Mana Esaki
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Isshu Kojima
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Ahmed Magdy Khalil
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shiori Osuga
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
| | - Momtaz A. Shahein
- Animal Health Research Institute, Agricultural Research Center, Giza 12618, Egypt;
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Ministry of Agriculture, Giza 12618, Egypt
| | - Kosuke Okuya
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Makoto Ozawa
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Bader Y. Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
3
|
A quantitative approach to assess influenza A virus fitness and transmission in guinea pigs. J Virol 2021; 95:JVI.02320-20. [PMID: 33731462 PMCID: PMC8139685 DOI: 10.1128/jvi.02320-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Efforts to estimate the risk posed by potentially pandemic influenza A viruses (IAV), and to understand the mechanisms governing interspecies transmission, have been hampered by a lack of animal models that yield relevant and statistically robust measures of viral fitness. To address this gap, we monitored several quantitative measures of fitness in a guinea pig model: infectivity, magnitude of replication, kinetics of replication, efficiency of transmission, and kinetics of transmission. With the goal of identifying metrics that distinguish human- and non-human-adapted IAV we compared strains derived from humans to those circulating in swine and canine populations. Influenza A/Panama/2007/99 (H3N2), A/Netherlands/602/2009 (H1N1), A/swine/Kansas/77778/2007 (H1N1), A/swine/Spain/53207/2004 [M1 P41A] (H1N1), and A/canine/Illinois/41915/2015 (H3N2) viruses were evaluated. Our results revealed higher infectivity and faster kinetics of viral replication and transmission for human and canine strains compared to the swine viruses. Conversely, peak viral titers and efficiency of transmission were higher for human strains relative to both swine and canine IAVs. Total viral loads were comparable among all strains tested. When analyzed together, data from all strains point to peak viral load as a key driver of transmission efficiency and replication kinetics as a key driver of transmission kinetics. While the dose initiating infection did not strongly impact peak viral load, dose was found to modulate kinetics of viral replication and, in turn, timing of transmission. Taken together, our results point to peak viral load and transmission efficiency as key metrics differentiating human and non-human IAVs and suggest that high peak viral load precipitates robust transmission.ImportanceInfluenza pandemics occur when an IAV from non-human hosts enters the human population and adapts to give rise to a lineage capable of sustained transmission among humans. Despite recurring zoonotic infections involving avian or swine adapted IAVs, influenza pandemics occur infrequently because IAVs typically exhibit low fitness in a new host species. Anticipating when a zoonosis might lead to a pandemic is both critical for public health preparedness and extremely challenging. The approach to characterizing IAVs reported here is designed to aid risk assessment efforts by generating rigorous and quantitative data on viral phenotypes relevant for emergence. Our data suggest that the ability to replicate to high titers and transmit efficiently irrespective of initial dose are key characteristics distinguishing IAVs that have established sustained circulation in the human population from IAVs that circulate in non-human mammalian hosts.
Collapse
|
4
|
Bat influenza vectored NS1-truncated live vaccine protects pigs against heterologous virus challenge. Vaccine 2021; 39:1943-1950. [PMID: 33715905 DOI: 10.1016/j.vaccine.2021.02.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/31/2022]
Abstract
Swine influenza is an important disease for the swine industry. Currently used whole inactivated virus (WIV) vaccines can induce vaccine-associated enhanced respiratory disease (VAERD) in pigs when the vaccine strains mismatch with the infected viruses. Live attenuated influenza virus vaccine (LAIV) is effective to protect pigs against homologous and heterologous swine influenza virus infections without inducing VAERD but has safety concerns due to potential reassortment with circulating viruses. Herein, we used a chimeric bat influenza Bat09:mH3mN2 virus, which contains both surface HA and NA gene open reading frames of the A/swine/Texas/4199-2/1998 (H3N2) and six internal genes from the novel bat H17N10 virus, to develop modified live-attenuated viruses (MLVs) as vaccine candidates which cannot reassort with canonical influenza A viruses by co-infection. Two attenuated MLV vaccine candidates including the virus that expresses a truncated NS1 (Bat09:mH3mN2-NS1-128, MLV1) or expresses both a truncated NS1 and the swine IL-18 (Bat09:mH3mN2-NS1-128-IL-18, MLV2) were generated and evaluated in pigs against a heterologous H3N2 virus using the WIV vaccine as a control. Compared to the WIV vaccine, both MLV vaccines were able to reduce lesions and virus replication in lungs and limit nasal virus shedding without VAERD, also induced significantly higher levels of mucosal IgA response in lungs and significantly increased numbers of antigen-specific IFN-γ secreting cells against the challenge virus. However, no significant difference was observed in efficacy between the MLV1 and MLV2. These results indicate that bat influenza vectored MLV vaccines can be used as a safe live vaccine to prevent swine influenza.
