1
|
Schwanbeck J, Oehmig I, Groß U, Bohne W. Clostridioides difficile minimal nutrient requirements for flagellar motility. Front Microbiol 2023; 14:1172707. [PMID: 37065145 PMCID: PMC10098170 DOI: 10.3389/fmicb.2023.1172707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
As many gastro-intestinal pathogens, the majority of Clostridioides difficile strains express flagella together with a complete chemotaxis system. The resulting swimming motility is likely contributing to the colonization success of this important pathogen. In contrast to the well investigated general energy metabolism of C. difficile, little is known about the metabolic requirements for maintaining the ion motive force across the membrane, which in turn powers the flagellar motor. We studied here systematically the effect of various amino acids and carbohydrates on the swimming velocity of C. difficile using video microscopy in conjunction with a software based quantification of the swimming speed. Removal of individual amino acids from the medium identified proline and cysteine as the most important amino acids that power swimming motility. Glycine, which is as proline one of the few amino acids that are reduced in Stickland reactions, was not critical for swimming motility. This suggests that the ion motive force that powers the flagellar motor, is critically depending on proline reduction. A maximal and stable swimming motility was achieved with only four compounds, including the amino acids proline, cysteine and isoleucine together with a single, but interchangeable carbohydrate source such as glucose, succinate, mannose, ribose, pyruvate, trehalose, or ethanolamine. We expect that the identified "minimal motility medium" will be useful in future investigations on the flagellar motility and chemotactic behavior in C. difficile, particularly for the unambiguous identification of chemoattractants.
Collapse
Affiliation(s)
- Julian Schwanbeck
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Ines Oehmig
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- Uwe Groß,
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- *Correspondence: Wolfgang Bohne,
| |
Collapse
|
2
|
Biwer P, Neumann-Schaal M, Henke P, Jahn D, Schulz S. Thiol Metabolism and Volatile Metabolome of Clostridioides difficile. Front Microbiol 2022; 13:864587. [PMID: 35783419 PMCID: PMC9243749 DOI: 10.3389/fmicb.2022.864587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridioides difficile (previously Clostridium difficile) causes life-threatening gut infections. The central metabolism of the bacterium is strongly influencing toxin production and consequently the infection progress. In this context, the composition and potential origin of the volatile metabolome was investigated, showing a large number of sulfur-containing volatile metabolites. Gas chromatography/mass spectrometry (GC/MS)-based headspace analyses of growing C. difficile 630Δerm cultures identified 105 mainly sulfur-containing compounds responsible of the typical C. difficile odor. Major components were identified to be 2-methyl-1-propanol, 2-methyl-1-propanethiol, 2-methyl-1-butanethiol, 4-methyl-1-pentanethiol, and as well as their disulfides. Structurally identified were 64 sulfur containing volatiles. In order to determine their biosynthetic origin, the concentrations of the sulfur-containing amino acids methionine and cysteine were varied in the growth medium. The changes observed in the volatile metabolome profile indicated that cysteine plays an essential role in the formation of the sulfur-containing volatiles. We propose that disulfides are derived from cysteine via formation of cystathionine analogs, which lead to corresponding thiols. These thiols may then be oxidized to disulfides. Moreover, methionine may contribute to the formation of short-chain disulfides through integration of methanethiol into the disulfide biosynthesis. In summary, the causative agents of the typical C. difficile odor were identified and first hypotheses for their biosynthesis were proposed.
Collapse
Affiliation(s)
- Peter Biwer
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
| | - Petra Henke
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Stefan Schulz,
| |
Collapse
|
3
|
Genetic Mechanisms of Vancomycin Resistance in Clostridioides difficile: A Systematic Review. Antibiotics (Basel) 2022; 11:antibiotics11020258. [PMID: 35203860 PMCID: PMC8868222 DOI: 10.3390/antibiotics11020258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial resistance to treatments for Clostridioides difficile infection (CDI) poses a significant threat to global health. C. difficile is widely thought to be susceptible to oral vancomycin, which is increasingly the mainstay of CDI treatment. However, clinical labs do not conduct C. difficile susceptibility testing, presenting a challenge to detecting the emergence and impact of resistance. In this systematic review, we describe gene determinants and associated clinical and laboratory mechanisms of vancomycin resistance in C. difficile, including drug-binding site alterations, efflux pumps, RNA polymerase mutations, and biofilm formation. Additional research is needed to further characterize these mechanisms and understand their clinical impact.
Collapse
|
4
|
Michel AM, Borrero-de Acuña JM, Molinari G, Ünal CM, Will S, Derksen E, Barthels S, Bartram W, Schrader M, Rohde M, Zhang H, Hoffmann T, Neumann-Schaal M, Bremer E, Jahn D. Cellular adaptation of Clostridioides difficile to high salinity encompasses a compatible solute-responsive change in cell morphology. Environ Microbiol 2022; 24:1499-1517. [PMID: 35106888 DOI: 10.1111/1462-2920.15925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Abstract
Infections by the pathogenic gut bacterium Clostridioides difficile cause severe diarrheas up to a toxic megacolon and are currently among the major causes of lethal bacterial infections. Successful bacterial propagation in the gut is strongly associated with the adaptation to changing nutrition-caused environmental conditions; e.g. environmental salt stresses. Concentrations of 350 mM NaCl, the prevailing salinity in the colon, led to significantly reduced growth of C. difficile. Metabolomics of salt- stressed bacteria revealed a major reduction of the central energy generation pathways, including the Stickland-fermentation reactions. No obvious synthesis of compatible solutes was observed up to 24 h of growth. The ensuing limited tolerance to high salinity and absence of compatible solute synthesis might result from an evolutionary adaptation to the exclusive life of C. difficile in the mammalian gut. Addition of the compatible solutes carnitine, glycine-betaine, γ-butyrobetaine, crotonobetaine, homobetaine, proline-betaine and dimethylsulfoniopropionate (DMSP) restored growth (choline and proline failed) under conditions of high salinity. A bioinformatically-identified OpuF-type ABC-transporter imported most of the used compatible solutes. A long-term adaptation after 48 h included a shift of the Stickland fermentation-based energy metabolism from the utilization to the accumulation of L-proline and resulted in restored growth. Surprisingly, salt stress resulted in the formation of coccoid C. difficile cells instead of the typical rod-shaped cells, a process reverted by the addition of several compatible solutes. Hence, compatible solute import via OpuF is the major immediate adaptation strategy of C. difficile to high salinity-incurred cellular stress. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Annika-Marisa Michel
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - José Manuel Borrero-de Acuña
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Universidad de Sevilla, Facultad de Biología, Departamento de Microbiología, Av. de la Reina Mercedes, n° 6, CP, 41012, Sevilla, Spain
| | - Gabriella Molinari
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Can Murat Ünal
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sabine Will
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Elisabeth Derksen
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Barthels
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Wiebke Bartram
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Michel Schrader
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Hao Zhang
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,School of Life Science and Technology, Changchun University of Science and Technology, No. 7186 Weixing Road, 130022, Changchun, China
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Integrated bioinformatics based subtractive genomics approach to decipher the therapeutic function of hypothetical proteins from Salmonella typhi XDR H-58 strain. Biotechnol Lett 2022; 44:279-298. [PMID: 35037232 PMCID: PMC8761513 DOI: 10.1007/s10529-021-03219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/12/2021] [Indexed: 11/21/2022]
Abstract
Purpose The efficacy of drugs against Salmonella infection have compromised due to emerging XDR H58 strain. There is a dire need to find novel antimicrobial drug targets as well as drug candidates to cure by the XDR strain of Salmonella. It is observed that the complete genome sequence of the XDR H58 strain contains a large number of hypothetical proteins with unknown cellular and biological functions. Hence, it is indispensable to annotate these proteins functionally as well as structurally to identify novel drug targets. Methods In the current study, a comparative genomics and proteomics based approach was applied to find the novel drug targets in XDR strain while comparing the MDR and NR strains of Salmonella typhi. Results The characterization of ~ 350 hypothetical proteins were performed through determination of their physio-chemical properties, sub-cellular localization, functional annotation, and structure-based studies. As a result, only five proteins were prioritized as essential, druggable, and virulent proteins. Moreover, only one protein i.e. WP_000916613.1 was functionally annotated with high confidence and subjected to further structure-based analysis. Conclusion The current study presents a hypothetical protein from the XDR S. typhi proteome as a potential pharmacological target against which novel therapeutic candidates may be predicted. The outcome of the current study may lead to formulate a general set of pipelines for better understanding of the role of hypothetical proteins in pathogenesis of not only Salmonella but also for other pathogens. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03219-6.
Collapse
|
6
|
Comparative genomic analysis of hyper-ammonia producing Acetoanaerobium sticklandii DSM 519 with purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genomics 2021; 113:4196-4205. [PMID: 34780936 DOI: 10.1016/j.ygeno.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Acetoanaerobium sticklandii DSM519 (CST) is a hype-ammonia producing non-pathogenic anaerobe that can use amino acids as important carbon and energy sources through the Stickland reactions. Biochemical aspects of this organism have been extensively studied, but systematic studies addressing its metabolic discrepancy remain scant. In this perspective, we have intensively analyzed its genomic and metabolic characteristics to comprehend the evolutionary conservation of amino acid catabolism by a comparative genomic approach. The whole-genome data indicated that CST has shown a phylogenomic similarity with hyper-ammonia producing, purinolytic, and proteolytic pathogenic Clostridia. CST has shown to common genomic context sharing across the purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genome syntenic analysis described that syntenic orthologs might be originated from the recent ancestor at a slow evolution rate and syntenic-out paralogs evolved from either CDF or CAC via α-event and β-event. Collinearity of either gene orders or gene families was adjusted with syntenic out-paralogs across these genomes. The genome-wide metabolic analysis predicted 11 unique putative metabolic subsystems from the CST genome for amino acid catabolism and hydrogen production. The in silico analysis of our study revealed that a characteristic system for amino acid catabolism-directed biofuel synthesis might have slowly evolved and established as a core genomic content of CST.
