1
|
Morselli S, Gaspari V, Cantiani A, Salvo M, Foschi C, Lazzarotto T, Marangoni A. Meningococcal Carriage in 'Men Having Sex With Men' With Pharyngeal Gonorrhoea. Front Cell Infect Microbiol 2022; 11:798575. [PMID: 35096648 PMCID: PMC8790146 DOI: 10.3389/fcimb.2021.798575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
We assessed the characteristics of Neisseria meningitidis pharyngeal carriage in a cohort of ‘men having sex with men’, including patients with pharyngeal Neisseria gonorrhoeae infection. In the period 2017-2019, among all the oropharyngeal samples tested for gonorrhoea from MSM attending a STI Clinic in Bologna (Italy), we randomly selected 244 N. gonorrhoeae-positive samples and 403 negatives (n=647). Pharyngeal specimens were tested for N. meningitidis presence, by the detection of sodC gene. N. meningitidis-positive samples were further grouped by PCR tests for the major invasive genogroups (i.e., A, B, C, W, and Y). A molecular assay, targeting capsule transporter gene, was used to determine meningococcal capsular status. Overall, 75.8% (491/647) of samples tested positive for sodC gene, indicating a pharyngeal meningococcal carriage. Meningococcal colonisation was significantly more frequent in younger subjects (P=0.009), with no association with HIV infection. Non-groupable meningococci represented most of pharyngeal carriages (about 71%). The commonest N. meningitidis serogroup was B (23.6%), followed by C (2.1%), Y (1.8%) and W (1.1%). Meningococci were often characterized by the genetic potential of capsule production. Interestingly, a negative association between N. meningitidis and N. gonorrhoeae was found: pharyngeal gonorrhoea was significantly more present in patients without meningococcal carriage (P=0.03). Although preliminary, our data added knowledge on the epidemiology of meningococcal carriage in MSM communities at high risk of gonococcal infections, gaining new insights into the interactions/dynamics between N. meningitidis and N. gonorrhoeae.
Collapse
Affiliation(s)
- Sara Morselli
- Microbiology, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Valeria Gaspari
- Dermatology Unit, IRCCS S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Alessia Cantiani
- Microbiology, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Melissa Salvo
- Microbiology, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Microbiology, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Hammerling MJ, Warfel KF, Jewett MC. Lyophilization of premixed COVID-19 diagnostic RT-qPCR reactions enables stable long-term storage at elevated temperature. Biotechnol J 2021; 16:e2000572. [PMID: 33964860 PMCID: PMC8237061 DOI: 10.1002/biot.202000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Reverse transcriptase‐quantitative polymerase chain reaction (RT‐qPCR) diagnostic tests for SARS‐CoV‐2 are the cornerstone of the global testing infrastructure. However, these tests require cold‐chain shipping to distribute, and the labor of skilled technicians to assemble reactions and interpret the results. Strategies to reduce shipping and labor costs at the point‐of‐care could aid in diagnostic testing scale‐up and response to the COVID‐19 outbreak, as well as in future outbreaks.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA.,Simpson Querrey Institute, Northwestern University, Evanston, Illinois, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
3
|
Outbreak strain characterisation and pharyngeal carriage detection following a protracted group B meningococcal outbreak in adolescents in South-West England. Sci Rep 2019; 9:9990. [PMID: 31292501 PMCID: PMC6620271 DOI: 10.1038/s41598-019-46483-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/21/2019] [Indexed: 12/19/2022] Open
Abstract
Between April 2016 and September 2017, four cases of group B meningococcal disease were reported among sixth-form college students in Bristol, UK. Culture and non-culture whole genome sequencing was utilised and demonstrated that the four genomes of the responsible ST-41 strains clustered closely on a sub-lineage of ST-41/44 clonal complex. The outbreak resulted in two fatalities. A distinct social group associated with one of the cases was selected for vaccination with 4CMenB and pharyngeal swabbing. In vitro culturing, multiple real-time PCR assays (sodC, ctrA and siaDB) and a PorA PCR-sequencing assay were used to detect meningococcal colonisation and a carriage rate of 32.6% was observed. Furthermore, a high proportion of the pharyngeal swabs (78.3%) yielded a Factor H-Binding Protein (fHbp) nucleotide allele suggesting that the antigenic gene is prevalent among non-meningococcal flora, most likely Neisseria commensals. This may have implications for fHbp as a vaccine antigen should it be shown to influence bacterial colonisation.