Collapse
|
5
|
Roles of the Non-Structural Proteins of Influenza A Virus. Pathogens 2020; 9:pathogens9100812. [PMID: 33023047 PMCID: PMC7600879 DOI: 10.3390/pathogens9100812] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus (IAV) is a segmented, negative single-stranded RNA virus that causes seasonal epidemics and has a potential for pandemics. Several viral proteins are not packed in the IAV viral particle and only expressed in the infected host cells. These proteins are named non-structural proteins (NSPs), including NS1, PB1-F2 and PA-X. They play a versatile role in the viral life cycle by modulating viral replication and transcription. More importantly, they also play a critical role in the evasion of the surveillance of host defense and viral pathogenicity by inducing apoptosis, perturbing innate immunity, and exacerbating inflammation. Here, we review the recent advances of these NSPs and how the new findings deepen our understanding of IAV–host interactions and viral pathogenesis.
Collapse
|
6
|
Influenza A virus PB1‐F2 protein: An ambivalent innate immune modulator and virulence factor. J Leukoc Biol 2020; 107:763-771. [DOI: 10.1002/jlb.4mr0320-206r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
|
7
|
A Single Amino Acid at Position 431 of the PB2 Protein Determines the Virulence of H1N1 Swine Influenza Viruses in Mice. J Virol 2020; 94:JVI.01930-19. [PMID: 31996432 PMCID: PMC7108842 DOI: 10.1128/jvi.01930-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
The frequent reassortment among different influenza viruses in pigs adds complexity to the epidemiology of swine influenza. The diverse viral virulence phenotypes underline the need to investigate the possible genetic determinants for evaluating the pandemic potential to human public health. Here, we found that multiple genotypes of influenza viruses cocirculate in the swine population in Liaoning Province, China. Furthermore, we pinpointed a single amino acid at position 431 in the PB2 protein which plays a critical role in the virulence of H1N1 viruses in mice and found that the alteration of viral polymerase activities is the cause of the different virulence. Our study further indicated that the virulence of influenza virus is a polygenic trait, and the newly identified virulence-related residue in the PB2 provides important information for broadening knowledge on the genetic basis of viral virulence of influenza viruses. Genetic reassortments occurred continuously among multiple subtypes or genotypes of influenza viruses prevalent in pigs. Of note, some reassortant viruses bearing the internal genes of the 2009 pandemic H1N1 (2009/H1N1) virus sporadically caused human infection, which highlights their potential threats to human public health. In this study, we performed phylogenetic analysis on swine influenza viruses (SIVs) circulating in Liaoning Province, China. A total of 22 viruses, including 18 H1N1 and 4 H1N2 viruses, were isolated from 5,750 nasal swabs collected from pigs in slaughterhouses from 2014 to 2016. H1N1 viruses formed four genotypes, which included Eurasian avian-like H1N1 (EA H1N1) and double/triple reassortant H1N1 derived from EA H1N1, 2009/H1N1, and triple reassortant H1N2 (TR H1N2) viruses. H1N1 SIVs with different genotypes and even those within the same genotypes represented different pathogenicities in mice. We further characterized two naturally isolated H1N1 SIVs that had similar viral genomes but differed substantially in their virulence in mice and found that a single amino acid at position 431 in the basic polymerase 2 (PB2) protein significantly affected the viral replication capacity and virulence of these two viruses. Taken together, our findings revealed the diverse genomic origins and virulence of the SIVs prevalent in Liaoning Province during 2014 to 2016, which highlights that continuous surveillance is essential to monitor the evolution of SIVs. We identified a naturally occurring amino acid mutation in the PB2 protein of H1N1 SIVs that impacts the viral replication and virulence in mice by altering the viral polymerase activity. IMPORTANCE The frequent reassortment among different influenza viruses in pigs adds complexity to the epidemiology of swine influenza. The diverse viral virulence phenotypes underline the need to investigate the possible genetic determinants for evaluating the pandemic potential to human public health. Here, we found that multiple genotypes of influenza viruses cocirculate in the swine population in Liaoning Province, China. Furthermore, we pinpointed a single amino acid at position 431 in the PB2 protein which plays a critical role in the virulence of H1N1 viruses in mice and found that the alteration of viral polymerase activities is the cause of the different virulence. Our study further indicated that the virulence of influenza virus is a polygenic trait, and the newly identified virulence-related residue in the PB2 provides important information for broadening knowledge on the genetic basis of viral virulence of influenza viruses.