Collapse
|
7
|
Jenior ML, Leslie JL, Powers DA, Garrett EM, Walker KA, Dickenson ME, Petri WA, Tamayo R, Papin JA. Novel Drivers of Virulence in Clostridioides difficile Identified via Context-Specific Metabolic Network Analysis. mSystems 2021; 6:e0091921. [PMID: 34609164 PMCID: PMC8547418 DOI: 10.1128/msystems.00919-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is the leading cause of hospital-acquired infection in the United States. Due to growing antibiotic resistance and recurrent infection, targeting C. difficile metabolism presents a new approach to combat this infection. Genome-scale metabolic network reconstructions (GENREs) have been used to identify therapeutic targets and uncover properties that determine cellular behaviors. Thus, we constructed C. difficile GENREs for a hypervirulent isolate (strain [str.] R20291) and a historic strain (str. 630), validating both with in vitro and in vivo data sets. Growth simulations revealed significant correlations with measured carbon source usage (positive predictive value [PPV] ≥ 92.7%), and single-gene deletion analysis showed >89.0% accuracy. Next, we utilized each GENRE to identify metabolic drivers of both sporulation and biofilm formation. Through contextualization of each model using transcriptomes generated from in vitro and infection conditions, we discovered reliance on the pentose phosphate pathway as well as increased usage of cytidine and N-acetylneuraminate when virulence expression is reduced, which was subsequently supported experimentally. Our results highlight the ability of GENREs to identify novel metabolite signals in higher-order phenotypes like bacterial pathogenesis. IMPORTANCE Clostridioides difficile has become the leading single cause of hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors. In the past, genome-scale metabolic network reconstruction (GENRE) analysis of bacteria has enabled systematic investigation of the genetic and metabolic properties that contribute to downstream virulence phenotypes. With this in mind, we generated and extensively curated C. difficile GENREs for both a well-studied laboratory strain (str. 630) and a more recently characterized hypervirulent isolate (str. R20291). In silico validation of both GENREs revealed high degrees of agreement with experimental gene essentiality and carbon source utilization data sets. Subsequent exploration of context-specific metabolism during both in vitro growth and infection revealed consistent patterns of metabolism which corresponded with experimentally measured increases in virulence factor expression. Our results support that differential C. difficile virulence is associated with distinct metabolic programs related to use of carbon sources and provide a platform for identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Matthew L. Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jhansi L. Leslie
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Deborah A. Powers
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth M. Garrett
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Kimberly A. Walker
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Mary E. Dickenson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - William A. Petri
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Rita Tamayo
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Schwanbeck J, Oehmig I, Groß U, Zautner AE, Bohne W. Clostridioides difficile Single Cell Swimming Strategy: A Novel Motility Pattern Regulated by Viscoelastic Properties of the Environment. Front Microbiol 2021; 12:715220. [PMID: 34367119 PMCID: PMC8333305 DOI: 10.3389/fmicb.2021.715220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022] Open
Abstract
Flagellar motility is important for the pathogenesis of many intestinal pathogens, allowing bacteria to move to their preferred ecological niche. Clostridioides difficile is currently the major cause for bacterial health care-associated intestinal infections in the western world. Most clinical strains produce peritrichous flagella and are motile in soft-agar. However, little knowledge exists on the C. difficile swimming behaviour and its regulation at the level of individual cells. We report here on the swimming strategy of C. difficile at the single cell level and its dependency on environmental parameters. A comprehensive analysis of motility parameters from several thousand bacteria was achieved with the aid of a recently developed bacterial tracking programme. C. difficile motility was found to be strongly dependent on the matrix elasticity of the medium. Long run phases of all four motile C. difficile clades were only observed in the presence of high molecular weight molecules such as polyvinylpyrrolidone (PVP) and mucin, which suggests an adaptation of the motility apparatus to the mucin-rich intestinal environment. Increasing mucin or PVP concentrations lead to longer and straighter runs with increased travelled distance per run and fewer turnarounds that result in a higher net displacement of the bacteria. The observed C. difficile swimming pattern under these conditions is characterised by bidirectional, alternating back and forth run phases, interrupted by a short stop without an apparent reorientation or tumbling phase. This motility type was not described before for peritrichous bacteria and is more similar to some previously described polar monotrichous bacteria.
Collapse
Affiliation(s)
- Julian Schwanbeck
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Ines Oehmig
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas E Zautner
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Riedel T, Neumann-Schaal M, Wittmann J, Schober I, Hofmann JD, Lu CW, Dannheim A, Zimmermann O, Lochner M, Groß U, Overmann J. Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization. Genome Biol Evol 2021; 12:566-577. [PMID: 32302381 PMCID: PMC7250501 DOI: 10.1093/gbe/evaa072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
During the last decades, hypervirulent strains of Clostridioides difficile with frequent disease recurrence and increased mortality appeared. Clostridioides difficile DSM 101085 was isolated from a patient who suffered from several recurrent infections and colonizations, likely contributing to a fatal outcome. Analysis of the toxin repertoire revealed the presence of a complete binary toxin locus and an atypical pathogenicity locus consisting of only a tcdA pseudogene and a disrupted tcdC gene sequence. The pathogenicity locus shows upstream a transposon and has been subject to homologous recombination or lateral gene transfer events. Matching the results of the genome analysis, neither TcdA nor TcdB production but the expression of cdtA and cdtB was detected. This highlights a potential role of the binary toxin C. difficile toxin in this recurrent colonization and possibly further in a host-dependent virulence. Compared with the C. difficile metabolic model strains DSM 28645 (630Δerm) and DSM 27147 (R20291), strain DSM 101085 showed a specific metabolic profile, featuring changes in the threonine degradation pathways and alterations in the central carbon metabolism. Moreover, products originating from Stickland pathways processing leucine, aromatic amino acids, and methionine were more abundant in strain DSM 101085, indicating a more efficient use of these substrates. The particular characteristics of strain C. difficile DSM 101085 may represent an adaptation to a low-protein diet in a patient with recurrent infections.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Chia-Wen Lu
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Antonia Dannheim
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Ortrud Zimmermann
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany.,Göttingen International Health Network, Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technical University of Braunschweig, Germany
| |
Collapse
|
10
|
Brauer M, Lassek C, Hinze C, Hoyer J, Becher D, Jahn D, Sievers S, Riedel K. What's a Biofilm?-How the Choice of the Biofilm Model Impacts the Protein Inventory of Clostridioides difficile. Front Microbiol 2021; 12:682111. [PMID: 34177868 PMCID: PMC8225356 DOI: 10.3389/fmicb.2021.682111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The anaerobic pathogen Clostridioides difficile is perfectly equipped to survive and persist inside the mammalian intestine. When facing unfavorable conditions C. difficile is able to form highly resistant endospores. Likewise, biofilms are currently discussed as form of persistence. Here a comprehensive proteomics approach was applied to investigate the molecular processes of C. difficile strain 630Δerm underlying biofilm formation. The comparison of the proteome from two different forms of biofilm-like growth, namely aggregate biofilms and colonies on agar plates, revealed major differences in the formation of cell surface proteins, as well as enzymes of its energy and stress metabolism. For instance, while the obtained data suggest that aggregate biofilm cells express both flagella, type IV pili and enzymes required for biosynthesis of cell-surface polysaccharides, the S-layer protein SlpA and most cell wall proteins (CWPs) encoded adjacent to SlpA were detected in significantly lower amounts in aggregate biofilm cells than in colony biofilms. Moreover, the obtained data suggested that aggregate biofilm cells are rather actively growing cells while colony biofilm cells most likely severely suffer from a lack of reductive equivalents what requires induction of the Wood-Ljungdahl pathway and C. difficile’s V-type ATPase to maintain cell homeostasis. In agreement with this, aggregate biofilm cells, in contrast to colony biofilm cells, neither induced toxin nor spore production. Finally, the data revealed that the sigma factor SigL/RpoN and its dependent regulators are noticeably induced in aggregate biofilms suggesting an important role of SigL/RpoN in aggregate biofilm formation.
Collapse
Affiliation(s)
- Madita Brauer
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Lassek
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hinze
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juliane Hoyer
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susanne Sievers
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Proteomic Adaptation of Clostridioides difficile to Treatment with the Antimicrobial Peptide Nisin. Cells 2021; 10:cells10020372. [PMID: 33670309 PMCID: PMC7918085 DOI: 10.3390/cells10020372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea but can also result in more serious, life-threatening conditions. The incidence of C. difficile infections in hospitals is increasing, both in frequency and severity, and antibiotic-resistant C. difficile strains are advancing. Against this background antimicrobial peptides (AMPs) are an interesting alternative to classic antibiotics. Information on the effects of AMPs on C. difficile will not only enhance the knowledge for possible biomedical application but may also provide insights into mechanisms of C. difficile to adapt or counteract AMPs. This study applies state-of-the-art mass spectrometry methods to quantitatively investigate the proteomic response of C. difficile 630∆erm to sublethal concentrations of the AMP nisin allowing to follow the cellular stress adaptation in a time-resolved manner. The results do not only point at a heavy reorganization of the cellular envelope but also resulted in pronounced changes in central cellular processes such as carbohydrate metabolism. Further, the number of flagella per cell was increased during the adaptation process. The potential involvement of flagella in nisin adaptation was supported by a more resistant phenotype exhibited by a non-motile but hyper-flagellated mutant.
