1
|
Wąhalska M, Riepe C, Ślusarz MJ, Graul M, Borowski LS, Qiao W, Foltynska M, Carette JE, Bieńkowska-Szewczyk K, Szczesny RJ, Kopito RR, Lipińska AD. The herpesvirus UL49.5 protein hijacks a cellular C-degron pathway to drive TAP transporter degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559663. [PMID: 37808699 PMCID: PMC10557673 DOI: 10.1101/2023.09.27.559663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The transporter associated with antigen processing (TAP) is a key player in the MHC class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 (BoHV-1) impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and promotes its proteasomal degradation. How UL49.5 promotes TAP degradation is unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal in human cells. We propose that the C-terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the CRL2 E3 in ER-associated degradation.
Collapse
Affiliation(s)
- Magda Wąhalska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Celeste Riepe
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Magdalena J. Ślusarz
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Małgorzata Graul
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Lukasz S. Borowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michalina Foltynska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Roman J. Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrea D. Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| |
Collapse
|
2
|
Graul M, Karska N, Wąchalska M, Krupa P, Ślusarz MJ, Lubocki M, Bieńkowska-Szewczyk K, Rodziewicz-Motowidło S, Sieradzan AK, Lipińska AD. The N-terminal Proline Hinge Motif Controls the Structure of Bovine Herpesvirus 1-encoded Inhibitor of the Transporter Associated with Antigen Processing Required for its Immunomodulatory Function. J Mol Biol 2023; 435:167964. [PMID: 36646375 DOI: 10.1016/j.jmb.2023.167964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Due to unique features, proline residues may control protein structure and function. Here, we investigated the role of 52PPQ54 residues, indicated by the recently established experimental 3D structure of bovine herpesvirus 1-encoded UL49.5 protein as forming a characteristic proline hinge motif in its N-terminal domain. UL49.5 acts as a potent inhibitor of the transporter associated with antigen processing (TAP), which alters the antiviral immune response. Mechanisms employed by UL49.5 to affect TAP remain undetermined on a molecular level. We found that mutations in the 52PPQ54 region had a vast impact on its immunomodulatory function, increasing cell surface MHC class I expression, TAP levels, and peptide transport efficiency. This inhibitory effect was specific for UL49.5 activity towards TAP but not towards the viral glycoprotein M. To get an insight into the impact of proline hinge modifications on structure and dynamics, we performed all-atom and coarse-grained molecular dynamics studies on the native protein and PPQ mutants. The results demonstrated that the proline hinge sequence with its highly rigid conformation served as an anchor into the membrane. This anchor was responsible for the structural and dynamical behavior of the whole protein, constraining the mobility of the C-terminus, increasing the mobility of the transmembrane region, and controlling the accessibility of the C-terminal residues to the cytoplasmic environment. Those features appear crucial for TAP binding and inhibition. Our findings significantly advance the structural understanding of the UL49.5 protein and its functional regions and support the importance of proline motifs for the protein structure.
Collapse
Affiliation(s)
- Małgorzata Graul
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Natalia Karska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland; Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Magda Wąchalska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Paweł Krupa
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Magdalena J Ślusarz
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Marcin Lubocki
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | | | - Adam K Sieradzan
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland.
| | - Andrea D Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland.
| |
Collapse
|
4
|
Li C, Wang M, Cheng A, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Tian B. The Roles of Envelope Glycoprotein M in the Life Cycle of Some Alphaherpesviruses. Front Microbiol 2021; 12:631523. [PMID: 33679658 PMCID: PMC7933518 DOI: 10.3389/fmicb.2021.631523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The envelope glycoprotein M (gM), a surface virion component conserved among alphaherpesviruses, is a multiple-transmembrane domain-containing glycoprotein with a complex N-linked oligosaccharide. The gM mediates a diverse range of functions during the viral life cycle. In this review, we summarize the biological features of gM, including its characterization and function in some specicial alphaherpesviruses. gM modulates the virus-induced membrane fusion during virus invasion, transports other proteins to the appropriate intracellular membranes for primary and secondary envelopment during virion assembly, and promotes egress of the virus. The gM can interact with various viral and cellular components, and the focus of recent research has also been on interactions related to gM. And we will discuss how gM participates in the life cycle of alphaherpesviruses.
Collapse
Affiliation(s)
- Chunmei Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Karska N, Graul M, Sikorska E, Ślusarz MJ, Zhukov I, Kasprzykowski F, Kubiś A, Lipińska AD, Rodziewicz-Motowidło S. Investigation of the Effects of Primary Structure Modifications within the RRE Motif on the Conformation of Synthetic Bovine Herpesvirus 1-Encoded UL49.5 Protein Fragments. Chem Biodivers 2021; 18:e2000883. [PMID: 33427369 DOI: 10.1002/cbdv.202000883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV-1-encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N-terminal fragment interacts with the loops of the TAP complex, and the C-terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9-11) motif, within the helical structure of the UL49.5 N-terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N-terminal fragment. The introduced RRE(9-11) variations were designed to abolish or stabilize the structure of the α-helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane-mimetic or membrane-model environments. Our structural results show that in the RRE(9-11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9-11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.
Collapse
Affiliation(s)
- Natalia Karska
- Faculty of Chemistry, University of Gdańsk, 80-308, Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307, Gdańsk, Poland
| | - Małgorzata Graul
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307, Gdańsk, Poland
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, 80-308, Gdańsk, Poland
| | | | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | | | - Agnieszka Kubiś
- Faculty of Chemistry, University of Gdańsk, 80-308, Gdańsk, Poland
| | - Andrea D Lipińska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307, Gdańsk, Poland
| | | |
Collapse
|