Collapse
|
8
|
Lee J, Wang L, Palinski R, Walsh T, He D, Li Y, Wu R, Lang Y, Sunwoo SY, Richt JA, Ma W. Comparison of Pathogenicity and Transmissibility of Influenza B and D Viruses in Pigs. Viruses 2019; 11:E905. [PMID: 31569752 PMCID: PMC6832242 DOI: 10.3390/v11100905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Influenza viruses are important pathogens causing respiratory disease in humans and animals. In contrast to influenza A virus (IAV) that can infect a wide range of animal species, other influenza viruses, including influenza B virus (IBV), influenza C virus (ICV), and influenza D virus (IDV) have a limited host range. Swine can be infected with all four different genera of influenza viruses. IAV infection of pigs causes the well-known swine influenza that poses significant threats to human and animal health. However, influenza virus infection of pigs with IBV, ICV, and IDV are not well-characterized. Herein, we compared pathogenicity of IBV and IDV using intratracheal and intranasal infection of pigs, which are IAV seropositive, and commingled naïve pigs with the infected animals to determine their transmissibility. Both viruses caused fever and some lung lesions, replicated in the lungs of infected pigs, but only IDV transmitted to the contact animals. Although IBV and IDV displayed differing levels of replication in the respiratory tract of infected pigs, no significant differences in pathogenicity of both viruses were observed. These results indicate that both IBV and IDV can replicate, and are pathogenic in pigs.
Collapse
Affiliation(s)
- Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Liping Wang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Rachel Palinski
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Tim Walsh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Dongchang He
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Rui Wu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Sun-Young Sunwoo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
9
|
Kamal RP, Alymova IV, York IA. Evolution and Virulence of Influenza A Virus Protein PB1-F2. Int J Mol Sci 2017; 19:E96. [PMID: 29286299 PMCID: PMC5796046 DOI: 10.3390/ijms19010096] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/20/2017] [Accepted: 12/25/2017] [Indexed: 02/05/2023] Open
Abstract
PB1-F2 is an accessory protein of most human, avian, swine, equine, and canine influenza A viruses (IAVs). Although it is dispensable for virus replication and growth, it plays significant roles in pathogenesis by interfering with the host innate immune response, inducing death in immune and epithelial cells, altering inflammatory responses, and promoting secondary bacterial pneumonia. The effects of PB1-F2 differ between virus strains and host species. This can at least partially be explained by the presence of multiple PB1-F2 sequence variants, including premature stop codons that lead to the expression of truncated PB1-F2 proteins of different lengths and specific virulence-associated residues that enhance susceptibility to bacterial superinfection. Although there has been a tendency for human seasonal IAV to gradually reduce the number of virulence-associated residues, zoonotic IAVs contain a reservoir of PB1-F2 proteins with full length, virulence-associated sequences. Here, we review the molecular mechanisms by which PB1-F2 may affect influenza virulence, and factors associated with the evolution and selection of this protein.
Collapse
Affiliation(s)
- Ram P Kamal
- Battelle Memorial Institute, Atlanta, GA 30329, USA.
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Irina V Alymova
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|