Collapse
|
12
|
Hofmann JD, Biedendieck R, Michel AM, Schomburg D, Jahn D, Neumann-Schaal M. Influence of L-lactate and low glucose concentrations on the metabolism and the toxin formation of Clostridioides difficile. PLoS One 2021; 16:e0244988. [PMID: 33411772 PMCID: PMC7790285 DOI: 10.1371/journal.pone.0244988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The virulence of Clostridioides difficile (formerly Clostridium difficile) is mainly caused by its two toxins A and B. Their formation is significantly regulated by metabolic processes. Here we investigated the influence of various sugars (glucose, fructose, mannose, trehalose), sugar derivatives (mannitol and xylitol) and L-lactate on toxin synthesis. Fructose, mannose, trehalose, mannitol and xylitol in the growth medium resulted in an up to 2.2-fold increase of secreted toxin. Low glucose concentration of 2 g/L increased the toxin concentration 1.4-fold compared to growth without glucose, while high glucose concentrations in the growth medium (5 and 10 g/L) led to up to 6.6-fold decrease in toxin formation. Transcriptomic and metabolic investigation of the low glucose effect pointed towards an inactive CcpA and Rex regulatory system. L-lactate (500 mg/L) significantly reduced extracellular toxin formation. Transcriptome analyses of the later process revealed the induction of the lactose utilization operon encoding lactate racemase (larA), electron confurcating lactate dehydrogenase (CDIF630erm_01321) and the corresponding electron transfer flavoprotein (etfAB). Metabolome analyses revealed L-lactate consumption and the formation of pyruvate. The involved electron confurcation process might be responsible for the also observed reduction of the NAD+/NADH ratio which in turn is apparently linked to reduced toxin release from the cell.
Collapse
Affiliation(s)
- Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika-Marisa Michel
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dietmar Schomburg
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
13
|
Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway. J Bacteriol 2020; 202:JB.00233-20. [PMID: 32967909 DOI: 10.1128/jb.00233-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Clostridium difficile is the leading cause of hospital-acquired antibiotic-associated diarrhea and is the only widespread human pathogen that contains a complete set of genes encoding the Wood-Ljungdahl pathway (WLP). In acetogenic bacteria, synthesis of acetate from 2 CO2 molecules by the WLP functions as a terminal electron accepting pathway; however, C. difficile contains various other reductive pathways, including a heavy reliance on Stickland reactions, which questions the role of the WLP in this bacterium. In rich medium containing high levels of electron acceptor substrates, only trace levels of key WLP enzymes were found; therefore, conditions were developed to adapt C. difficile to grow in the absence of amino acid Stickland acceptors. Growth conditions were identified that produce the highest levels of WLP activity, determined by Western blot analyses of the central component acetyl coenzyme A synthase (AcsB) and assays of other WLP enzymes. Fermentation substrate and product analyses, enzyme assays of cell extracts, and characterization of a ΔacsB mutant demonstrated that the WLP functions to dispose of metabolically generated reducing equivalents. While WLP activity in C. difficile does not reach the levels seen in classical acetogens, coupling of the WLP to butyrate formation provides a highly efficient system for regeneration of NAD+ "acetobutyrogenesis," requiring only low flux through the pathways to support efficient ATP production from glucose oxidation. Additional insights redefine the amino acid requirements in C. difficile, explore the relationship of the WLP to toxin production, and provide a rationale for colocalization of genes involved in glycine synthesis and cleavage within the WLP operon.IMPORTANCE Clostridium difficile is an anaerobic, multidrug-resistant, toxin-producing pathogen with major health impacts worldwide. It is the only widespread pathogen harboring a complete set of Wood-Ljungdahl pathway (WLP) genes; however, the role of the WLP in C. difficile is poorly understood. In other anaerobic bacteria and archaea, the WLP can operate in one direction to convert CO2 to acetic acid for biosynthesis or in either direction for energy conservation. Here, conditions are defined in which WLP levels in C. difficile increase markedly, functioning to support metabolism of carbohydrates. Amino acid nutritional requirements were better defined, with new insight into how the WLP and butyrate pathways act in concert, contributing significantly to energy metabolism by a mechanism that may have broad physiological significance within the group of nonclassical acetogens.
Collapse
|
14
|
Redefining the Clostridioides difficile σ B Regulon: σ B Activates Genes Involved in Detoxifying Radicals That Can Result from the Exposure to Antimicrobials and Hydrogen Peroxide. mSphere 2020; 5:5/5/e00728-20. [PMID: 32938698 PMCID: PMC7494833 DOI: 10.1128/msphere.00728-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In many Gram-positive bacteria, the general stress response is regulated at the transcriptional level by the alternative sigma factor sigma B (σB). In C. difficile, σB has been implicated in protection against stressors such as reactive oxygen species (ROS) and antimicrobial compounds. Here, we used an anti-σB antibody to demonstrate time-limited overproduction of σB in C. difficile despite its toxicity at higher cellular concentrations. This toxicity eventually led to the loss of the plasmid used for anhydrotetracycline-induced σB gene expression. Inducible σB overproduction uncouples σB expression from its native regulatory network and allows for the refinement of the previously proposed σB regulon. At least 32% of the regulon was found to consist of genes involved in the response to reactive radicals. Direct gene activation by C. difficile σB was demonstrated through in vitro runoff transcription of specific target genes (cd0350, cd3614, cd3605, and cd2963). Finally, we demonstrated that different antimicrobials and hydrogen peroxide induce these genes in a manner dependent on this sigma factor, using a plate-based luciferase reporter assay. Together, our work suggests that lethal exposure to antimicrobials may result in the formation of toxic radicals that lead to σB-dependent gene activation.IMPORTANCE Sigma B is the alternative sigma factor governing stress response in many Gram-positive bacteria. In C. difficile, a sigB mutant shows pleiotropic transcriptional effects. Here, we determine genes that are likely direct targets of σB by evaluating the transcriptional effects of σB overproduction, provide biochemical evidence of direct transcriptional activation by σB, and show that σB-dependent genes can be activated by antimicrobials. Together, our data suggest that σB is a key player in dealing with toxic radicals.
Collapse
|
15
|
Soutourina O, Dubois T, Monot M, Shelyakin PV, Saujet L, Boudry P, Gelfand MS, Dupuy B, Martin-Verstraete I. Genome-Wide Transcription Start Site Mapping and Promoter Assignments to a Sigma Factor in the Human Enteropathogen Clostridioides difficile. Front Microbiol 2020; 11:1939. [PMID: 32903654 PMCID: PMC7438776 DOI: 10.3389/fmicb.2020.01939] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The emerging human enteropathogen Clostridioides difficile is the main cause of diarrhea associated with antibiotherapy. Regulatory pathways underlying the adaptive responses remain understudied and the global view of C. difficile promoter structure is still missing. In the genome of C. difficile 630, 22 genes encoding sigma factors are present suggesting a complex pattern of transcription in this bacterium. We present here the first transcriptional map of the C. difficile genome resulting from the identification of transcriptional start sites (TSS), promoter motifs and operon structures. By 5′-end RNA-seq approach, we mapped more than 1000 TSS upstream of genes. In addition to these primary TSS, this analysis revealed complex structure of transcriptional units such as alternative and internal promoters, potential RNA processing events and 5′ untranslated regions. By following an in silico iterative strategy that used as an input previously published consensus sequences and transcriptomic analysis, we identified candidate promoters upstream of most of protein-coding and non-coding RNAs genes. This strategy also led to refine consensus sequences of promoters recognized by major sigma factors of C. difficile. Detailed analysis focuses on the transcription in the pathogenicity locus and regulatory genes, as well as regulons of transition phase and sporulation sigma factors as important components of C. difficile regulatory network governing toxin gene expression and spore formation. Among the still uncharacterized regulons of the major sigma factors of C. difficile, we defined the SigL regulon by combining transcriptome and in silico analyses. We showed that the SigL regulon is largely involved in amino-acid degradation, a metabolism crucial for C. difficile gut colonization. Finally, we combined our TSS mapping, in silico identification of promoters and RNA-seq data to improve gene annotation and to suggest operon organization in C. difficile. These data will considerably improve our knowledge of global regulatory circuits controlling gene expression in C. difficile and will serve as a useful rich resource for scientific community both for the detailed analysis of specific genes and systems biology studies.