Collapse
|
4
|
Bannister SA, Kidd SP, Kirby E, Shah S, Thomas A, Vipond R, Elmore MJ, Telfer Brunton A, Marsh P, Green S, Silman NJ, Kempsell KE. Development and Assessment of a Diagnostic DNA Oligonucleotide Microarray for Detection and Typing of Meningitis-Associated Bacterial Species. High Throughput 2018; 7:ht7040032. [PMID: 30332776 PMCID: PMC6306750 DOI: 10.3390/ht7040032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 02/03/2023] Open
Abstract
Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTubeTM (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTubeTM platform and using a targeted amplification system increased specific and reduced nonspecific hybridization signals using both pathogen nucleic and patient CSF DNA targets, better revealing pathogen-specific signals although sensitivity was still reduced in the latter. This diagnostic microarray is useful as a laboratory diagnostic tool for species and strain designation for ABM, rather than for primary diagnosis.
Collapse
Affiliation(s)
| | - Stephen P Kidd
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | | - Sonal Shah
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Anvy Thomas
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Richard Vipond
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | | - Andrew Telfer Brunton
- Department of Clinical Microbiology, Royal Cornwall Hospitals NHS Trust, Penventinnie Lane, Treliske, Truro, Cornwall TR1 3LQ, UK.
| | - Peter Marsh
- Public Health England Laboratory Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Steve Green
- Public Health England Laboratory Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Nigel J Silman
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | |
Collapse
|
5
|
Walayat S, Hussain N, Malik AH, Vazquez-Melendez E, Aulakh BS, Lynch T. Invasive meningococcal disease without meningitis: a forgotten diagnosis. Int Med Case Rep J 2018; 11:87-90. [PMID: 29695936 PMCID: PMC5905520 DOI: 10.2147/imcrj.s154807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neisseria meningitidis, a Gram-negative diplococcus, is an uncommon cause of pneumonia. There have been only about 344 cases reported worldwide from 1906 to 2015. To our knowledge, there have been only 3 cases reported in the USA in the past 2 decades. We present a case of a 72-year-old male with a past medical history of severe COPD, obstructive sleep apnea, and stage I lung cancer status post-stereotactic body radiation therapy 1 year ago, who was admitted with a 6-day history of productive cough with yellowish sputum, shortness of breath, extreme myalgias, and fatigue. Chest X-ray revealed an infiltrative process in the left lower lung field and left-sided pleural effusion. Blood cultures grew beta-lactamase-negative N. meningitidis after 24 hours. Our patient was initially treated with broad-spectrum antibiotics, which were later switched to amoxicillin to complete a total of 14 days of antibiotics. Diagnosing meningococcal pneumonia requires a high level of suspicion, as sputum cultures may be falsely positive due to asymptomatic carriage of the organism in the upper respiratory tract in up to 10% of outpatient population. We highlight this case as early recognition and treatment is critical. The case fatality rate for N. meningitidis pneumonia has been reported to be higher compared with meningococcal meningitis.