Collapse
Affiliation(s)
- Olga Soutourina
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France.,Institut Universitaire de France, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Thomas Dubois
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | | | - Laure Saujet
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Pierre Boudry
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems, Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Bruno Dupuy
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
16
|
The Impact of pH on Clostridioides difficile Sporulation and Physiology. Appl Environ Microbiol 2020; 86:AEM.02706-19. [PMID: 31811041 DOI: 10.1128/aem.02706-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a pathogenic bacterium that infects the human colon to cause diarrheal disease. Growth of the bacterium is known to be dependent on certain bile acids, oxygen levels, and nutrient availability in the intestine, but how the environmental pH can influence C. difficile is mostly unknown. Previous studies indicated that C. difficile modulates the intestinal pH, and prospective cohort studies have found a strong association between a more alkaline fecal pH and C. difficile infection. Based on these data, we hypothesized that C. difficile physiology can be affected by various pH conditions. In this study, we investigated the impact of a range of pH conditions on C. difficile to assess potential effects on growth, sporulation, motility, and toxin production in the strains 630Δerm and R20291. We observed pH-dependent differences in sporulation rate, spore morphology, and viability. Sporulation frequency was lowest under acidic conditions, and differences in cell morphology were apparent at low pH. In alkaline environments, C. difficile sporulation was greater for strain 630Δerm, whereas R20291 produced relatively high levels of spores in a broad range of pH conditions. Rapid changes in pH during exponential growth impacted sporulation similarly among the strains. Furthermore, we observed an increase in C. difficile motility with increases in pH, and strain-dependent differences in toxin production under acidic conditions. The data demonstrate that pH is an important parameter that affects C. difficile physiology and may reveal relevant insights into the growth and dissemination of this pathogen.IMPORTANCE Clostridioides difficile is an anaerobic bacterium that causes gastrointestinal disease. C. difficile forms dormant spores which can survive harsh environmental conditions, allowing their spread to new hosts. In this study, we determine how intestinally relevant pH conditions impact C. difficile physiology in the two divergent strains, 630Δerm and R20291. Our data demonstrate that low pH conditions reduce C. difficile growth, sporulation, and motility. However, toxin production and spore morphology were differentially impacted in the two strains at low pH. In addition, we observed that alkaline environments reduce C. difficile growth, but increase cell motility. When pH was adjusted rapidly during growth, we observed similar impacts on both strains. This study provides new insights into the phenotypic diversity of C. difficile grown under diverse pH conditions present in the intestinal tract, and demonstrates similarities and differences in the pH responses of different C. difficile isolates.
Collapse
|
17
|
Emele MF, Joppe FM, Riedel T, Overmann J, Rupnik M, Cooper P, Kusumawati RL, Berger FK, Laukien F, Zimmermann O, Bohne W, Groß U, Bader O, Zautner AE. Proteotyping of Clostridioides difficile as Alternate Typing Method to Ribotyping Is Able to Distinguish the Ribotypes RT027 and RT176 From Other Ribotypes. Front Microbiol 2019; 10:2087. [PMID: 31552001 PMCID: PMC6747054 DOI: 10.3389/fmicb.2019.02087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile, a Gram-positive spore-forming bacterium, is the leading cause of nosocomial diarrhea worldwide and therefore a substantial burden to the healthcare system. During the past decade, hypervirulent PCR-ribotypes (RT) e.g., RT027 or RT176 emerged rapidly all over the world, associated with both, increased severity and mortality rates. It is thus of great importance to identify epidemic strains such as RT027 and RT176 as fast as possible. While commonly used diagnostic methods, e.g., multilocus sequence typing (MLST) or PCR-ribotyping, are time-consuming, proteotyping offers a fast, inexpensive, and reliable alternative solution. In this study, we established a MALDI-TOF-based typing scheme for C. difficile. A total of 109 ribotyped strains representative for five MLST clades were analyzed by MALDI-TOF. MLST, based on whole genome sequences, and PCR-ribotyping were used as reference methods. Isoforms of MS-detectable biomarkers, typically ribosomal proteins, were related with the deduced amino acid sequences and added to the C. difficile proteotyping scheme. In total, we were able to associate nine biomarkers with their encoding genes and include them in our proteotyping scheme. The discriminatory capacity of the C. difficile proteotyping scheme was mainly based on isoforms of L28-M (2 main isoforms), L35-M (4 main isoforms), and S20-M (2 main isoforms) giving rise to at least 16 proteotyping-derived types. In our test population, five of these 16 proteotyping-derived types were detected. These five proteotyping-derived types did not correspond exactly to the included five MLST-based C. difficile clades, nevertheless the subtyping depth of both methods was equivalent. Most importantly, proteotyping-derived clade B contained only isolates of the hypervirulent RT027 and RT176. Proteotyping is a stable and easy-to-perform intraspecies typing method and a promising alternative to currently used molecular techniques. It is possible to distinguish the group of RT027 and RT176 isolates from non-RT027/non-RT176 isolates using proteotyping, providing a valuable diagnostic tool.
Collapse
Affiliation(s)
- Matthias F Emele
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Felix M Joppe
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Thomas Riedel
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig, Germany
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - R Lia Kusumawati
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Fabian K Berger
- National Reference Center for Clostridioides (Clostridium) difficile, Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Friederike Laukien
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Ortrud Zimmermann
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Wolfgang Bohne
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Uwe Groß
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Oliver Bader
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Andreas E Zautner
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Ingle P, Groothuis D, Rowe P, Huang H, Cockayne A, Kuehne SA, Jiang W, Gu Y, Humphreys CM, Minton NP. Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system. Sci Rep 2019; 9:8123. [PMID: 31148548 PMCID: PMC6544763 DOI: 10.1038/s41598-019-44458-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB-based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the C. difficile 630 reference strain (NCTC 13307) two ermB genes and pyrE. The genomes of the strains generated (630Δerm* and 630Δerm*ΔpyrE, respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the cas9 gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for ermB and pyrE, respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a 'nickase'. The mutation allowed cas9 to be cloned downstream of the strong Pthl promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.
Collapse
Affiliation(s)
- Patrick Ingle
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Daphne Groothuis
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Peter Rowe
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
- Deep Branch Biotechnology, NG8 1AA, Nottingham, United Kingdom
| | - He Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Alan Cockayne
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sarah A Kuehne
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B5 7SA, UK
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
19
|
Ünal CM, Karagöz MS, Berges M, Priebe C, Borrero de Acuña JM, Wissing J, Jänsch L, Jahn D, Steinert M. Pleiotropic Clostridioides difficile Cyclophilin PpiB Controls Cysteine-Tolerance, Toxin Production, the Central Metabolism and Multiple Stress Responses. Front Pharmacol 2019; 10:340. [PMID: 31024308 PMCID: PMC6459899 DOI: 10.3389/fphar.2019.00340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 01/05/2023] Open
Abstract
The Gram-positive pathogen Clostridioides difficile is the main bacterial agent of nosocomial antibiotic associated diarrhea. Bacterial peptidyl-prolyl-cis/trans-isomerases (PPIases) are well established modulators of virulence that influence the outcome of human pathologies during infections. Here, we present the first interactomic network of the sole cyclophilin-type PPIase of C. difficile (CdPpiB) and show that it has diverse interaction partners including major enzymes of the amino acid-dependent energy (LdhA, EtfAB, Had, Acd) and the glucose-derived (Fba, GapA, Pfo, Pyk, Pyc) central metabolism. Proteins of the general (UspA), oxidative (Rbr1,2,3, Dsr), alkaline (YloU, YphY) and cold shock (CspB) response were found bound to CdPpiB. The transcriptional (Lrp), translational (InfC, RFF) and folding (GroS, DnaK) control proteins were also found attached. For a crucial enzyme of cysteine metabolism, O-acetylserine sulfhydrylase (CysK), the global transcription regulator Lrp and the flagellar subunit FliC, these interactions were independently confirmed using a bacterial two hybrid system. The active site residues F50, F109, and F110 of CdPpiB were shown to be important for the interaction with the residue P87 of Lrp. CysK activity after heat denaturation was restored by interaction with CdPpiB. In accordance, tolerance toward cell wall stress caused by the exposure to amoxicillin was reduced. In the absence of CdPpiB, C. difficile was more susceptible toward L-cysteine. At the same time, the cysteine-mediated suppression of toxin production ceased resulting in higher cytotoxicity. In summary, the cyclophilin-type PPIase of C. difficile (CdPpiB) coordinates major cellular processes via its interaction with major regulators of transcription, translation, protein folding, stress response and the central metabolism.
Collapse
Affiliation(s)
- Can Murat Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Moleküler Biyoteknoloji Bölümü, Türk-Alman Üniversitesi, Istanbul, Turkey
| | | | - Mareike Berges
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany
| | - Christina Priebe
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Josef Wissing
- Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany.,Cellular Proteomics Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany.,Cellular Proteomics Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dieter Jahn
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
20
|
Sievers S, Metzendorf NG, Dittmann S, Troitzsch D, Gast V, Tröger SM, Wolff C, Zühlke D, Hirschfeld C, Schlüter R, Riedel K. Differential View on the Bile Acid Stress Response of Clostridioides difficile. Front Microbiol 2019; 10:258. [PMID: 30833939 PMCID: PMC6387971 DOI: 10.3389/fmicb.2019.00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/31/2019] [Indexed: 12/16/2022] Open
Abstract
Clostridioides difficile is an intestinal human pathogen that uses the opportunity of a depleted microbiota to cause an infection. It is known, that the composition of the intestinal bile acid cocktail has a great impact on the susceptibility toward a C. difficile infection. However, the specific response of growing C. difficile cells to diverse bile acids on the molecular level has not been described yet. In this study, we recorded proteome signatures of shock and long-term (LT) stress with the four main bile acids cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and lithocholic acid (LCA). A general overlapping response to all tested bile acids could be determined particularly in shock experiments which appears plausible in the light of their common steroid structure. However, during LT stress several proteins showed an altered abundance in the presence of only a single or a few of the bile acids indicating the existence of specific adaptation mechanisms. Our results point at a differential induction of the groEL and dnaKJgrpE chaperone systems, both belonging to the class I heat shock genes. Additionally, central metabolic pathways involving butyrate fermentation and the reductive Stickland fermentation of leucine were effected, although CA caused a proteome signature different from the other three bile acids. Furthermore, quantitative proteomics revealed a loss of flagellar proteins in LT stress with LCA. The absence of flagella could be substantiated by electron microscopy which also indicated less flagellated cells in the presence of DCA and CDCA and no influence on flagella formation by CA. Our data break down the bile acid stress response of C. difficile into a general and a specific adaptation. The latter cannot simply be divided into a response to primary and secondary bile acids, but rather reflects a complex and variable adaptation process enabling C. difficile to survive and to cause an infection in the intestinal tract.
Collapse
Affiliation(s)
- Susanne Sievers
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Nicole G Metzendorf
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Silvia Dittmann
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Daniel Troitzsch
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Viola Gast
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sophie Marlen Tröger
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Christian Wolff
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Neumann-Schaal M, Jahn D, Schmidt-Hohagen K. Metabolism the Difficile Way: The Key to the Success of the Pathogen Clostridioides difficile. Front Microbiol 2019; 10:219. [PMID: 30828322 PMCID: PMC6384274 DOI: 10.3389/fmicb.2019.00219] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Strains of Clostridioides difficile cause detrimental diarrheas with thousands of deaths worldwide. The infection process by the Gram-positive, strictly anaerobic gut bacterium is directly related to its unique metabolism, using multiple Stickland-type amino acid fermentation reactions coupled to Rnf complex-mediated sodium/proton gradient formation for ATP generation. Major pathways utilize phenylalanine, leucine, glycine and proline with the formation of 3-phenylproprionate, isocaproate, butyrate, 5-methylcaproate, valerate and 5-aminovalerate. In parallel a versatile sugar catabolism including pyruvate formate-lyase as a central enzyme and an incomplete tricarboxylic acid cycle to prevent unnecessary NADH formation completes the picture. However, a complex gene regulatory network that carefully mediates the continuous adaptation of this metabolism to changing environmental conditions is only partially elucidated. It involves the pleiotropic regulators CodY and SigH, the known carbon metabolism regulator CcpA, the proline regulator PrdR, the iron regulator Fur, the small regulatory RNA CsrA and potentially the NADH-responsive regulator Rex. Here, we describe the current knowledge of the metabolic principles of energy generation by C. difficile and the underlying gene regulatory scenarios.
Collapse
Affiliation(s)
- Meina Neumann-Schaal
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Integrated Centre of Systems Biology (BRICS), Braunschweig University of Technology, Braunschweig, Germany
| | - Dieter Jahn
- Integrated Centre of Systems Biology (BRICS), Braunschweig University of Technology, Braunschweig, Germany.,Institute of Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Kerstin Schmidt-Hohagen
- Integrated Centre of Systems Biology (BRICS), Braunschweig University of Technology, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry, Braunschweig University of Technology, Braunschweig, Germany
| |
Collapse
|
22
|
Berges M, Michel AM, Lassek C, Nuss AM, Beckstette M, Dersch P, Riedel K, Sievers S, Becher D, Otto A, Maaß S, Rohde M, Eckweiler D, Borrero-de Acuña JM, Jahn M, Neumann-Schaal M, Jahn D. Iron Regulation in Clostridioides difficile. Front Microbiol 2018; 9:3183. [PMID: 30619231 PMCID: PMC6311696 DOI: 10.3389/fmicb.2018.03183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen Clostridioides difficile were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (15 μM) the C. difficile fur mutant displayed a growth deficiency compared to wild type C. difficile cells. Several iron and siderophore transporter genes were induced by Fur during low iron (0.2 μM) conditions. The major adaptation to low iron conditions was observed for the central energy metabolism. Most ferredoxin-dependent amino acid fermentations were significantly down regulated (had, etf, acd, grd, trx, bdc, hbd). The substrates of these pathways phenylalanine, leucine, glycine and some intermediates (phenylpyruvate, 2-oxo-isocaproate, 3-hydroxy-butyryl-CoA, crotonyl-CoA) accumulated, while end products like isocaproate and butyrate were found reduced. Flavodoxin (fldX) formation and riboflavin biosynthesis (rib) were enhanced, most likely to replace the missing ferredoxins. Proline reductase (prd), the corresponding ion pumping RNF complex (rnf) and the reaction product 5-aminovalerate were significantly enhanced. An ATP forming ATPase (atpCDGAHFEB) of the F0F1-type was induced while the formation of a ATP-consuming, proton-pumping V-type ATPase (atpDBAFCEKI) was decreased. The [Fe-S] enzyme-dependent pyruvate formate lyase (pfl), formate dehydrogenase (fdh) and hydrogenase (hyd) branch of glucose utilization and glycogen biosynthesis (glg) were significantly reduced, leading to an accumulation of glucose and pyruvate. The formation of [Fe-S] enzyme carbon monoxide dehydrogenase (coo) was inhibited. The fur mutant showed an increased sensitivity to vancomycin and polymyxin B. An intensive remodeling of the cell wall was observed, Polyamine biosynthesis (spe) was induced leading to an accumulation of spermine, spermidine, and putrescine. The fur mutant lost most of its flagella and motility. Finally, the CRISPR/Cas and a prophage encoding operon were downregulated. Fur binding sites were found upstream of around 20 of the regulated genes. Overall, adaptation to low iron conditions in C. difficile focused on an increase of iron import, a significant replacement of iron requiring metabolic pathways and the restructuring of the cell surface for protection during the complex adaptation phase and was only partly directly regulated by Fur.
Collapse
Affiliation(s)
- Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika-Marisa Michel
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Christian Lassek
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Aaron M Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Katharina Riedel
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Andreas Otto
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Denitsa Eckweiler
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Martina Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
23
|
Proteomic Signatures of Clostridium difficile Stressed with Metronidazole, Vancomycin, or Fidaxomicin. Cells 2018; 7:cells7110213. [PMID: 30445773 PMCID: PMC6262375 DOI: 10.3390/cells7110213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
The anaerobic pathogen Clostridium difficile is of growing significance for the health care system due to its increasing incidence and mortality. As C. difficile infection is both supported and treated by antibiotics, a deeper knowledge on how antimicrobial agents affect the physiology of this important pathogen may help to understand and prevent the development and spreading of antibiotic resistant strains. As the proteomic response of a cell to stress aims at counteracting the harmful effects of this stress, it can be expected that the pattern of a pathogen’s responses to antibiotic treatment will be dependent on the antibiotic mechanism of action. Hence, every antibiotic treatment is expected to result in a specific proteomic signature characterizing its mode of action. In the study presented here, the proteomic response of C. difficile 630∆erm to vancomycin, metronidazole, and fidaxomicin stress was investigated on the level of protein abundance and protein synthesis based on 2D PAGE. The quantification of 425 proteins of C. difficile allowed the deduction of proteomic signatures specific for each drug treatment. Indeed, these proteomic signatures indicate very specific cellular responses to each antibiotic with only little overlap of the responses. Whereas signature proteins for vancomycin stress fulfil various cellular functions, the proteomic signature of metronidazole stress is characterized by alterations of proteins involved in protein biosynthesis and protein degradation as well as in DNA replication, recombination, and repair. In contrast, proteins differentially expressed after fidaxomicin treatment can be assigned to amino acid biosynthesis, transcription, cell motility, and the cell envelope functions. Notably, the data provided by this study hint also at so far unknown antibiotic detoxification mechanisms.
Collapse
|
24
|
Bernal I, Hofmann JD, Bulitta B, Klawonn F, Michel AM, Jahn D, Neumann-Schaal M, Bruder D, Jänsch L. Clostridioides difficile Activates Human Mucosal-Associated Invariant T Cells. Front Microbiol 2018; 9:2532. [PMID: 30410474 PMCID: PMC6209678 DOI: 10.3389/fmicb.2018.02532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile infection (CDI) causes severe inflammatory responses at the intestinal mucosa but the immunological mechanisms underlying CDI-related immunopathology are still incompletely characterized. Here we identified for the first time that both, non-toxigenic strains as well as the hypervirulent ribotypes RT027 and RT023 of Clostridioides difficile (formerly Clostridium difficile), induced an effector phenotype in mucosal-associated invariant T (MAIT) cells. MAIT cells can directly respond to bacterial infections by recognizing MR1-presented metabolites derived from the riboflavin synthesis pathway constituting a novel class of antigens. We confirmed functional riboflavin synthesis of C. difficile and found fixed bacteria capable of activating primary human MAIT cells in a dose-dependent manner. C. difficile-activated MAIT cells showed an increased and MR1-dependent expression of CD69, proinflammatory IFNγ, and the lytic granule components granzyme B and perforin. Effector protein expression was accompanied by the release of lytic granules, which, in contrast to other effector functions, was mainly induced by IL-12 and IL-18. Notably, this study revealed hypervirulent C. difficile strains to be most competent in provoking MAIT cell responses suggesting MAIT cell activation to be instrumental for the immunopathology observed in C. difficile-associated colitis. In conclusion, we provide first evidence for a link between C. difficile metabolism and innate T cell-mediated immunity in humans.