Collapse
Affiliation(s)
- Saqib Walayat
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Nooreen Hussain
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Abdullah H Malik
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Elsa Vazquez-Melendez
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Bhagat S Aulakh
- Department of Pulmonary/Critical Care Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Teresa Lynch
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
6
|
Abstract
Central nervous system (CNS) infections are potentially life threatening if not diagnosed and treated early. The initial clinical presentations of many CNS infections are non-specific, making a definitive etiologic diagnosis challenging. Nucleic acid in vitro amplification-based molecular methods are increasingly being applied for routine microbial detection. These methods are a vast improvement over conventional techniques with the advantage of rapid turnaround and higher sensitivity and specificity. Additionally, molecular methods performed on cerebrospinal fluid samples are considered the new gold standard for diagnosis of CNS infection caused by pathogens, which are otherwise difficult to detect. Commercial diagnostic platforms offer various monoplex and multiplex PCR assays for convenient testing of targets that cause similar clinical illness. Pan-omic molecular platforms possess potential for use in this area. Although molecular methods are predicted to be widely used in diagnosing and monitoring CNS infections, results generated by these methods need to be carefully interpreted in combination with clinical findings. This review summarizes the currently available armamentarium of molecular assays for diagnosis of central nervous system infections, their application, and future approaches.
Collapse
|
7
|
Clark SA, Lekshmi A, Lucidarme J, Hao L, Tsao H, Lee-Jones L, Jansen KU, Newbold LS, Anderson AS, Borrow R. Differences between culture & non-culture confirmed invasive meningococci with a focus on factor H-binding protein distribution. J Infect 2016; 73:63-70. [PMID: 27025206 DOI: 10.1016/j.jinf.2016.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/24/2016] [Accepted: 03/17/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To compare the distribution of capsular groups and factor H-binding protein (fHBP) variants among meningococcal isolates and non-culture clinical specimens and to assess the representativeness of group B isolates amongst group B cases as a whole. METHODS A PCR sequencing assay was used to characterise fHBP from non-culture cases confirmed from January 2011 to December 2013. These were compared to genotypic data derived from whole genome analysis of isolates received during the same period. RESULTS Group W and Y strains were more common among isolates than non-culture strains. The distribution of fHBP variants among group B non-culture cases generally reflected that seen in the corresponding isolates. Nonetheless, the non-culture subset contained a greater proportion of fHBP variant 15/B44, associated with the ST-269 cluster sublineage. CONCLUSIONS Differences in capsular group and fHBP distribution among culture and non-culture cases may be indicative of variation in strain viability, diagnostic practice, disease severity and/or clinical presentation. Future analyses combining clinical case information with laboratory data may help to further explore these differences. Group B isolates provide a good representation of group B disease in E&W and, therefore, can reliably be used in fHBP strain coverage predictions of recently-licensed vaccines.
Collapse
Affiliation(s)
- Stephen A Clark
- Vaccine Evaluation Unit, Public Health England, Clinical Sciences Building II, Manchester Royal Infirmary, Manchester M13 9WZ, United Kingdom.
| | - Aiswarya Lekshmi
- Vaccine Evaluation Unit, Public Health England, Clinical Sciences Building II, Manchester Royal Infirmary, Manchester M13 9WZ, United Kingdom.
| | - Jay Lucidarme
- Vaccine Evaluation Unit, Public Health England, Clinical Sciences Building II, Manchester Royal Infirmary, Manchester M13 9WZ, United Kingdom.
| | - Li Hao
- Pfizer Vaccine Research, 401 N. Middletown Rd., Pearl River, NY 10965, United States.
| | - How Tsao
- Pfizer Vaccine Research, 401 N. Middletown Rd., Pearl River, NY 10965, United States.
| | - Lisa Lee-Jones
- Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, United Kingdom.
| | - Kathrin U Jansen
- Pfizer Vaccine Research, 401 N. Middletown Rd., Pearl River, NY 10965, United States.
| | - Lynne S Newbold
- Vaccine Evaluation Unit, Public Health England, Clinical Sciences Building II, Manchester Royal Infirmary, Manchester M13 9WZ, United Kingdom.
| | - Annaliesa S Anderson
- Pfizer Vaccine Research, 401 N. Middletown Rd., Pearl River, NY 10965, United States.
| | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Clinical Sciences Building II, Manchester Royal Infirmary, Manchester M13 9WZ, United Kingdom.
| |
Collapse
|