Collapse
Affiliation(s)
- Isabel Bernal
- Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.,ESF Graduate School ABINEP, Magdeburg, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | | | - Frank Klawonn
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Annika-Marisa Michel
- Department of Microbiology, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Department of Microbiology, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
25
|
Mehner-Breitfeld D, Rathmann C, Riedel T, Just I, Gerhard R, Overmann J, Brüser T. Evidence for an Adaptation of a Phage-Derived Holin/Endolysin System to Toxin Transport in Clostridioides difficile. Front Microbiol 2018; 9:2446. [PMID: 30405545 PMCID: PMC6200909 DOI: 10.3389/fmicb.2018.02446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity locus (PaLoc) of Clostridioides difficile usually comprises five genes (tcdR, tcdB, tcdE, tcdA, tcdC). While the proteins TcdA and TcdB represent the main toxins of this pathogen, TcdR and TcdC are involved in the regulation of their production. TcdE is a holin family protein, members of which are usually involved in the transport of cell wall-degrading enzymes (endolysins) for phage-induced lysis. In the past, TcdE has been shown to contribute to the release of TcdA and TcdB, but it is unclear whether it mediates a specific transport or rather a lysis of cells. TcdE of C. difficile strains analyzed so far can be produced in three isoforms that are initiated from distinct N-terminal ATG codons. When produced in Escherichia coli, we found that the longest TcdE isoform had a moderate effect on cell growth, whereas the shortest isoform strongly induced lysis. The effect of the longest isoform was inhibitory for cell lysis, implying a regulatory function of the N-terminal 24 residues. We analyzed the PaLoc sequence of 44 C. difficile isolates and found that four of these apparently encode only the short TcdE isoforms, and the most closely related holins from C. difficile phages only possess one of these initiation codons, indicating that an N-terminal extension of TcdE evolved in C. difficile. All PaLoc sequences comprised also a conserved gene encoding a short fragment of an endolysin remnant of a phage holin/endolysin pair. We could produce this peptide, which we named TcdL, and demonstrated by bacterial two-hybrid analysis a self-interaction and an interaction with TcdB that might serve to mediate TcdE-dependent transport.
Collapse
Affiliation(s)
| | - Claudia Rathmann
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| | - Thomas Riedel
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
26
|
Trautwein-Schult A, Maaß S, Plate K, Otto A, Becher D. A Metabolic Labeling Strategy for Relative Protein Quantification in Clostridioides difficile. Front Microbiol 2018; 9:2371. [PMID: 30386308 PMCID: PMC6198727 DOI: 10.3389/fmicb.2018.02371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023] Open
Abstract
Clostridioides difficile (formerly Clostridium difficile) is a Gram-positive, anaerobe, spore-forming pathogen, which causes drug-induced diseases in hospitals worldwide. A detailed analysis of the proteome may provide new targets for drug development or therapeutic strategies to combat this pathogen. The application of metabolic labeling (ML) would allow for accurate quantification of significant differences in protein abundance, even in the case of very small changes. Additionally, it would be possible to perform more accurate studies of the membrane or surface proteomes, which usually require elaborated sample preparation. Such studies are therefore prone to higher standard deviations during the quantification. The implementation of ML strategies for C. difficile is complicated due to the lack in arginine and lysine auxotrophy as well as the Stickland dominated metabolism of this anaerobic pathogen. Hence, quantitative proteome analyses could only be carried out by label free or chemical labeling methods so far. In this paper, a ML approach for C. difficile is described. A cultivation procedure with 15N-labeled media for strain 630Δerm was established achieving an incorporation rate higher than 97%. In a proof-of-principle experiment, the performance of the ML approach in C. difficile was tested. The proteome data of the cytosolic subproteome of C. difficile cells grown in complex medium as well as two minimal media in the late exponential and early stationary growth phase obtained via ML were compared with two label free relative quantification approaches (NSAF and LFQ). The numbers of identified proteins were comparable within the three approaches, whereas the number of quantified proteins were between 1,110 (ML) and 1,861 (LFQ) proteins. A hierarchical clustering showed clearly separated clusters for the different conditions and a small tree height with ML approach. Furthermore, it was shown that the quantification based on ML revealed significant altered proteins with small fold changes compared to the label free approaches. The quantification based on ML was accurate, reproducible, and even more sensitive compared to label free quantification strategies.
Collapse
Affiliation(s)
| | | | | | | | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Murillo T, Ramírez-Vargas G, Riedel T, Overmann J, Andersen JM, Guzmán-Verri C, Chaves-Olarte E, Rodríguez C. Two Groups of Cocirculating, Epidemic Clostridiodes difficile Strains Microdiversify through Different Mechanisms. Genome Biol Evol 2018; 10:982-998. [PMID: 29617810 PMCID: PMC5888409 DOI: 10.1093/gbe/evy059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 02/04/2023] Open
Abstract
Clostridiodes difficile strains from the NAPCR1/ST54 and NAP1/ST01 types have caused outbreaks despite of their notable differences in genome diversity. By comparing whole genome sequences of 32 NAPCR1/ST54 isolates and 17 NAP1/ST01 recovered from patients infected with C. difficile we assessed whether mutation, homologous recombination (r) or nonhomologous recombination (NHR) through lateral gene transfer (LGT) have differentially shaped the microdiversification of these strains. The average number of single nucleotide polymorphisms (SNPs) in coding sequences (NAPCR1/ST54 = 24; NAP1/ST01 = 19) and SNP densities (NAPCR1/ST54 = 0.54/kb; NAP1/ST01 = 0.46/kb) in the NAPCR1/ST54 and NAP1/ST01 isolates was comparable. However, the NAP1/ST01 isolates showed 3× higher average dN/dS rates (8.35) that the NAPCR1/ST54 isolates (2.62). Regarding r, whereas 31 of the NAPCR1/ST54 isolates showed 1 recombination block (3,301–8,226 bp), the NAP1/ST01 isolates showed no bases in recombination. As to NHR, the pangenome of the NAPCR1/ST54 isolates was larger (4,802 gene clusters, 26% noncore genes) and more heterogeneous (644 ± 33 gene content changes) than that of the NAP1/ST01 isolates (3,829 gene clusters, ca. 6% noncore genes, 129 ± 37 gene content changes). Nearly 55% of the gene content changes seen among the NAPCR1/ST54 isolates (355 ± 31) were traced back to MGEs with putative genes for antimicrobial resistance and virulence factors that were only detected in single isolates or isolate clusters. Congruently, the LGT/SNP rate calculated for the NAPCR1/ST54 isolates (26.8 ± 2.8) was 4× higher than the one obtained for the NAP1/ST1 isolates (6.8 ± 2.0). We conclude that NHR-LGT has had a greater role in the microdiversification of the NAPCR1/ST54 strains, opposite to the NAP1/ST01 strains, where mutation is known to play a more prominent role.
Collapse
Affiliation(s)
- Tatiana Murillo
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Gabriel Ramírez-Vargas
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Joakim M Andersen
- Department of Food, Processing and Nutritional Sciences, North Carolina State University
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Esteban Chaves-Olarte
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
28
|
Schwanbeck J, Riedel T, Laukien F, Schober I, Oehmig I, Zimmermann O, Overmann J, Groß U, Zautner AE, Bohne W. Characterization of a clinical Clostridioides difficile isolate with markedly reduced fidaxomicin susceptibility and a V1143D mutation in rpoB. J Antimicrob Chemother 2018; 74:6-10. [DOI: 10.1093/jac/dky375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/23/2018] [Indexed: 01/20/2023] Open
Abstract
Abstract
Objectives
The identification and characterization of clinical Clostridioides difficile isolates with reduced fidaxomicin susceptibility.
Methods
Agar dilution assays were used to determine fidaxomicin MICs. Genome sequence data were obtained by single-molecule real-time (SMRT) sequencing in addition to amplicon sequencing of rpoB and rpoC alleles. Allelic exchange was used to introduce the identified mutation into C. difficile 630Δerm. Replication rates, toxin A/B production and spore formation were determined from the strain with reduced fidaxomicin susceptibility.
Results
Out of 50 clinical C. difficile isolates, isolate Goe-91 revealed markedly reduced fidaxomicin susceptibility (MIC >64 mg/L). A V1143D mutation was identified in rpoB of Goe-91. When introduced into C. difficile 630Δerm, this mutation decreased fidaxomicin susceptibility (MIC >64 mg/L), but was also associated with a reduced replication rate, low toxin A/B production and markedly reduced spore formation. In contrast, Goe-91, although also reduced in toxin production, showed normal growth rates and only moderately reduced spore formation capacities. This indicates that the rpoBV1143D allele-associated fitness defect is less pronounced in the clinical isolate.
Conclusions
To the best of our knowledge, this is the first description of a pathogenic clinical C. difficile isolate with markedly reduced fidaxomicin susceptibility. The lower-than-expected fitness burden of the resistance-mediating rpoBV1143D allele might be an indication for compensatory mechanisms that take place during in vivo selection of mutants.
Collapse
Affiliation(s)
- Julian Schwanbeck
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover–Braunschweig, Braunschweig, Germany
| | - Friederike Laukien
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ines Oehmig
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ortrud Zimmermann
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover–Braunschweig, Braunschweig, Germany
| | - Uwe Groß
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas E Zautner
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Hofmann JD, Otto A, Berges M, Biedendieck R, Michel AM, Becher D, Jahn D, Neumann-Schaal M. Metabolic Reprogramming of Clostridioides difficile During the Stationary Phase With the Induction of Toxin Production. Front Microbiol 2018; 9:1970. [PMID: 30186274 PMCID: PMC6110889 DOI: 10.3389/fmicb.2018.01970] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
The obligate anaerobe, spore forming bacterium Clostridioides difficile (formerly Clostridium difficile) causes nosocomial and community acquired diarrhea often associated with antibiotic therapy. Major virulence factors of the bacterium are the two large clostridial toxins TcdA and TcdB. The production of both toxins was found strongly connected to the metabolism and the nutritional status of the growth environment. Here, we systematically investigated the changes of the gene regulatory, proteomic and metabolic networks of C. difficile 630Δerm underlying the adaptation to the non-growing state in the stationary phase. Integrated data from time-resolved transcriptome, proteome and metabolome investigations performed under defined growth conditions uncovered multiple adaptation strategies. Overall changes in the cellular processes included the downregulation of ribosome production, lipid metabolism, cold shock proteins, spermine biosynthesis, and glycolysis and in the later stages of riboflavin and coenzyme A (CoA) biosynthesis. In contrast, different chaperones, several fermentation pathways, and cysteine, serine, and pantothenate biosynthesis were found upregulated. Focusing on the Stickland amino acid fermentation and the central carbon metabolism, we discovered the ability of C. difficile to replenish its favored amino acid cysteine by a pathway starting from the glycolytic 3-phosphoglycerate via L-serine as intermediate. Following the growth course, the reductive equivalent pathways used were sequentially shifted from proline via leucine/phenylalanine to the central carbon metabolism first to butanoate fermentation and then further to lactate fermentation. The toxin production was found correlated mainly to fluxes of the central carbon metabolism. Toxin formation in the supernatant was detected when the flux changed from butanoate to lactate synthesis in the late stationary phase. The holistic view derived from the combination of transcriptome, proteome and metabolome data allowed us to uncover the major metabolic strategies that are used by the clostridial cells to maintain its cellular homeostasis and ensure survival under starvation conditions.
Collapse
Affiliation(s)
- Julia D Hofmann
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Andreas Otto
- Department for Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika-Marisa Michel
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dörte Becher
- Department for Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
30
|
Huang YY, Martínez-del Campo A, Balskus EP. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity. Gut Microbes 2018; 9:437-451. [PMID: 29405826 PMCID: PMC6219649 DOI: 10.1080/19490976.2018.1435244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ1-pyrroline-5-carboxylate (P5C). This enzyme is encoded in the genomes of a diverse set of gut anaerobes and is prevalent and abundant in healthy human stool metagenomes. Here, we discuss the roles HypD may play in different microbial metabolic pathways as well as the potential implications of this activity for colonization resistance and pathogenesis within the human gut. Finally, we present evidence of anaerobic Hyp metabolism in sediments through enrichment culturing of Hyp-degrading bacteria, highlighting the wide distribution of this pathway in anoxic environments beyond the human gut.
Collapse
Affiliation(s)
- Yolanda Y. Huang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA,CONTACT Emily P. Balskus Commense Inc., 100 Edwin H. Land Blvd, Cambridge, MA 02142
| |
Collapse
|
31
|
Neumann-Schaal M, Metzendorf NG, Troitzsch D, Nuss AM, Hofmann JD, Beckstette M, Dersch P, Otto A, Sievers S. Tracking gene expression and oxidative damage of O 2-stressed Clostridioides difficile by a multi-omics approach. Anaerobe 2018; 53:94-107. [PMID: 29859941 DOI: 10.1016/j.anaerobe.2018.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile is the major pathogen causing diarrhea following antibiotic treatment. It is considered to be a strictly anaerobic bacterium, however, previous studies have shown a certain and strain-dependent oxygen tolerance. In this study, the model strain C. difficile 630Δerm was shifted to micro-aerobiosis and was found to stay growing to the same extent as anaerobically growing cells with only few changes in the metabolite pattern. However, an extensive change in gene expression was determined by RNA-Seq. The most striking adaptation strategies involve a change in the reductive fermentation pathways of the amino acids proline, glycine and leucine. But also a far-reaching restructuring in the carbohydrate metabolism was detected with changes in the phosphotransferase system (PTS) facilitated uptake of sugars and a repression of enzymes of glycolysis and butyrate fermentation. Furthermore, a temporary induction in the synthesis of cofactor riboflavin was detected possibly due to an increased demand for flavin mononucleotid (FMN) and flavin adenine dinucleotide (FAD) in redox reactions. However, biosynthesis of the cofactors thiamin pyrophosphate and cobalamin were repressed deducing oxidation-prone enzymes and intermediates in these pathways. Micro-aerobically shocked cells were characterized by an increased demand for cysteine and a thiol redox proteomics approach revealed a dramatic increase in the oxidative state of cysteine in more than 800 peptides after 15 min of micro-aerobic shock. This provides not only a catalogue of oxidation-prone cysteine residues in the C. difficile proteome but also puts the amino acid cysteine into a key position in the oxidative stress response. Our study suggests that tolerance of C. difficile towards O2 is based on a complex and far-reaching adjustment of global gene expression which leads to only a slight change in phenotype.
Collapse
Affiliation(s)
- Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Nicole G Metzendorf
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Daniel Troitzsch
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Aaron Mischa Nuss
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andreas Otto
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
32
|
Steglich M, Hofmann JD, Helmecke J, Sikorski J, Spröer C, Riedel T, Bunk B, Overmann J, Neumann-Schaal M, Nübel U. Convergent Loss of ABC Transporter Genes From Clostridioides difficile Genomes Is Associated With Impaired Tyrosine Uptake and p-Cresol Production. Front Microbiol 2018; 9:901. [PMID: 29867812 PMCID: PMC5951980 DOI: 10.3389/fmicb.2018.00901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
We report the frequent, convergent loss of two genes encoding the substrate-binding protein and the ATP-binding protein of an ATP-binding cassette (ABC) transporter from the genomes of unrelated Clostridioides difficile strains. This specific genomic deletion was strongly associated with the reduced uptake of tyrosine and phenylalanine and production of derived Stickland fermentation products, including p-cresol, suggesting that the affected ABC transporter had been responsible for the import of aromatic amino acids. In contrast, the transporter gene loss did not measurably affect bacterial growth or production of enterotoxins. Phylogenomic analysis of publically available genome sequences indicated that this transporter gene deletion had occurred multiple times in diverse clonal lineages of C. difficile, with a particularly high prevalence in ribotype 027 isolates, where 48 of 195 genomes (25%) were affected. The transporter gene deletion likely was facilitated by the repetitive structure of its genomic location. While at least some of the observed transporter gene deletions are likely to have occurred during the natural life cycle of C. difficile, we also provide evidence for the emergence of this mutation during long-term laboratory cultivation of reference strain R20291.
Collapse
Affiliation(s)
- Matthias Steglich
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Julia D Hofmann
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Julia Helmecke
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| |
Collapse
|
33
|
Roberts AP, Smits WK. The evolving epidemic of Clostridium difficile 630. Anaerobe 2018; 53:2-4. [PMID: 29730161 DOI: 10.1016/j.anaerobe.2018.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/04/2023]
Abstract
Clostridium difficile is a major pathogen responsible for a range of diseases in humans and animals. The genetic tools used to explore C. difficile biology are a relatively recent development in comparison to those used to investigate some other pathogens. Consequently, a rapid and haphazard dispersal of strains throughout the scientific community has led to the evolution of different C. difficile lineages within strains in different geographical locations and these genotypic differences are likely to affect the phenotype of the organism. Here we review the history of C. difficile 630, the first genome-sequenced C. difficile isolate and the most widely distributed reference strain, and its derivatives. We also invite researchers to take part in a community wide genome sequencing study to trace the evolution of these strains as they have travelled between laboratories around the world.
Collapse
Affiliation(s)
- Adam P Roberts
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK; Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
34
|
Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model. mSphere 2018; 3:mSphere00089-18. [PMID: 29600278 PMCID: PMC5874438 DOI: 10.1128/msphere.00089-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile is a bacterial pathogen of global significance that is a major cause of antibiotic-associated diarrhea. Antibiotics deplete the indigenous gut microbiota and change the metabolic environment in the gut to one favoring C. difficile growth. Here we used metabolomics and transcriptomics to define the gut environment after antibiotics and during the initial stages of C. difficile colonization and infection. We show that amino acids, in particular, proline and branched-chain amino acids, and carbohydrates decrease in abundance over time and that C. difficile gene expression is consistent with their utilization by the bacterium in vivo. We employed an integrated approach to analyze the metabolome and transcriptome to identify associations between metabolites and transcripts. This highlighted the importance of key nutrients in the early stages of colonization, and the data provide a rationale for the development of therapies based on the use of bacteria that specifically compete for nutrients that are essential for C. difficile colonization and disease. Antibiotics alter the gut microbiota and decrease resistance to Clostridium difficile colonization; however, the mechanisms driving colonization resistance are not well understood. Loss of resistance to C. difficile colonization due to antibiotic treatment is associated with alterations in the gut metabolome, specifically, with increases in levels of nutrients that C. difficile can utilize for growth in vitro. To define the nutrients that C. difficile requires for colonization and pathogenesis in vivo, we used a combination of mass spectrometry and RNA sequencing (RNA Seq) to model the gut metabolome and C. difficile transcriptome throughout an acute infection in a mouse model at the following time points: 0, 12, 24, and 30 h. We also performed multivariate-based integration of the omics data to define the signatures that were most important throughout colonization and infection. Here we show that amino acids, in particular, proline and branched-chain amino acids, and carbohydrates decrease in abundance over time in the mouse cecum and that C. difficile gene expression is consistent with their utilization in vivo. This was also reinforced by the multivariate-based integration of the omics data where we were able to discriminate the metabolites and transcripts that support C. difficile physiology between the different time points throughout colonization and infection. This report illustrates how important the availability of amino acids and other nutrients is for the initial stages of C. difficile colonization and progression of disease. Future studies identifying the source of the nutrients and engineering bacteria capable of outcompeting C. difficile in the gut will be important for developing new targeted bacterial therapeutics. IMPORTANCEClostridium difficile is a bacterial pathogen of global significance that is a major cause of antibiotic-associated diarrhea. Antibiotics deplete the indigenous gut microbiota and change the metabolic environment in the gut to one favoring C. difficile growth. Here we used metabolomics and transcriptomics to define the gut environment after antibiotics and during the initial stages of C. difficile colonization and infection. We show that amino acids, in particular, proline and branched-chain amino acids, and carbohydrates decrease in abundance over time and that C. difficile gene expression is consistent with their utilization by the bacterium in vivo. We employed an integrated approach to analyze the metabolome and transcriptome to identify associations between metabolites and transcripts. This highlighted the importance of key nutrients in the early stages of colonization, and the data provide a rationale for the development of therapies based on the use of bacteria that specifically compete for nutrients that are essential for C. difficile colonization and disease.
Collapse
|
35
|
Smits WK, Weese JS, Roberts AP, Harmanus C, Hornung B. A helicase-containing module defines a family of pCD630-like plasmids in Clostridium difficile. Anaerobe 2018; 49:78-84. [DOI: 10.1016/j.anaerobe.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
|
36
|
Groß U, Brzuszkiewicz E, Gunka K, Starke J, Riedel T, Bunk B, Spröer C, Wetzel D, Poehlein A, Chibani C, Bohne W, Overmann J, Zimmermann O, Daniel R, Liesegang H. Comparative genome and phenotypic analysis of three Clostridioides difficile strains isolated from a single patient provide insight into multiple infection of C. difficile. BMC Genomics 2018; 19:1. [PMID: 29291715 PMCID: PMC5749029 DOI: 10.1186/s12864-017-4368-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Clostridioides difficile infections (CDI) have emerged over the past decade causing symptoms that
range from mild, antibiotic-associated diarrhea (AAD) to life-threatening toxic megacolon. In this study, we describe a multiple and isochronal (mixed) CDI caused by the isolates DSM 27638, DSM 27639 and DSM 27640 that already initially showed different morphotypes on solid media. RESULTS The three isolates belonging to the ribotypes (RT) 012 (DSM 27639) and 027 (DSM 27638 and DSM 27640)
were phenotypically characterized and high quality closed genome sequences were generated. The genomes were compared with seven reference strains including three strains of the RT 027, two of the RT 017, and one of the RT 078 as well as a multi-resistant RT 012 strain. The analysis of horizontal gene transfer events revealed gene acquisition incidents that sort the strains within the time line of the spread of their RTs within Germany. We could show as well that horizontal gene transfer between the members of different RTs occurred within this multiple infection. In addition, acquisition and exchange of virulence-related features including antibiotic resistance genes were observed. Analysis of the two genomes assigned to RT 027 revealed three single nucleotide polymorphisms (SNPs) and apparently a regional genome modification within the flagellar switch that regulates the fli operon. CONCLUSION Our findings show that (i) evolutionary events based on horizontal gene transfer occur within an ongoing
CDI and contribute to the adaptation of the species by the introduction of new genes into the genomes, (ii) within a multiple infection of a single patient the exchange of genetic material was responsible for a much higher genome variation than the observed SNPs.
Collapse
Affiliation(s)
- Uwe Groß
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Elzbieta Brzuszkiewicz
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Katrin Gunka
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jessica Starke
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Daniela Wetzel
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Cynthia Chibani
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Ortrud Zimmermann
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
37
|
Ngernsombat C, Sreesai S, Harnvoravongchai P, Chankhamhaengdecha S, Janvilisri T. CD2068 potentially mediates multidrug efflux in Clostridium difficile. Sci Rep 2017; 7:9982. [PMID: 28855575 PMCID: PMC5577244 DOI: 10.1038/s41598-017-10155-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/03/2017] [Indexed: 02/04/2023] Open
Abstract
Clostridium difficile is a major cause of antibiotic-associated diarrhea and the treatment thereof becomes more difficult owing to a rise of multidrug resistant strains. ATP-binding cassette (ABC) transporters are known to play a crucial role in the resistance to multiple antibiotics. In this study, the potential contribution of an ABC transporter in C. difficile multidrug resistance was investigated. The expression level of the cd2068 gene in C. difficile encoding an ABC transporter was up-regulated following the exposure to certain antibiotics compared to the control cells. Heterologous expression of CD2068 in Escherichia coli revealed that it mediated the efflux of fluorescent substrates and conferred resistance to multiple drugs. The CD2068-associated ATPase activity in membrane vesicles was also stimulated by various antibiotics. Furthermore, the insertional inactivation of the cd2068 gene in C. difficile led to a significant increase in susceptibility to antibiotics, which could be genetically complemented, supporting that CD2068 was directly associated to the drug resistance. These results demonstrate the potential role for the ABC transporter CD2068 in the resistance mechanism against multiple drugs in C. difficile.
Collapse
Affiliation(s)
- Chawalit Ngernsombat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suthasinee Sreesai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Phurt Harnvoravongchai
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
38
|
Riedel T, Wetzel D, Hofmann JD, Plorin SPEO, Dannheim H, Berges M, Zimmermann O, Bunk B, Schober I, Spröer C, Liesegang H, Jahn D, Overmann J, Groß U, Neumann-Schaal M. High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates. Int J Med Microbiol 2017; 307:311-320. [PMID: 28619474 DOI: 10.1016/j.ijmm.2017.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile (formerly Clostridium difficile) is a major nosocomial pathogen with an increasing number of community-acquired infections causing symptoms from mild diarrhea to life-threatening colitis. The pathogenicity of C. difficile is considered to be mainly associated with the production of genome-encoded toxins A and B. In addition, some strains also encode and express the binary toxin CDT. However; a large number of non-toxigenic C. difficile strains have been isolated from the human gut and the environment. In this study, we characterized the growth behavior, motility and fermentation product formation of 17 different C. difficile isolates comprising five different major genomic clades and five different toxin inventories in relation to the C. difficile model strains 630Δerm and R20291. Within 33 determined fermentation products, we identified two yet undescribed products (5-methylhexanoate and 4-(methylthio)-butanoate) of C. difficile. Our data revealed major differences in the fermentation products obtained after growth in a medium containing casamino acids and glucose as carbon and energy source. While the metabolism of branched chain amino acids remained comparable in all isolates, the aromatic amino acid uptake and metabolism and the central carbon metabolism-associated fermentation pathways varied strongly between the isolates. The patterns obtained followed neither the classification of the clades nor the ribotyping patterns nor the toxin distribution. As the toxin formation is strongly connected to the metabolism, our data allow an improved differentiation of C. difficile strains. The observed metabolic flexibility provides the optimal basis for the adaption in the course of infection and to changing conditions in different environments including the human gut.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Daniela Wetzel
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Julia Danielle Hofmann
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Simon Paul Erich Otto Plorin
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Henning Dannheim
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; Technische Universität Braunschweig, Department of Microbiology, Rebenring 56, 38106 Braunschweig, Germany
| | - Ortrud Zimmermann
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; Technische Universität Braunschweig, Department of Microbiology, Rebenring 56, 38106 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Institute of Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany; Göttingen International Health Network, Göttingen, Germany
| | - Meina Neumann-Schaal
- Technische Universität Braunschweig, Department of Bioinformatics and Biochemistry, Rebenring 56, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.
| |
Collapse
|
39
|
Dannheim H, Will SE, Schomburg D, Neumann-Schaal M. Clostridioides difficile 630Δ erm in silico and in vivo - quantitative growth and extensive polysaccharide secretion. FEBS Open Bio 2017; 7:602-615. [PMID: 28396843 PMCID: PMC5377389 DOI: 10.1002/2211-5463.12208] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-associated infections with Clostridioides difficile are a severe and often lethal risk for hospitalized patients, and can also affect populations without these classical risk factors. For a rational design of therapeutical concepts, a better knowledge of the metabolism of the pathogen is crucial. Metabolic modeling can provide a simulation of quantitative growth and usage of metabolic pathways, leading to a deeper understanding of the organism. Here, we present an elaborate genome-scale metabolic model of C. difficile 630Δerm. The model iHD992 includes experimentally determined product and substrate uptake rates and is able to simulate the energy metabolism and quantitative growth of C. difficile. Dynamic flux balance analysis was used for time-resolved simulations of the quantitative growth in two different media. The model predicts oxidative Stickland reactions and glucose degradation as main sources of energy, while the resulting reduction potential is mostly used for acetogenesis via the Wood-Ljungdahl pathway. Initial modeling experiments did not reproduce the observed growth behavior before the production of large quantities of a previously unknown polysaccharide was detected. Combined genome analysis and laboratory experiments indicated that the polysaccharide is an acetylated glucose polymer. Time-resolved simulations showed that polysaccharide secretion was coupled to growth even during unstable glucose uptake in minimal medium. This is accomplished by metabolic shifts between active glycolysis and gluconeogenesis which were also observed in laboratory experiments.
Collapse
Affiliation(s)
- Henning Dannheim
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Sabine E Will
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Dietmar Schomburg
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
40
|
Riedel T, Wittmann J, Bunk B, Schober I, Spröer C, Gronow S, Overmann J. A Clostridioides difficile bacteriophage genome encodes functional binary toxin-associated genes. J Biotechnol 2017; 250:23-28. [PMID: 28216103 DOI: 10.1016/j.jbiotec.2017.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/29/2022]
Abstract
Pathogenic clostridia typically produce toxins as virulence factors which cause severe diseases in both humans and animals. Whereas many clostridia like e.g., Clostridium perfringens, Clostridium botulinum or Clostridium tetani were shown to contain toxin-encoding plasmids, only toxin genes located on the chromosome were detected in Clostridioides difficile so far. In this study, we determined, annotated, and analyzed the complete genome of the bacteriophage phiSemix9P1 using single-molecule real-time sequencing technology (SMRT). To our knowledge, this represents the first C. difficile-associated bacteriophage genome that carries a complete functional binary toxin locus in its genome.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany; North German Center of Microbial Genomics, Germany.
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany; North German Center of Microbial Genomics, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany; North German Center of Microbial Genomics, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sabine Gronow
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany; North German Center of Microbial Genomics, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany; North German Center of Microbial Genomics, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|